

February 17, 2023

Via Electronic Mail library.director@shutesbury.org

Ms. Mary Anne Antonellis Director, M.N. Spear Memorial Library 10 Cooleyville Road PO Box 256 Shutesbury, MA 01072

RE:

RTN 1-21489 – January 2023 Groundwater Investigation Memo 66 Leverett Rd., Shutesbury, MA Fuss & O'Neill Project No. 20091032.A22

Dear Ms. Antonellis:

On behalf of the Town of Shutesbury (The Town), Fuss & O'Neill, Inc. (Fuss & O'Neill) has been undertaking response actions under the Massachusetts Contingency Plan (MCP; 310 CMR 40) related to Release Tracking Number (RTN) 1-21489, located at 66 Leverett Road property in Shutesbury, Massachusetts (the Site). This letter outlines the results of the groundwater sampling event conducted by Fuss & O'Neill at the Site on January 11, 2023.

# 1.0 Background

During a subsurface investigation conducted by O'Reilly, Talbot & Okun Engineering Associates (OTO) in October 2021, Volatile Petroleum Hydrocarbons (VPH) (specifically, C5-C8 aliphatic hydrocarbon range), were detected in a soil sample at levels exceeding applicable Massachusetts Department of Environmental Protection (MassDEP) Reportable Criteria (the RCS-1). This release condition was reported to the MassDEP by the Town on January 28, 2022, and was assigned RTN 1-21489. The area where the reportable condition was identified was historically leased by the United States Air Force and operated as the Shutesbury – Westover Remote Site from 1957 until 1967. The specific soil sample that contained VPH at concentrations exceeding applicable reportable criteria was collected in the vicinity of a historic gasoline underground storage tank (UST) (removed by the U.S. Army Corp of Engineers [USACOE] in 1994) that was used to fuel an emergency generator associated with the facility.

Fuss & O'Neill conducted a Limited Phase II Subsurface Investigation at the Site in November and December of 2022, which included soil and groundwater investigation activities within the area of the historic UST. The November and December 2022 investigation included the installation of one (1) groundwater monitoring well, MW-09. The well was installed adjacent to soil boring B-13, which exhibited the highest total volatile organics (TOV) screening during the soil boring investigation utilizing a photoionization device (PID). Fuss & O'Neill returned to the Site on

F:\P2009\1032\A22\Deliverables\Report\January 2023 Sampling Memo\RTN 1-21489 January 2023 Sampling Memo.docx Report (MA)

1550 Main Street Suite 400 Springfield, MA 01103 † 413.452.0445 800.286.2469 f 860.533.5143

www.fando.com

California Connecticut Maine Massachusetts New Hampshire New York Rhode Island Vermont



Ms. Mary Anne Antonellis, Town of Shutesbury February 17, 2023 Page 2

December 2, 2022, to collect a groundwater sample from monitoring well MW-09. Groundwater analytical results were compared to the MassDEP GW-1 and GW-3 standards. Select VPH Ranges and Target Volatile Organic Compounds (VOCs), select Extractable Petroleum Hydrocarbon (EPH) Ranges and Target Polycyclic Aromatic Hydrocarbons (PAHs), and Thallium, were detected at concentrations exceeding applicable GW-1 Method 1 Standards in the groundwater sample. The results of the December 2022 sampling are summarized in Table 1.

On behalf of the Town, Fuss & O'Neill prepared a Phase I Initial Site Investigation (ISI) & Tier I Classification Submittal, which was submitted to the MassDEP on January 28, 2023. The Phase I ISI & Tier Classification Submittal detailed the investigatory response actions related to RTN 1-21489 completed to-date, with the exception of the analytical results for groundwater samples collected in January 2023, which are the subject of this letter, as summarized below.

# 2.0 January 2023 Groundwater Investigation

#### Monitoring Well Installation

Following review of the initial groundwater data from monitoring well MW-9, it was determined that installation of additional groundwater monitoring wells was necessary to better characterize the nature and extent of the groundwater condition, as well as to better assess the groundwater flow direction and hydraulic gradient at the Site. On January 4, 2023, Fuss & O'Neill returned to the Site to oversee the installation of four (4) additional monitoring wells, designated MW-10, MW-12, MW-13, and MW-14. Monitoring well development was completed on January 10, 2023, to improve the hydraulic interaction with the surrounding aquifer. A relative survey, based off the surveyed elevation of monitoring well MW-09, was completed for the top of casing elevation of monitoring wells MW-10, MW-13. A Site Plan is included as *Figure 1* and a figure depicting the measured groundwater flow direction in the vicinity of the release area (based on depth to groundwater measurements collected during the January 11, 2023 sampling event) is included as *Figure 2*.

#### Groundwater Monitoring Well Sampling

Fuss & O'Neill returned to the Site on January 11, 2023, to sample monitoring wells MW-09, MW-10, MW-12, MW-13, and MW-14. As part of the groundwater monitoring activity in January 2023, the depth to water was recorded at each monitoring well location. Depth to water was observed between approximately 3 and 7.6 feet below ground surface (bgs). Local groundwater flow in the vicinity of the release area is to the southwest, based on the January 2023 measurements.

The monitoring wells were purged prior to sample collection using industry standard low-flow procedures.



Ms. Mary Anne Antonellis, Town of Shutesbury February 17, 2023 Page 3

The groundwater samples were submitted under Chain of Custody to New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island, for laboratory analysis of the following parameters:

- EPH with Target PAHs according to the MassDEP Method
- VPH with Target VOCs according to the MassDEP Method
- MassDEP Compendium of Analytical Methods (CAM) 14 Metals according to the United States Environmental Protection Agency (USEPA) Method 6020B (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Silver, Thallium, Vanadium, and/or Zinc).

A summary of the groundwater samples submitted for laboratory analysis is included below in Table 2.

| Location     | Sample Number | Analysis                |
|--------------|---------------|-------------------------|
| MW-09        | 0111-01       |                         |
| <b>MW-10</b> | 0111-02       | CAM 14 Metals, EPH w/   |
| MW-12        | 0111-03       | target PAHs, and VPH w/ |
| MW-13        | 0111-04       | Target VOCs             |
| MW-14        | 0111-05       |                         |

# Table 2Summary of Groundwater Samples – January 11, 2023

**Notes:** Only the last six digits of the sample identification number are listed.

#### Groundwater Sampling Data Analysis

Groundwater analytical results were compared to the applicable MassDEP Method 1 GW-1 and GW-3 risk-based standards. The GW-1 standards are protective of potential drinking water resources while the GW-3 standards are protective of surface water receptors.

The January 11, 2023, groundwater sampling data are summarized as follows:

- The sample collected from groundwater monitoring well MW-09 contained concentrations of 2-Methylnaphthalene, Antimony, Ethylbenzene, Naphthalene, C5-C8 Aliphatic Hydrocarbons, C9-C12 Aliphatic Hydrocarbons, and C9-C10 Aromatic Hydrocarbons exceeding applicable Method 1 GW-1 standards. No analytes were detected at concentrations exceeding applicable Method 1 GW-3 standards.
- The samples collected from groundwater monitoring wells MW-10 and MW-12 contained concentrations of Antimony, C5-C8 Aliphatic Hydrocarbons, C9-C12 Aliphatic Hydrocarbons, and C9-C10 Aromatic Hydrocarbons exceeding applicable Method 1 GW-1



Ms. Mary Anne Antonellis, Town of Shutesbury February 17, 2023 Page 4

standards in both samples. No analytes were detected at concentrations exceeding applicable Method 1 GW-3 standards.

• The analytical results for samples collected from groundwater monitoring wells MW-13 and MW-14 indicated that concentrations of the tested analytes detected were below the applicable Method 1 GW-1 and GW-3 standards.

The laboratory analytical report from the January 11, 2023 groundwater sampling is included in *Attachment A*, and the analytical data are presented in *Table 1*.

# 3.0 Conclusions and Recommendations

Although exceedances of applicable GW-1 criteria were observed in samples collected from groundwater monitoring wells MW-09, MW-10, and MW-12 during the January 2023 groundwater sampling event, the analytical results for samples collected from groundwater monitoring well MW-9 showed an overall decrease in concentrations of petroleum-related compounds compared to the December 2022 groundwater analytical data for that well.

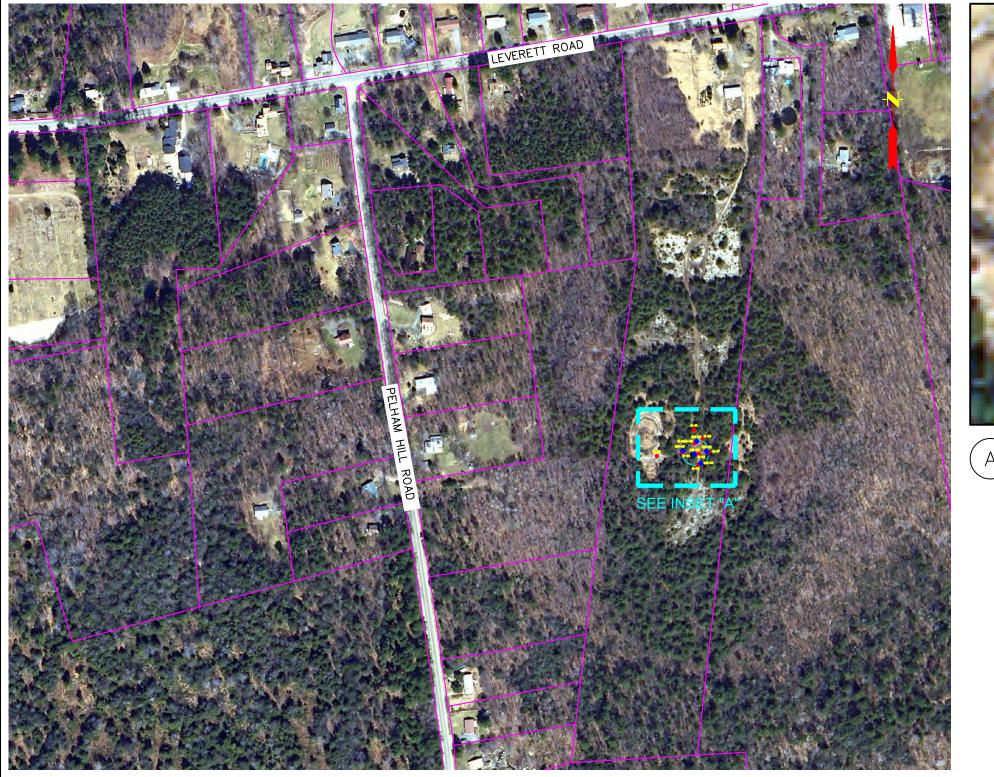
Based upon the results from the January 2023 groundwater sampling event, it is recommended that the Town proceed with quarterly groundwater monitoring at the Site to better assess seasonal variation in groundwater conditions. Based upon the results of subsequent groundwater monitoring events at the Site, it may be prudent to install one or more additional wells in the vicinity of the currently identified petroleum release area, in order to better define the nature and extent of the impacted groundwater and evaluate potential fluctuations in groundwater flow patterns. It is recommended that the next quarterly groundwater monitoring event be conducted during Spring 2023.

If you have any questions regarding the information presented herein, please contact either of the undersigned at 413-333-5472.

Sincerely,

Matthew Kissane Senior Geologist

Timothy Clinton, CPG, LSP Project Manager


Attachments: Figures Table A - Analytical Laboratory Report

Cc: Rebecca Torres, Town of Shutesbury Administrator Rita Farrell, Town of Shutesbury Selectboard Chair

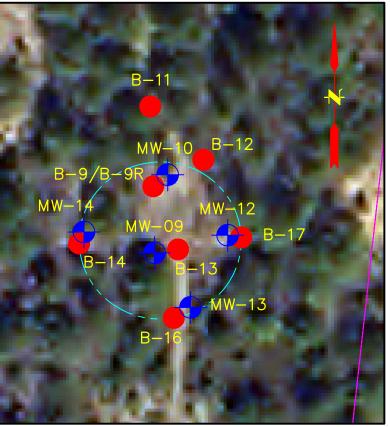
F:\P2009\1032\A22\Deliverables\Report\January 2023 Sampling Memo\RTN 1-21489 January 2023 Sampling Memo.docx Report (MA)



# **Figures**






B-XX SOIL BORING MW-XX MONITORING WELL SITE BOUNDARY

PRELIMINARY DISPOSAL PROPERTY BOUNDARY

# MAP REFERENCE:

THIS MAP WAS PREPARED FROM MASSGIS AERIAL IMAGERY (2005). THE SITE PLAN WAS PREPARED BY FUSS & O'NEILL (JANUARY 2023)

SOURCE: OFFICE OF GEOGRAPHIC AND ENVIRONMENTAL INFORMATION (MASSGIS), COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS



# LEGEND

TOWN OF SHUTESBURY

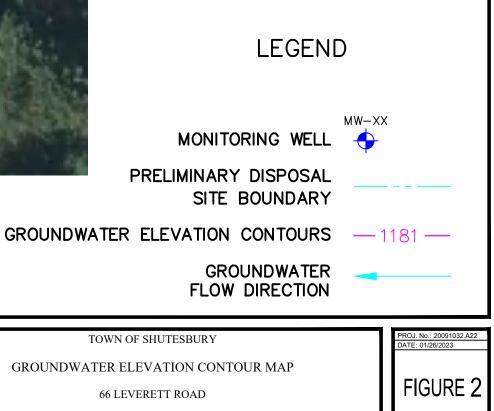

SITE PLAN

66 LEVERETT ROAD

MASSACHUSETTS

PROJ. No.: 20091032.A22 DATE: 01/26/2023

FIGURE 1




THIS MAP WAS PREPARED FROM MASSGIS AERIAL IMAGERY (2019). THE SITE PLAN WAS PREPARED BY FUSS & O'NEILL (JANUARY 2023)

SOURCE: OFFICE OF GEOGRAPHIC AND ENVIRONMENTAL INFORMATION (MASSGIS), COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS

GROUNDWATER ELEVATION DATA IS PARTIALLY BASED ON A SURVEY PREPARED BY HAROLD L. EATON AND ASSOCIATES, INC. FOR THE TOWN OF SHUTESBURY, DATED JANUARY 4, 2023.

|--|



MASSACHUSETTS



# Table



 Table 1

 Summary of Groundwater Quality Data and Objectives

 66 Leverett Rd GW Memorandum

 Shutesbury, Massachusetts

 February 2023

|                                                       | Sample Location | M             | W-9           | MW-10         | MW-12         | MW-13         | MW-14         | MassDEP Method 1 ( | Groundwater Standards |
|-------------------------------------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------------|-----------------------|
|                                                       | Sample ID       | 1701221202-01 | 1701230111-01 | 1701230111-02 | 1701230111-03 | 1701230111-04 | 1701230111-05 |                    | OW A                  |
|                                                       | Sample Date     | 12/2/2022     | 1/11/2023     | 1/11/2023     | 1/11/2023     | 1/11/2023     | 1/11/2023     | GW-1               | GW-3                  |
| EPHs and Target PAH (MassDEP methodology)             |                 | · ·           |               |               | · · ·         |               |               |                    |                       |
| Naphthalene                                           | ug/l            | 101           | 50.2          | 7.8           | 24.2          | ND<1          | 3.2           | 140                | 20,000                |
| 2-Methylnaphthalene                                   | ug/l            | 23            | 11            | 4.8           | 3.8           | ND<1          | ND<1          | 10                 | 20,000                |
| Phenanthrene                                          | ug/l            | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | 40                 | 10,000                |
| Acenaphthene                                          | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 20                 | 10,000                |
| Acenaphthylene                                        | ug/l            | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | 30                 | 40                    |
| Fluorene                                              | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 30                 | 40                    |
| Anthracene                                            | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 60                 | 30                    |
| Fluoranthene                                          | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 90                 | 200                   |
| Pyrene                                                | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 60                 | 20                    |
| Benzo(a)anthracene                                    | ug/l            | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | 1                  | 1,000                 |
| Chrysene                                              | ug/l            | ND<2.0        | ND<2.0        | ND<2.0        | ND<2.0        | ND<2.0        | ND<2.0        | 2                  | 70                    |
| Benzo(b)fluoranthene                                  | ug/l            | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | 1                  | 400                   |
| Benzo(k)fluoranthene                                  | ug/l            | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | ND<1.0        | 1                  | 100                   |
| Benzo(a)pyrene                                        | ug/l            | ND<0.2        | ND<0.2        | ND<0.2        | ND<0.2        | ND<0.2        | ND<0.2        | 0.2                | 500                   |
| Indeno(1,2,3-cd)pyrene                                | ug/l            | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | 0.5                | 100                   |
| Dibenz(a,h)anthracene                                 | ug/l            | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | ND<0.5        | 0.5                | 40                    |
| Benzo(g,h,i)perylene                                  | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 50                 | 20                    |
| C9-C18 Aliphatic Hydrocarbons                         | ug/l            | 739           | ND<200        | ND<200        | ND<200        | ND<200        | ND<200        | 700                | 50,000                |
| C19-C36 Aliphatic Hydrocarbons                        | ug/l            | ND<200        | ND<200        | ND<200        | ND<200        | ND<200        | ND<200        | 14,000             | 50,000                |
| C11-C22 Aromatic Hydrocarbons                         | ug/l            | 234           | ND<100        | 115           | ND<100        | 121           | 115           | 200                | 5,000                 |
| CAM 14 Metals: Total Metals (USEPA methods 6010/7470) |                 |               |               |               |               |               |               |                    | /                     |
| Antimony                                              | mg/l            | ND<0.005      | 0.007         | 0.009         | 0.008         | ND<0.005      | ND<0.005      | 0.006              | 8                     |
| Arsenic                                               | mg/l            | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | 0.01               | 0.9                   |
| Barium                                                | mg/l            | ND<0.005      | 0.019         | 0.02          | 0.025         | 0.047         | 0.023         | 2                  | 50                    |
| Bervllium                                             | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.004              | 0.2                   |
| Cadmium                                               | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.005              | 0.004                 |
| Chromium                                              | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.009         | ND<0.005      | 0.1                | 0.3                   |
| Lead                                                  | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.006      | ND<0.007      | 0.015              | 0.01                  |
| Nickel                                                | mg/l            | 0.006         | ND<0.005      | 0.008         | 0.006         | 0.007         | 0.008         | 0.1                | 0.2                   |
| Selenium                                              | mg/l            | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | ND<0.01       | 0.05               | 0.1                   |
| Silver                                                | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.1                | 0.007                 |
| Vanadium                                              | mg/l            | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.008         | ND<0.005      | 0.03               | 4                     |
| Zinc                                                  | mg/l            | 0.022         | ND<0.02       | ND<0.02       | ND<0.02       | ND<0.02       | ND<0.02       | 5                  | 0.9                   |
| Thallium                                              | mg/l            | 0.01          | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | ND<0.005      | 0.002              | 3                     |
| Mercury                                               | mg/l            | ND<0.0005     | ND<0.0005     | ND<0.0005     | ND<0.0005     | ND<0.0005     | ND<0.0005     | 0.002              | 0.02                  |
| VPHs and Target VOCs (MassDEP methodology)            |                 |               |               |               |               |               |               |                    |                       |
| Benzene                                               | ug/l            | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | ND<5.0        | 5                  | 10.000                |
| Ethylbenzene                                          | ug/l            | 985           | 1080          | ND<5.0        | 193           | ND<5.0        | 37.6          | 700                | 5,000                 |
| Methyl t-butyl ether (MTBE)                           | ug/l            | ND<10.0       | ND<10.0       | ND<10         | ND<10         | ND<10         | ND<10         | 70                 | 50,000                |
| Naphthalene                                           | ug/l            | 161           | 163           | ND<10         | 28.8          | ND<10         | ND<10         | 140                | 20,000                |
| Toluene                                               | ug/l            | 933           | 890           | ND<5.0        | 337           | ND<5.0        | ND<5.0        | 1,000              | 40,000                |
| m&p-Xylene                                            | ug/l            | 2,000         | 1,770         | ND<10         | 339           | ND<10         | 15.1          | 10,000             | 5,000                 |
| o-Xvlene                                              | ug/l            | 770           | 611           | ND<10         | 55.1          | ND<10         | ND<10         | 10,000             | 5,000                 |
| Total xylenes                                         | ug/l            | 2,770         | 2,390         | ND<10         | 394           | ND<10         | 15.1          | 10,000             | 5,000                 |
| C5-C8 Aliphatic Hydrocarbons                          | ug/l            | 10,900        | 7,980         | 695           | 1,500         | ND<100        | 122           | 300                | 50.000                |
| C9-C12 Aliphatic Hydrocarbons                         | ug/l            | 29,500        | 9,360         | 944           | 2,980         | ND<100        | 240           | 700                | 50,000                |
| C9-C10 Aromatic Hydrocarbons                          | ug/l            | 3,420         | 2,930         | 834           | 436           | ND<100        | ND<100        | 200                | 50,000                |

NOTES:

MassDEP: Massachusetts Department of Environmental Protection USEPA: United States Environmental Protection Agency CAM: Compendium of Analytical Methods mg/l: milligrams per liter ug/l: micrograms per liter ND: Not Detected above reporting limit EPHs: Extractable Petroleum Hydrocarbons PAHs: Polycyclic Aliphatic Hydrocarbons VPHs: Volatile Petroleum Hydrocarbons

VOCs: Volatile Organic Compounds

Results in shaded, bold, and italics meet or exceed one or more applicable Method 1 Cleanup Standards

Created By: <u>CO</u> Checked By: <u>MK</u>



# Attachment A

Analytical Laboratory Report



# **REPORT OF ANALYTICAL RESULTS**

# NETLAB Work Order Number: 3A12040 Client Project: 20091032.A22 - Shutesbury Library

Report Date: 23-January-2023

Prepared for:

Matt Kissane Fuss & O'Neill 317 Iron Horse Way Providence, RI 02908

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

# Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 01/12/23. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 3A12040. Custody records are included in this report.

| Lab ID     | Sample        | Matrix | Date Sampled | Date Received |
|------------|---------------|--------|--------------|---------------|
| 3A12040-01 | 1701230111-01 | Water  | 01/11/2023   | 01/12/2023    |
| 3A12040-02 | 1701230111-02 | Water  | 01/11/2023   | 01/12/2023    |
| 3A12040-03 | 1701230111-03 | Water  | 01/11/2023   | 01/12/2023    |
| 3A12040-04 | 1701230111-04 | Water  | 01/11/2023   | 01/12/2023    |
| 3A12040-05 | 1701230111-05 | Water  | 01/11/2023   | 01/12/2023    |
| 3A12040-06 | 1701230111-06 | Water  | 01/11/2023   | 01/12/2023    |

# **Request for Analysis**

At the client's request, the analyses presented in the following table were performed on the samples submitted.

# 1701230111-01 (Lab Number: 3A12040-01)

| <u>Analysis</u>                        | Method        |
|----------------------------------------|---------------|
| Antimony                               | EPA 6010C     |
| Arsenic                                | EPA 6010C     |
| Barium                                 | EPA 6010C     |
| Beryllium                              | EPA 6010C     |
| Cadmium                                | EPA 6010C     |
| Chromium                               | EPA 6010C     |
| Lead                                   | EPA 6010C     |
| MADEP EPH                              | MADEP EPH     |
| MADEP VPH                              | MADEP VPH     |
| Mercury                                | EPA 7470A     |
| Nickel                                 | EPA 6010C     |
| Selenium                               | EPA 6010C     |
| Silver                                 | EPA 6010C     |
| Thallium                               | EPA 6010C     |
| Vanadium                               | EPA 6010C     |
| Zinc                                   | EPA 6010C     |
| 1701230111-02 (Lab Number: 3A12040-02) |               |
| Analysis                               | <u>Method</u> |
| Antimony                               | EPA 6010C     |
| Arsenic                                | EPA 6010C     |
| Barium                                 | EPA 6010C     |
| Beryllium                              | EPA 6010C     |
| Cadmium                                | EPA 6010C     |
| Chromium                               | EPA 6010C     |
| Lead                                   | EPA 6010C     |
| MADEP EPH                              | MADEP EPH     |
| MADEP VPH                              | MADEP VPH     |
| Mercury                                | EPA 7470A     |
| Nickel                                 | EPA 6010C     |
| Selenium                               | EPA 6010C     |
| Silver                                 | EPA 6010C     |
| Thallium                               | EPA 6010C     |
| Vanadium                               | EPA 6010C     |
| Zinc                                   | EPA 6010C     |
| 1701230111-03 (Lab Number: 3A12040-03) |               |
| Analysis                               | <u>Method</u> |

| Antimony  | EPA 6010C |
|-----------|-----------|
| Arsenic   | EPA 6010C |
| Barium    | EPA 6010C |
| Beryllium | EPA 6010C |
| Cadmium   | EPA 6010C |
| Chromium  | EPA 6010C |
| Lead      | EPA 6010C |
| MADEP EPH | MADEP EPH |
| MADEP VPH | MADEP VPH |
| Mercury   | EPA 7470A |
| Nickel    | EPA 6010C |
|           |           |

# Request for Analysis (continued)

#### 1701230111-03 (Lab Number: 3A12040-03) (continued)

| <u>Analysis</u> | <u>Method</u> |
|-----------------|---------------|
| Selenium        | EPA 6010C     |
| Silver          | EPA 6010C     |
| Thallium        | EPA 6010C     |
| Vanadium        | EPA 6010C     |
| Zinc            | EPA 6010C     |

### 1701230111-04 (Lab Number: 3A12040-04)

| Analysis  | Method    |
|-----------|-----------|
| Antimony  | EPA 6010C |
| Arsenic   | EPA 6010C |
| Barium    | EPA 6010C |
| Beryllium | EPA 6010C |
| Cadmium   | EPA 6010C |
| Chromium  | EPA 6010C |
| Lead      | EPA 6010C |
| MADEP EPH | MADEP EPH |
| MADEP VPH | MADEP VPH |
| Mercury   | EPA 7470A |
| Nickel    | EPA 6010C |
| Selenium  | EPA 6010C |
| Silver    | EPA 6010C |
| Thallium  | EPA 6010C |
| Vanadium  | EPA 6010C |
| Zinc      | EPA 6010C |

#### 1701230111-05 (Lab Number: 3A12040-05)

| Analysis  | Method    |
|-----------|-----------|
| Antimony  | EPA 6010C |
| Arsenic   | EPA 6010C |
| Barium    | EPA 6010C |
| Beryllium | EPA 6010C |
| Cadmium   | EPA 6010C |
| Chromium  | EPA 6010C |
| Lead      | EPA 6010C |
| MADEP EPH | MADEP EPH |
| MADEP VPH | MADEP VPH |
| Mercury   | EPA 7470A |
| Nickel    | EPA 6010C |
| Selenium  | EPA 6010C |
| Silver    | EPA 6010C |
| Thallium  | EPA 6010C |
| Vanadium  | EPA 6010C |
| Zinc      | EPA 6010C |
|           |           |

#### 1701230111-06 (Lab Number: 3A12040-06)

#### <u>Analysis</u>

<u>Method</u>

MADEP VPH

# Method References

*Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1*, Massachusetts Department of Environmental Protection, 2004

*Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1*, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

#### **Case Narrative**

#### Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

#### Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

# Sample: 1701230111-01

# Lab Number: 3A12040-01 (Water)

| Reporting |        |            |       |               |               |
|-----------|--------|------------|-------|---------------|---------------|
| Analyte   | Result | Qual Limit | Units | Date Prepared | Date Analyzed |
| Antimony  | 0.007  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Arsenic   | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |
| Barium    | 0.019  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Beryllium | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Cadmium   | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Chromium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Lead      | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Mercury   | ND     | 0.0005     | mg/L  | 01/13/23      | 01/18/23      |
| Nickel    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Selenium  | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |
| Silver    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Vanadium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
| Zinc      | ND     | 0.020      | mg/L  | 01/13/23      | 01/18/23      |
| Thallium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |
|           |        |            |       |               |               |

# Sample: 1701230111-02

# Lab Number: 3A12040-02 (Water)

\_\_\_\_

| Reporting |        |            |       |               |               |  |  |  |
|-----------|--------|------------|-------|---------------|---------------|--|--|--|
| Analyte   | Result | Qual Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Antimony  | 0.009  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Arsenic   | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Barium    | 0.020  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Beryllium | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Cadmium   | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Chromium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Lead      | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Mercury   | ND     | 0.0005     | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Nickel    | 0.008  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Selenium  | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Silver    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Vanadium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Zinc      | ND     | 0.020      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Thallium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
|           |        |            |       |               |               |  |  |  |

# Sample: 1701230111-03

## Lab Number: 3A12040-03 (Water)

\_\_\_\_

| Reporting |        |            |       |               |               |  |  |  |
|-----------|--------|------------|-------|---------------|---------------|--|--|--|
| Analyte   | Result | Qual Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Antimony  | 0.008  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Arsenic   | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Barium    | 0.025  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Beryllium | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Cadmium   | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Chromium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Lead      | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Mercury   | ND     | 0.0005     | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Nickel    | 0.006  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Selenium  | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Silver    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Vanadium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Zinc      | ND     | 0.020      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Thallium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
|           |        |            |       |               |               |  |  |  |

# Sample: 1701230111-04

# Lab Number: 3A12040-04 (Water)

\_\_\_\_

| Reporting |        |            |       |               |               |  |  |  |  |
|-----------|--------|------------|-------|---------------|---------------|--|--|--|--|
| Analyte   | Result | Qual Limit | Units | Date Prepared | Date Analyzed |  |  |  |  |
| Antimony  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Arsenic   | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Barium    | 0.047  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Beryllium | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Cadmium   | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Chromium  | 0.009  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Lead      | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Mercury   | ND     | 0.0005     | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Nickel    | 0.007  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Selenium  | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Silver    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Vanadium  | 0.008  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Zinc      | ND     | 0.020      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
| Thallium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |  |
|           |        |            |       |               |               |  |  |  |  |

# Sample: 1701230111-05

# Lab Number: 3A12040-05 (Water)

| Reporting |        |            |       |               |               |  |  |  |
|-----------|--------|------------|-------|---------------|---------------|--|--|--|
| Analyte   | Result | Qual Limit | Units | Date Prepared | Date Analyzed |  |  |  |
| Antimony  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Arsenic   | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Barium    | 0.023  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Beryllium | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Cadmium   | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Chromium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Lead      | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Mercury   | ND     | 0.0005     | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Nickel    | 0.008  | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Selenium  | ND     | 0.01       | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Silver    | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Vanadium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Zinc      | ND     | 0.020      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
| Thallium  | ND     | 0.005      | mg/L  | 01/13/23      | 01/18/23      |  |  |  |
|           |        |            |       |               |               |  |  |  |

## Volatile Petroleum Hydrocarbons Sample: 1701230111-01 (3A12040-01)

#### SAMPLE INFORMATION

| Matrix                      | Water                                 |                                 |  |  |  |  |  |
|-----------------------------|---------------------------------------|---------------------------------|--|--|--|--|--|
| Containers                  | Satisfactory                          | Satisfactory                    |  |  |  |  |  |
| Sample<br>Preservation Soil | Aqueous                               | pH<2                            |  |  |  |  |  |
|                             | Soil or<br>Sediment                   | NA                              |  |  |  |  |  |
|                             |                                       | NA                              |  |  |  |  |  |
|                             |                                       | Received in air-tight container |  |  |  |  |  |
| Temperature                 | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               |          | Clie     | nt ID   | 1701230111-01 |                |
|----------------------------------------------|---------------|----------|----------|---------|---------------|----------------|
| Method for Target Analytes: MADEP VPH-18-2.1 |               |          | L        | ab ID   | 3A12040-01    |                |
| VPH Surrogate Standards:                     |               |          | Date Col | lected  | 01/11/23      |                |
| PID: 2,5-Dibromotoluene                      |               |          | Date Red | ceived  | 01/12/23      |                |
| FID: 2,5-Dibromotoluene                      |               |          | % M      | oisture | NA            |                |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution | RL       | Units   | Result        | Analyzed       |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 10X      | 1000     | ug/l    | 8870          | 01/13/23 12:38 |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 10X      | 1000     | ug/l    | 15800         | 01/13/23 12:38 |
| Benzene                                      | C5-C8         | 1X       | 5.0      | ug/l    | <5.0          | 01/13/23 12:38 |
| Ethylbenzene                                 | C9-C12        | 10X      | 50.0     | ug/l    | 1080          | 01/13/23 12:38 |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X       | 10.0     | ug/l    | <10.0         | 01/13/23 12:38 |
| Naphthalene                                  | NA            | 1X       | 10.0     | ug/l    | 163           | 01/13/23 12:38 |
| Toluene                                      | C5-C8         | 10X      | 50.0     | ug/l    | 890           | 01/13/23 12:38 |
| m&p-Xylene                                   | C9-C12        | 10X      | 100      | ug/l    | 1770          | 01/13/23 12:38 |
| o-Xylene                                     | C9-C12        | 10X      | 100      | ug/l    | 611           | 01/13/23 12:38 |
| Total xylenes                                |               | 10X      | 100      | ug/l    | 2390          | 01/13/23 12:38 |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X       | 100      | ug/l    | 7980          | 01/13/23 12:38 |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X       | 100      | ug/l    | 9360          | 01/13/23 12:38 |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 10X      | 1000     | ug/l    | 2930          | 01/13/23 12:38 |
| 2,5-Dibromotoluene-PID                       |               |          |          | %       | 108           | 01/13/23 12:38 |
| 2,5-Dibromotoluene-FID                       |               |          |          | %       | 112           | 01/13/23 12:38 |
| Surrogate Acceptance Range                   |               |          |          | %       | 70-130        |                |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

## Volatile Petroleum Hydrocarbons Sample: 1701230111-02 (3A12040-02)

#### SAMPLE INFORMATION

| Matrix                      | Water                                 |                                 |  |  |  |  |  |
|-----------------------------|---------------------------------------|---------------------------------|--|--|--|--|--|
| Containers                  | Satisfactory                          | Satisfactory                    |  |  |  |  |  |
| Sample<br>Preservation Soil | Aqueous                               | pH<2                            |  |  |  |  |  |
|                             | Soil or<br>Sediment                   | NA                              |  |  |  |  |  |
|                             |                                       | NA                              |  |  |  |  |  |
|                             |                                       | Received in air-tight container |  |  |  |  |  |
| Temperature                 | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               |          | Clie     | nt ID    | 1701230111-02 |                |
|----------------------------------------------|---------------|----------|----------|----------|---------------|----------------|
| Method for Target Analytes: MADEP VPH-18-2.1 |               |          | L        | ab ID    | 3A12040-02    |                |
| VPH Surrogate Standards:                     |               |          | Date Col | lected   | 01/11/23      |                |
| PID: 2,5-Dibromotoluene                      |               |          | Date Red | ceived   | 01/12/23      |                |
| FID: 2,5-Dibromotoluene                      |               | _        | % M      | loisture | NA            |                |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution | RL       | Units    | Result        | Analyzed       |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 1X       | 100      | ug/l     | 695           | 01/13/23 11:35 |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 1X       | 100      | ug/l     | 1780          | 01/13/23 11:35 |
| Benzene                                      | C5-C8         | 1X       | 5.0      | ug/l     | <5.0          | 01/13/23 11:35 |
| Ethylbenzene                                 | C9-C12        | 1X       | 5.0      | ug/l     | <5.0          | 01/13/23 11:35 |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X       | 10.0     | ug/l     | <10.0         | 01/13/23 11:35 |
| Naphthalene                                  | NA            | 1X       | 10.0     | ug/l     | <10.0         | 01/13/23 11:35 |
| Toluene                                      | C5-C8         | 1X       | 5.0      | ug/l     | <5.0          | 01/13/23 11:35 |
| m&p-Xylene                                   | C9-C12        | 1X       | 10.0     | ug/l     | <10.0         | 01/13/23 11:35 |
| o-Xylene                                     | C9-C12        | 1X       | 10.0     | ug/l     | <10.0         | 01/13/23 11:35 |
| Total xylenes                                |               | 1X       | 10.0     | ug/l     | <10.0         | 01/13/23 11:35 |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X       | 100      | ug/l     | 695           | 01/13/23 11:35 |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X       | 100      | ug/l     | 944           | 01/13/23 11:35 |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 1X       | 100      | ug/l     | 834           | 01/13/23 11:35 |
| 2,5-Dibromotoluene-PID                       |               |          |          | %        | 104           | 01/13/23 11:35 |
| 2,5-Dibromotoluene-FID                       |               |          |          | %        | 110           | 01/13/23 11:35 |
| Surrogate Acceptance Range                   |               |          |          | %        | 70-130        |                |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

## Volatile Petroleum Hydrocarbons Sample: 1701230111-03 (3A12040-03)

#### SAMPLE INFORMATION

| Matrix                      | Water                                 |                                 |  |  |  |  |  |
|-----------------------------|---------------------------------------|---------------------------------|--|--|--|--|--|
| Containers                  | Satisfactory                          | Satisfactory                    |  |  |  |  |  |
| Sample<br>Preservation Soil | Aqueous                               | pH<2                            |  |  |  |  |  |
|                             | Soil or<br>Sediment                   | NA                              |  |  |  |  |  |
|                             |                                       | NA                              |  |  |  |  |  |
|                             |                                       | Received in air-tight container |  |  |  |  |  |
| Temperature                 | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               | Client ID |          | 1701230111-03 |            |                |
|----------------------------------------------|---------------|-----------|----------|---------------|------------|----------------|
| Method for Target Analytes: MADEP VPH-18-2.1 |               |           | L        | ab ID         | 3A12040-03 |                |
| VPH Surrogate Standards:                     |               |           | Date Col | lected        | 01/11/23   |                |
| PID: 2,5-Dibromotoluene                      |               |           | Date Red | ceived        | 01/12/23   |                |
| FID: 2,5-Dibromotoluene                      |               |           | % M      | loisture      | NA         |                |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution  | RL       | Units         | Result     | Analyzed       |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 1X        | 100      | ug/l          | 1840       | 01/13/23 12:08 |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 1X        | 100      | ug/l          | 2880       | 01/13/23 12:08 |
| Benzene                                      | C5-C8         | 1X        | 5.0      | ug/l          | <5.0       | 01/13/23 12:08 |
| Ethylbenzene                                 | C9-C12        | 5X        | 25.0     | ug/l          | 193        | 01/13/23 12:08 |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 12:08 |
| Naphthalene                                  | NA            | 1X        | 10.0     | ug/l          | 28.8       | 01/13/23 12:08 |
| Toluene                                      | C5-C8         | 5X        | 25.0     | ug/l          | 337        | 01/13/23 12:08 |
| m&p-Xylene                                   | C9-C12        | 1X        | 10.0     | ug/l          | 339        | 01/13/23 12:08 |
| o-Xylene                                     | C9-C12        | 1X        | 10.0     | ug/l          | 55.1       | 01/13/23 12:08 |
| Total xylenes                                |               | 1X        | 10.0     | ug/l          | 394        | 01/13/23 12:08 |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X        | 100      | ug/l          | 1500       | 01/13/23 12:08 |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X        | 100      | ug/l          | 1980       | 01/13/23 12:08 |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 1X        | 100      | ug/l          | 463        | 01/13/23 12:08 |
| 2,5-Dibromotoluene-PID                       |               |           |          | %             | 105        | 01/13/23 12:08 |
| 2,5-Dibromotoluene-FID                       |               |           |          | %             | 110        | 01/13/23 12:08 |
| Surrogate Acceptance Range                   |               |           |          | %             | 70-130     |                |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

## Volatile Petroleum Hydrocarbons Sample: 1701230111-04 (3A12040-04)

#### SAMPLE INFORMATION

| Matrix                      | Water                                 |                                 |  |  |  |  |  |
|-----------------------------|---------------------------------------|---------------------------------|--|--|--|--|--|
| Containers                  | Satisfactory                          | Satisfactory                    |  |  |  |  |  |
| Sample<br>Preservation Soil | Aqueous                               | pH<2                            |  |  |  |  |  |
|                             | Soil or<br>Sediment                   | NA                              |  |  |  |  |  |
|                             |                                       | NA                              |  |  |  |  |  |
|                             |                                       | Received in air-tight container |  |  |  |  |  |
| Temperature                 | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               | Client ID |          | 1701230111-04 |            |                |
|----------------------------------------------|---------------|-----------|----------|---------------|------------|----------------|
| Method for Target Analytes: MADEP VPH-18-2.1 |               |           | L        | ab ID         | 3A12040-04 |                |
| VPH Surrogate Standards:                     |               |           | Date Col | lected        | 01/11/23   |                |
| PID: 2,5-Dibromotoluene                      |               |           | Date Red | ceived        | 01/12/23   |                |
| FID: 2,5-Dibromotoluene                      |               |           | % M      | loisture      | NA         |                |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution  | RL       | Units         | Result     | Analyzed       |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 1X        | 100      | ug/l          | <100       | 01/13/23 10:29 |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 1X        | 100      | ug/l          | <100       | 01/13/23 10:29 |
| Benzene                                      | C5-C8         | 1X        | 5.0      | ug/l          | <5.0       | 01/13/23 10:29 |
| Ethylbenzene                                 | C9-C12        | 1X        | 5.0      | ug/l          | <5.0       | 01/13/23 10:29 |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 10:29 |
| Naphthalene                                  | NA            | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 10:29 |
| Toluene                                      | C5-C8         | 1X        | 5.0      | ug/l          | <5.0       | 01/13/23 10:29 |
| m&p-Xylene                                   | C9-C12        | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 10:29 |
| o-Xylene                                     | C9-C12        | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 10:29 |
| Total xylenes                                |               | 1X        | 10.0     | ug/l          | <10.0      | 01/13/23 10:29 |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X        | 100      | ug/l          | <100       | 01/13/23 10:29 |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X        | 100      | ug/l          | <100       | 01/13/23 10:29 |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 1X        | 100      | ug/l          | <100       | 01/13/23 10:29 |
| 2,5-Dibromotoluene-PID                       |               |           |          | %             | 97.3       | 01/13/23 10:29 |
| 2,5-Dibromotoluene-FID                       |               |           |          | %             | 104        | 01/13/23 10:29 |
| Surrogate Acceptance Range                   |               |           |          | %             | 70-130     |                |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

## Volatile Petroleum Hydrocarbons Sample: 1701230111-05 (3A12040-05)

#### SAMPLE INFORMATION

| Matrix                 | Water                                 |                                 |  |  |  |  |
|------------------------|---------------------------------------|---------------------------------|--|--|--|--|
| Containers             | Satisfactory                          | Satisfactory                    |  |  |  |  |
|                        | Aqueous                               | Aqueous pH<2                    |  |  |  |  |
| Sample<br>Preservation | Soil or                               |                                 |  |  |  |  |
| FIESEIVALION           | Sediment                              |                                 |  |  |  |  |
|                        |                                       | Received in air-tight container |  |  |  |  |
| Temperature            | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               | Client ID |            |          |          | 1701230111-05  |  |  |
|----------------------------------------------|---------------|-----------|------------|----------|----------|----------------|--|--|
| Method for Target Analytes: MADEP VPH-18-2.1 |               |           | 3A12040-05 |          |          |                |  |  |
| VPH Surrogate Standards:                     |               |           | Date Col   | lected   | 01/11/23 |                |  |  |
| PID: 2,5-Dibromotoluene                      |               |           | Date Red   | ceived   | 01/12/23 |                |  |  |
| FID: 2,5-Dibromotoluene                      |               | -         | % M        | loisture | NA       |                |  |  |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution  | RL         | Units    | Result   | Analyzed       |  |  |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 1X        | 100        | ug/l     | 122      | 01/13/23 11:02 |  |  |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 1X        | 100        | ug/l     | 293      | 01/13/23 11:02 |  |  |
| Benzene                                      | C5-C8         | 1X        | 5.0        | ug/l     | <5.0     | 01/13/23 11:02 |  |  |
| Ethylbenzene                                 | C9-C12        | 1X        | 5.0        | ug/l     | 37.6     | 01/13/23 11:02 |  |  |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X        | 10.0       | ug/l     | <10.0    | 01/13/23 11:02 |  |  |
| Naphthalene                                  | NA            | 1X        | 10.0       | ug/l     | <10.0    | 01/13/23 11:02 |  |  |
| Toluene                                      | C5-C8         | 1X        | 5.0        | ug/l     | <5.0     | 01/13/23 11:02 |  |  |
| m&p-Xylene                                   | C9-C12        | 1X        | 10.0       | ug/l     | 15.1     | 01/13/23 11:02 |  |  |
| o-Xylene                                     | C9-C12        | 1X        | 10.0       | ug/l     | <10.0    | 01/13/23 11:02 |  |  |
| Total xylenes                                |               | 1X        | 10.0       | ug/l     | 15.1     | 01/13/23 11:02 |  |  |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X        | 100        | ug/l     | 122      | 01/13/23 11:02 |  |  |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X        | 100        | ug/l     | 240      | 01/13/23 11:02 |  |  |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 1X        | 100        | ug/l     | <100     | 01/13/23 11:02 |  |  |
| 2,5-Dibromotoluene-PID                       |               |           |            | %        | 104      | 01/13/23 11:02 |  |  |
| 2,5-Dibromotoluene-FID                       |               |           |            | %        | 112      | 01/13/23 11:02 |  |  |
| Surrogate Acceptance Range                   |               |           |            | %        | 70-130   |                |  |  |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

## Volatile Petroleum Hydrocarbons Sample: 1701230111-06 (3A12040-06)

#### SAMPLE INFORMATION

| Matrix                 | Water                                 |                                 |  |  |  |  |
|------------------------|---------------------------------------|---------------------------------|--|--|--|--|
| Containers             | Satisfactory                          | Satisfactory                    |  |  |  |  |
|                        | Aqueous                               | Aqueous pH<2                    |  |  |  |  |
| Sample<br>Preservation | Soil or                               |                                 |  |  |  |  |
| FIESEIVALION           | Sediment                              |                                 |  |  |  |  |
|                        |                                       | Received in air-tight container |  |  |  |  |
| Temperature            | Received on Ice Received at: 4+/-2 C° |                                 |  |  |  |  |

#### **VPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP VPH-18-2.1          |               |          | 1701230111-06 |          |          |                |  |
|----------------------------------------------|---------------|----------|---------------|----------|----------|----------------|--|
| Method for Target Analytes: MADEP VPH-18-2.1 |               | Lab ID   |               |          |          | 3A12040-06     |  |
| VPH Surrogate Standards:                     |               |          | Date Col      | lected   | 01/11/23 |                |  |
| PID: 2,5-Dibromotoluene                      |               |          | Date Red      | ceived   | 01/12/23 |                |  |
| FID: 2,5-Dibromotoluene                      |               |          | % M           | loisture | NA       |                |  |
| RANGE/TARGET ANALYTE                         | Elution Range | Dilution | RL            | Units    | Result   | Analyzed       |  |
| Unadjusted C5-C8 Aliphatic Hydrocarbons [1]  | NA            | 1X       | 100           | ug/l     | <100     | 01/13/23 09:56 |  |
| Unadjusted C9-C12 Aliphatic Hydrocarbons [1] | NA            | 1X       | 100           | ug/l     | <100     | 01/13/23 09:56 |  |
| Benzene                                      | C5-C8         | 1X       | 5.0           | ug/l     | <5.0     | 01/13/23 09:56 |  |
| Ethylbenzene                                 | C9-C12        | 1X       | 5.0           | ug/l     | <5.0     | 01/13/23 09:56 |  |
| Methyl t-butyl ether (MTBE)                  | C5-C8         | 1X       | 10.0          | ug/l     | <10.0    | 01/13/23 09:56 |  |
| Naphthalene                                  | NA            | 1X       | 10.0          | ug/l     | <10.0    | 01/13/23 09:56 |  |
| Toluene                                      | C5-C8         | 1X       | 5.0           | ug/l     | <5.0     | 01/13/23 09:56 |  |
| m&p-Xylene                                   | C9-C12        | 1X       | 10.0          | ug/l     | <10.0    | 01/13/23 09:56 |  |
| o-Xylene                                     | C9-C12        | 1X       | 10.0          | ug/l     | <10.0    | 01/13/23 09:56 |  |
| Total xylenes                                |               | 1X       | 10.0          | ug/l     | <10.0    | 01/13/23 09:56 |  |
| C5-C8 Aliphatic Hydrocarbons [1,2]           | NA            | 1X       | 100           | ug/l     | <100     | 01/13/23 09:56 |  |
| C9-C12 Aliphatic Hydrocarbons [1,3]          | NA            | 1X       | 100           | ug/l     | <100     | 01/13/23 09:56 |  |
| C9-C10 Aromatic Hydrocarbons [1]             | NA            | 1X       | 100           | ug/l     | <100     | 01/13/23 09:56 |  |
| 2,5-Dibromotoluene-PID                       |               |          |               | %        | 95.3     | 01/13/23 09:56 |  |
| 2,5-Dibromotoluene-FID                       |               |          |               | %        | 102      | 01/13/23 09:56 |  |
| Surrogate Acceptance Range                   |               |          |               | %        | 70-130   |                |  |

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

### Extractable Petroleum Hydrocarbons Sample: 1701230111-01 (3A12040-01)

#### SAMPLE INFORMATION

| Matrix                | Water                                 |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | pH<2                                  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3510C                      |

#### **EPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP EPH 4-1.1                                    |                        |               | Client ID 1701230111-01 |              |            |                |  |
|-----------------------------------------------------------------------|------------------------|---------------|-------------------------|--------------|------------|----------------|--|
| Method for Target Analytes:                                           |                        | Lab ID        |                         |              | 3A12040-01 |                |  |
| EPH Surrogate Standards:                                              |                        |               | Dai                     | te Collected |            |                |  |
| Aliphatic: Chlorooctadecane                                           |                        | Date Received |                         |              | 01/12/23   |                |  |
| Aromatic: o-Terphenyl                                                 |                        |               | D                       | ate Thawed   | NA         |                |  |
|                                                                       |                        |               | Dat                     | e Extracted  | 01/17/23   |                |  |
| EPH Fractionation Surrogate                                           | s:                     |               | Perce                   | nt Moisture  | NA         |                |  |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |               |                         |              |            |                |  |
| RANGE/TARGET ANALYT                                                   | E                      | Dilution      | RL                      | Units        | Result     | Analyzed       |  |
| Unadjusted C11-C22 Aror                                               | matic Hydrocarbons [1] | 1X            | 100                     | ug/l         | 157        | 01/19/23 04:13 |  |
|                                                                       | Naphthalene            | 1X            | 1.0                     | ug/l         | 50.2       | 01/19/23 04:13 |  |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X            | 1.0                     | ug/l         | 11.0       | 01/19/23 04:13 |  |
| Analytes                                                              | Phenanthrene           | 1X            | 1.0                     | ug/l         | <1.0       | 01/19/23 04:13 |  |
|                                                                       | Acenaphthene           | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
|                                                                       | Acenaphthylene         | 1X            | 1.0                     | ug/l         | <1.0       | 01/19/23 04:13 |  |
|                                                                       | Fluorene               | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
|                                                                       | Anthracene             | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
|                                                                       | Fluoranthene           | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
|                                                                       | Pyrene                 | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
|                                                                       | Benzo(a)anthracene     | 1X            | 1.0                     | ug/l         | <1.0       | 01/19/23 04:13 |  |
| Other                                                                 | Chrysene               | 1X            | 2.0                     | ug/l         | <2.0       | 01/19/23 04:13 |  |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X            | 1.0                     | ug/l         | <1.0       | 01/19/23 04:13 |  |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X            | 1.0                     | ug/l         | <1.0       | 01/19/23 04:13 |  |
|                                                                       | Benzo(a)pyrene         | 1X            | 0.2                     | ug/l         | <0.2       | 01/19/23 04:13 |  |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X            | 0.5                     | ug/l         | <0.5       | 01/19/23 04:13 |  |
|                                                                       | Dibenz(a,h)anthracene  | 1X            | 0.5                     | ug/l         | <0.5       | 01/19/23 04:13 |  |
|                                                                       | Benzo(g,h,i)perylene   | 1X            | 5.0                     | ug/l         | <5.0       | 01/19/23 04:13 |  |
| C9-C18 Aliphatic Hydroca                                              | rbons [1]              | 1X            | 200                     | ug/l         | <200       | 01/20/23 13:05 |  |
| C19-C36 Aliphatic Hydroc                                              | arbons [1]             | 1X            | 200                     | ug/l         | <200       | 01/20/23 13:05 |  |
| C11-C22 Aromatic Hydrocarbons [1,2]                                   |                        | 1X            | 100                     | ug/l         | <100       | 01/19/23 04:13 |  |
| Chlorooctadecane (Samp                                                | le Surrogate)          |               |                         | %            | 46.6       | 01/20/23 13:05 |  |
| o-Terphenyl (Sample Sur                                               | rogate)                |               |                         | %            | 41.3       | 01/19/23 04:13 |  |
| 2-Fluorobiphenyl (Fractio                                             | nation Surrogate)      |               |                         | %            | 76.8       | 01/19/23 04:13 |  |
| 2-Bromonaphthalene (Fra                                               | actionation Surrogate) |               |                         | %            | 75.8       | 01/19/23 04:13 |  |
| Surrogate Acceptance Range                                            | [3]                    |               |                         | %            | 40 - 140   |                |  |

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

### Extractable Petroleum Hydrocarbons Sample: 1701230111-02 (3A12040-02)

#### SAMPLE INFORMATION

| Matrix                | Water                                 |  |  |
|-----------------------|---------------------------------------|--|--|
| Containers            | Satisfactory                          |  |  |
| Aqueous Preservatives | pH<2                                  |  |  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |  |  |
| Extraction Method     | EPA Method 3510C                      |  |  |

#### **EPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP EPH 4-1.1                                    |                        |                | Client ID 1701230111-02 |             |            |                |  |
|-----------------------------------------------------------------------|------------------------|----------------|-------------------------|-------------|------------|----------------|--|
| Method for Target Analytes:                                           |                        | Lab ID         |                         |             | 3A12040-02 |                |  |
| EPH Surrogate Standards:                                              |                        | Date Collected |                         |             | 01/11/23   |                |  |
| Aliphatic: Chlorooctadecane                                           |                        | Date Received  |                         |             | 01/12/23   |                |  |
| Aromatic: o-Terphenyl                                                 |                        |                | Date Thawed             |             |            |                |  |
|                                                                       |                        |                | Dat                     | e Extracted | 01/17/23   |                |  |
| EPH Fractionation Surrogate                                           | s:                     |                | Perce                   | nt Moisture | NA         |                |  |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |                |                         |             |            |                |  |
| RANGE/TARGET ANALYT                                                   | E                      | Dilution       | RL                      | Units       | Result     | Analyzed       |  |
| Unadjusted C11-C22 Aro                                                | matic Hydrocarbons [1] | 1X             | 100                     | ug/l        | 128        | 01/19/23 04:36 |  |
|                                                                       | Naphthalene            | 1X             | 1.0                     | ug/l        | 7.8        | 01/19/23 04:36 |  |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X             | 1.0                     | ug/l        | 4.8        | 01/19/23 04:36 |  |
| Analytes                                                              | Phenanthrene           | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 04:36 |  |
|                                                                       | Acenaphthene           | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
|                                                                       | Acenaphthylene         | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 04:36 |  |
|                                                                       | Fluorene               | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
|                                                                       | Anthracene             | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
|                                                                       | Fluoranthene           | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
|                                                                       | Pyrene                 | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
|                                                                       | Benzo(a)anthracene     | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 04:36 |  |
| Other                                                                 | Chrysene               | 1X             | 2.0                     | ug/l        | <2.0       | 01/19/23 04:36 |  |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 04:36 |  |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 04:36 |  |
|                                                                       | Benzo(a)pyrene         | 1X             | 0.2                     | ug/l        | <0.2       | 01/19/23 04:36 |  |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X             | 0.5                     | ug/l        | <0.5       | 01/19/23 04:36 |  |
|                                                                       | Dibenz(a,h)anthracene  | 1X             | 0.5                     | ug/l        | <0.5       | 01/19/23 04:36 |  |
|                                                                       | Benzo(g,h,i)perylene   | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 04:36 |  |
| C9-C18 Aliphatic Hydroca                                              | rbons [1]              | 1X             | 200                     | ug/l        | <200       | 01/20/23 14:28 |  |
| C19-C36 Aliphatic Hydroc                                              | arbons [1]             | 1X             | 200                     | ug/l        | <200       | 01/20/23 14:28 |  |
| C11-C22 Aromatic Hydro                                                | carbons [1,2]          | 1X             | 100                     | ug/l        | 115        | 01/19/23 04:36 |  |
| Chlorooctadecane (Samp                                                | le Surrogate)          |                |                         | %           | 51.5       | 01/20/23 14:28 |  |
| o-Terphenyl (Sample Sur                                               | rogate)                |                |                         | %           | 66.7       | 01/19/23 04:36 |  |
| 2-Fluorobiphenyl (Fractio                                             | nation Surrogate)      |                |                         | %           | 90.3       | 01/19/23 04:36 |  |
| 2-Bromonaphthalene (Fra                                               | actionation Surrogate) |                |                         | %           | 89.3       | 01/19/23 04:36 |  |
| Surrogate Acceptance Range                                            | [3]                    |                |                         | %           | 40 - 140   |                |  |

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

### Extractable Petroleum Hydrocarbons Sample: 1701230111-03 (3A12040-03)

#### SAMPLE INFORMATION

| Matrix                | Water                                 |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | pH<2                                  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3510C                      |

#### **EPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP EPH 4-1.1                                    |                        |                |       | Client ID   | 1701230111-03 |                |  |
|-----------------------------------------------------------------------|------------------------|----------------|-------|-------------|---------------|----------------|--|
| Method for Target Analytes                                            |                        | Lab ID         |       |             | 3A12040-03    |                |  |
| EPH Surrogate Standards:                                              |                        | Date Collected |       |             | 01/11/23      |                |  |
| Aliphatic: Chlorooctadecane                                           |                        | Date Received  |       |             | 01/12/23      |                |  |
| Aromatic: o-Terphenyl                                                 |                        |                | D     | ate Thawed  | NA            |                |  |
|                                                                       |                        |                | Dat   | e Extracted | 01/17/23      |                |  |
| EPH Fractionation Surrogate                                           | es:                    |                | Perce | nt Moisture | NA            |                |  |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |                |       |             |               |                |  |
| RANGE/TARGET ANALY1                                                   | Έ                      | Dilution       | RL    | Units       | Result        | Analyzed       |  |
| Unadjusted C11-C22 Aro                                                | matic Hydrocarbons [1] | 1X             | 100   | ug/l        | 122           | 01/19/23 04:59 |  |
|                                                                       | Naphthalene            | 1X             | 1.0   | ug/l        | 24.2          | 01/19/23 04:59 |  |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X             | 1.0   | ug/l        | 3.8           | 01/19/23 04:59 |  |
| Analytes                                                              | Phenanthrene           | 1X             | 1.0   | ug/l        | <1.0          | 01/19/23 04:59 |  |
|                                                                       | Acenaphthene           | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
|                                                                       | Acenaphthylene         | 1X             | 1.0   | ug/l        | <1.0          | 01/19/23 04:59 |  |
|                                                                       | Fluorene               | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
|                                                                       | Anthracene             | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
|                                                                       | Fluoranthene           | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
|                                                                       | Pyrene                 | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
|                                                                       | Benzo(a)anthracene     | 1X             | 1.0   | ug/l        | <1.0          | 01/19/23 04:59 |  |
| Other                                                                 | Chrysene               | 1X             | 2.0   | ug/l        | <2.0          | 01/19/23 04:59 |  |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X             | 1.0   | ug/l        | <1.0          | 01/19/23 04:59 |  |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X             | 1.0   | ug/l        | <1.0          | 01/19/23 04:59 |  |
|                                                                       | Benzo(a)pyrene         | 1X             | 0.2   | ug/l        | <0.2          | 01/19/23 04:59 |  |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X             | 0.5   | ug/l        | <0.5          | 01/19/23 04:59 |  |
|                                                                       | Dibenz(a,h)anthracene  | 1X             | 0.5   | ug/l        | <0.5          | 01/19/23 04:59 |  |
|                                                                       | Benzo(g,h,i)perylene   | 1X             | 5.0   | ug/l        | <5.0          | 01/19/23 04:59 |  |
| C9-C18 Aliphatic Hydroca                                              | arbons [1]             | 1X             | 200   | ug/l        | <200          | 01/19/23 08:53 |  |
| C19-C36 Aliphatic Hydro                                               | carbons [1]            | 1X             | 200   | ug/l        | <200          | 01/19/23 08:53 |  |
| C11-C22 Aromatic Hydro                                                | carbons [1,2]          | 1X             | 100   | ug/l        | <100          | 01/19/23 04:59 |  |
| Chlorooctadecane (Samp                                                | le Surrogate)          |                |       | %           | 46.9          | 01/19/23 08:53 |  |
| o-Terphenyl (Sample Sur                                               | rogate)                |                |       | %           | 81.0          | 01/19/23 04:59 |  |
| 2-Fluorobiphenyl (Fractio                                             | onation Surrogate)     |                |       | %           | 88.9          | 01/19/23 04:59 |  |
| 2-Bromonaphthalene (Fr                                                | actionation Surrogate) |                |       | %           | 87.2          | 01/19/23 04:59 |  |
| Surrogate Acceptance Range                                            | [3]                    |                |       | %           | 40 - 140      |                |  |

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

### Extractable Petroleum Hydrocarbons Sample: 1701230111-04 (3A12040-04)

#### SAMPLE INFORMATION

| Matrix                | Water                                 |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | pH<2                                  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3510C                      |

#### **EPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP EPH 4-1.1                                    |                        |                | Client ID 1701230111-04 |             |            |                |  |
|-----------------------------------------------------------------------|------------------------|----------------|-------------------------|-------------|------------|----------------|--|
| Method for Target Analytes                                            |                        | Lab ID         |                         |             | 3A12040-04 |                |  |
| EPH Surrogate Standards:                                              |                        | Date Collected |                         |             | 01/11/23   |                |  |
| Aliphatic: Chlorooctadecane                                           |                        | Date Received  |                         |             | 01/12/23   |                |  |
| Aromatic: o-Terphenyl                                                 |                        | Date Thawed    |                         |             | NA         |                |  |
|                                                                       |                        |                | Dat                     | e Extracted | 01/18/23   |                |  |
| EPH Fractionation Surrogate                                           | es:                    |                | Perce                   | nt Moisture | NA         |                |  |
| <ul><li>(1) 2-Fluorobiphenyl</li><li>(2) 2-Bromonaphthalene</li></ul> |                        |                |                         |             |            |                |  |
| RANGE/TARGET ANALY                                                    | Έ                      | Dilution       | RL                      | Units       | Result     | Analyzed       |  |
| Unadjusted C11-C22 Aro                                                | matic Hydrocarbons [1] | 1X             | 100                     | ug/l        | 121        | 01/19/23 16:59 |  |
|                                                                       | Naphthalene            | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
| Diesel PAH                                                            | 2-Methylnaphthalene    | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
| Analytes                                                              | Phenanthrene           | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
|                                                                       | Acenaphthene           | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
|                                                                       | Acenaphthylene         | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
|                                                                       | Fluorene               | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
|                                                                       | Anthracene             | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
|                                                                       | Fluoranthene           | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
|                                                                       | Pyrene                 | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
|                                                                       | Benzo(a)anthracene     | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
| Other                                                                 | Chrysene               | 1X             | 2.0                     | ug/l        | <2.0       | 01/19/23 16:59 |  |
| Target PAH                                                            | Benzo(b)fluoranthene   | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
| Analytes                                                              | Benzo(k)fluoranthene   | 1X             | 1.0                     | ug/l        | <1.0       | 01/19/23 16:59 |  |
|                                                                       | Benzo(a)pyrene         | 1X             | 0.2                     | ug/l        | <0.2       | 01/19/23 16:59 |  |
|                                                                       | Indeno(1,2,3-cd)pyrene | 1X             | 0.5                     | ug/l        | <0.5       | 01/19/23 16:59 |  |
|                                                                       | Dibenz(a,h)anthracene  | 1X             | 0.5                     | ug/l        | <0.5       | 01/19/23 16:59 |  |
|                                                                       | Benzo(g,h,i)perylene   | 1X             | 5.0                     | ug/l        | <5.0       | 01/19/23 16:59 |  |
| C9-C18 Aliphatic Hydroca                                              |                        | 1X             | 200                     | ug/l        | <200       | 01/19/23 22:40 |  |
| C19-C36 Aliphatic Hydro                                               |                        | 1X             | 200                     | ug/l        | <200       | 01/19/23 22:40 |  |
| C11-C22 Aromatic Hydro                                                |                        | 1X             | 100                     | ug/l        | 121        | 01/19/23 16:59 |  |
| Chlorooctadecane (Samp                                                | le Surrogate)          |                |                         | %           | 43.5       | 01/19/23 22:40 |  |
| o-Terphenyl (Sample Surrogate)                                        |                        |                |                         | %           | 78.7       | 01/19/23 16:59 |  |
| 2-Fluorobiphenyl (Fractio                                             | onation Surrogate)     |                |                         | %           | 89.0       | 01/19/23 16:59 |  |
| 2-Bromonaphthalene (Fr                                                | actionation Surrogate) |                |                         | %           | 88.2       | 01/19/23 16:59 |  |
| Surrogate Acceptance Range                                            | [3]                    |                |                         | %           | 40 - 140   |                |  |

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

### Extractable Petroleum Hydrocarbons Sample: 1701230111-05 (3A12040-05)

#### SAMPLE INFORMATION

| Matrix                | Water                                 |
|-----------------------|---------------------------------------|
| Containers            | Satisfactory                          |
| Aqueous Preservatives | pH<2                                  |
| Temperature           | Received on Ice Received at: 4+/-2 C° |
| Extraction Method     | EPA Method 3510C                      |

#### **EPH ANALYTICAL RESULTS**

| Method for Ranges: MADEP                            | EPH 4-1.1              |    |       | Client ID    | 1701230111-05  |                |  |
|-----------------------------------------------------|------------------------|----|-------|--------------|----------------|----------------|--|
| Method for Target Analytes:                         | MADEP EPH 4-1.1        |    |       | Lab ID       | 3A12040-05     |                |  |
| EPH Surrogate Standards:                            |                        |    | Dat   | te Collected | 01/11/23       |                |  |
| Aliphatic: Chlorooctadecane                         |                        |    | Da    | te Received  | 01/12/23       |                |  |
| Aromatic: o-Terphenyl                               |                        |    | D     | ate Thawed   | NA             |                |  |
|                                                     |                        |    | Dat   | e Extracted  | 01/18/23       |                |  |
| EPH Fractionation Surrogate<br>(1) 2-Fluorobiphenyl | S:                     |    | Perce | nt Moisture  | NA             |                |  |
| (2) 2-Bromonaphthalene                              |                        |    |       |              |                |                |  |
| RANGE/TARGET ANALYT                                 | Dilution               | RL | Units | Result       | Analyzed       |                |  |
| Unadjusted C11-C22 Aror                             | matic Hydrocarbons [1] | 1X | 100   | ug/l         | 118            | 01/19/23 17:22 |  |
|                                                     | Naphthalene            | 1X | 1.0   | ug/l         | 3.2            | 01/19/23 17:22 |  |
| Diesel PAH                                          | 2-Methylnaphthalene    | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
| Analytes                                            | Phenanthrene           | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
|                                                     | Acenaphthene           | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
|                                                     | Acenaphthylene         | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
|                                                     | Fluorene               | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
|                                                     | Anthracene             | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
|                                                     | Fluoranthene           | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
|                                                     | Pyrene                 | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
|                                                     | Benzo(a)anthracene     | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
| Other                                               | Chrysene               | 1X | 2.0   | ug/l         | <2.0           | 01/19/23 17:22 |  |
| Target PAH                                          | Benzo(b)fluoranthene   | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
| Analytes                                            | Benzo(k)fluoranthene   | 1X | 1.0   | ug/l         | <1.0           | 01/19/23 17:22 |  |
|                                                     | Benzo(a)pyrene         | 1X | 0.2   | ug/l         | <0.2           | 01/19/23 17:22 |  |
|                                                     | Indeno(1,2,3-cd)pyrene | 1X | 0.5   | ug/l         | <0.5           | 01/19/23 17:22 |  |
|                                                     | Dibenz(a,h)anthracene  | 1X | 0.5   | ug/l         | <0.5           | 01/19/23 17:22 |  |
|                                                     | Benzo(g,h,i)perylene   | 1X | 5.0   | ug/l         | <5.0           | 01/19/23 17:22 |  |
| C9-C18 Aliphatic Hydroca                            | rbons [1]              | 1X | 200   | ug/l         | <200           | 01/19/23 23:04 |  |
| C19-C36 Aliphatic Hydroc                            | arbons [1]             | 1X | 200   | ug/l         | <200           | 01/19/23 23:04 |  |
| C11-C22 Aromatic Hydrod                             | carbons [1,2]          | 1X | 100   | ug/l         | 115            | 01/19/23 17:22 |  |
| Chlorooctadecane (Samp                              | le Surrogate)          |    |       | %            | 44.0           | 01/19/23 23:04 |  |
| o-Terphenyl (Sample Sur                             |                        |    | %     | 82.0         | 01/19/23 17:22 |                |  |
| 2-Fluorobiphenyl (Fractio                           | nation Surrogate)      |    |       | %            | 96.1           | 01/19/23 17:22 |  |
| 2-Bromonaphthalene (Fra                             | actionation Surrogate) |    |       | %            | 95.2           | 01/19/23 17:22 |  |
| Surrogate Acceptance Range                          | [3]                    |    |       | %            | 40 - 140       |                |  |

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

# **Quality Control**

#### Total Metals

|                             |                |      | Reporting |       | Spike         | Source       |             | %REC   |     | RPD   |
|-----------------------------|----------------|------|-----------|-------|---------------|--------------|-------------|--------|-----|-------|
| Analyte                     | Result         | Qual | Limit     | Units | Level         | Result       | %REC        | Limits | RPD | Limit |
| Batch: B3A0535 - Metals Dig | gestion Waters |      |           |       |               |              |             |        |     |       |
| Blank (B3A0535-BLK1)        |                |      |           | Р     | repared: 01/1 | 3/23 Analyze | d: 01/18/23 |        |     |       |
| Selenium                    | ND             |      | 0.01      | mg/L  |               |              |             |        |     |       |
| Nickel                      | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Silver                      | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Cadmium                     | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Barium                      | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Antimony                    | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Chromium                    | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Beryllium                   | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Lead                        | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Vanadium                    | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| Arsenic                     | ND             |      | 0.01      | mg/L  |               |              |             |        |     |       |
| Zinc                        | ND             |      | 0.020     | mg/L  |               |              |             |        |     |       |
| Thallium                    | ND             |      | 0.005     | mg/L  |               |              |             |        |     |       |
| LCS (B3A0535-BS1)           |                |      |           | Р     | repared: 01/1 | 3/23 Analyze | d: 01/18/23 |        |     |       |
| Arsenic                     | 0.21           |      | 0.01      | mg/L  | 0.200         |              | 104         | 85-115 |     |       |
| Silver                      | 0.428          |      | 0.005     | mg/L  | 0.400         |              | 107         | 85-115 |     |       |
| Cadmium                     | 1.02           |      | 0.005     | mg/L  | 1.00          |              | 102         | 85-114 |     |       |
| Beryllium                   | 0.209          |      | 0.005     | mg/L  | 0.200         |              | 104         | 85-115 |     |       |
| Chromium                    | 1.01           |      | 0.005     | mg/L  | 1.00          |              | 101         | 85-115 |     |       |
| Lead                        | 0.984          |      | 0.005     | mg/L  | 1.00          |              | 98.4        | 85-115 |     |       |
| Antimony                    | 1.09           |      | 0.005     | mg/L  | 1.00          |              | 109         | 85-115 |     |       |
| Selenium                    | 0.21           |      | 0.01      | mg/L  | 0.200         |              | 106         | 85-115 |     |       |
| Vanadium                    | 1.02           |      | 0.005     | mg/L  | 1.00          |              | 102         | 85-115 |     |       |
| Zinc                        | 1.05           |      | 0.020     | mg/L  | 1.00          |              | 105         | 85-115 |     |       |
| Nickel                      | 0.998          |      | 0.005     | mg/L  | 1.00          |              | 99.8        | 85-112 |     |       |
| Barium                      | 0.994          |      | 0.005     | mg/L  | 1.00          |              | 99.4        | 85-115 |     |       |
| Thallium                    | 1.02           |      | 0.005     | mg/L  | 1.00          |              | 102         | 85-115 |     |       |

|                                  |          |      | Quality<br>(Conti  |       |                |                  |             |                |     |              |
|----------------------------------|----------|------|--------------------|-------|----------------|------------------|-------------|----------------|-----|--------------|
| Total Metals (Continued)         |          |      |                    |       |                |                  |             |                |     |              |
| Analyte                          | Result   | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | RPD | RPD<br>Limit |
| Batch: B3A0553 - Metals Cold-Vap | or Mercu | ry   |                    |       |                |                  |             |                |     |              |
| Blank (B3A0553-BLK1)             |          | -    |                    | P     | repared: 01/1  | 3/23 Analyze     | d: 01/18/23 |                |     |              |
| Mercury                          | ND       |      | 0.0005             | mg/L  |                |                  |             |                |     |              |
| LCS (B3A0553-BS1)                |          |      |                    | P     | repared: 01/1  | 3/23 Analyze     | d: 01/18/23 |                |     |              |
| Mercury                          | 0.0049   |      | 0.0005             | mg/L  | 0.00500        |                  | 97.9        | 85-115         |     |              |

# **Quality Control**

(Continued)

### Volatile Petroleum Hydrocarbons (MADEP-VPH)

|                                    | <b>.</b> | 0    | Reporting    |              | Spike      | Source        | 0/ DEC  | %REC   |     | RPD   |
|------------------------------------|----------|------|--------------|--------------|------------|---------------|---------|--------|-----|-------|
| Analyte                            | Result   | Qual | Limit        | Units        | Level      | Result        | %REC    | Limits | RPD | Limit |
| Batch: B3A0520 - MADEP VPH         |          |      |              |              |            |               |         |        |     |       |
| Blank (B3A0520-BLK1)               |          |      |              |              | Prepared 8 | & Analyzed: 0 | 1/13/23 |        |     |       |
| Unadjusted C5-C8 Aliphatic         | ND       |      | 100          | ug/l         |            |               |         |        |     |       |
| Hydrocarbons                       |          |      |              |              |            |               |         |        |     |       |
| Unadjusted C9-C12 Aliphatic        | ND       |      | 100          | ug/l         |            |               |         |        |     |       |
| Hydrocarbons<br>Benzene            | ND       |      | 5.0          | ug/l         |            |               |         |        |     |       |
| Ethylbenzene                       | ND       |      | 5.0          | ug/l         |            |               |         |        |     |       |
| Methyl t-butyl ether (MTBE)        | ND       |      | 10.0         | ug/l         |            |               |         |        |     |       |
|                                    | ND       |      | 10.0         | ug/l         |            |               |         |        |     |       |
| Naphthalene                        |          |      |              | ug/l         |            |               |         |        |     |       |
| Toluene                            | ND       |      | 5.0          | -            |            |               |         |        |     |       |
| m&p-Xylene                         | ND       |      | 10.0         | ug/l<br>ug/l |            |               |         |        |     |       |
| o-Xylene                           | ND<br>ND |      | 10.0<br>10.0 | ug/l         |            |               |         |        |     |       |
| Total xylenes                      |          |      |              | ug/l         |            |               |         |        |     |       |
| C5-C8 Aliphatic Hydrocarbons       | ND       |      | 100          | -            |            |               |         |        |     |       |
| C9-C12 Aliphatic Hydrocarbons      | ND       |      | 100          | ug/l         |            |               |         |        |     |       |
| C9-C10 Aromatic Hydrocarbons       | ND       |      | 100          | ug/l         |            |               |         |        |     |       |
| Surrogate: 2,5- Dibromotoluene-PID |          |      | 46.4         | ug/l         | 50.0       |               | 92.9    | 70-130 |     |       |
| Surrogate: 2,5- Dibromotoluene-FID |          |      | 49.9         | ug/l         | 50.0       |               | 99.8    | 70-130 |     |       |
| LCS (B3A0520-BS1)                  |          |      |              |              | Prepared 8 | & Analyzed: 0 | 1/13/23 |        |     |       |
| Benzene                            | 58.7     |      | 5.0          | ug/l         | 50.0       |               | 117     | 70-130 |     |       |
| Ethylbenzene                       | 53.4     |      | 5.0          | ug/l         | 50.0       |               | 107     | 70-130 |     |       |
| Methyl t-butyl ether (MTBE)        | 54.1     |      | 10.0         | ug/l         | 50.0       |               | 108     | 70-130 |     |       |
| Naphthalene                        | 42.6     |      | 10.0         | ug/l         | 50.0       |               | 85.2    | 70-130 |     |       |
| Toluene                            | 56.0     |      | 5.0          | ug/l         | 50.0       |               | 112     | 70-130 |     |       |
| m&p-Xylene                         | 102      |      | 10.0         | ug/l         | 100        |               | 102     | 70-130 |     |       |
| 2-Methylpentane                    | 63.1     |      | 5.0          | ug/l         | 50.0       |               | 126     | 70-130 |     |       |
| n-Nonane                           | 44.7     |      | 5.0          | ug/l         | 50.0       |               | 89.5    | 70-130 |     |       |
| o-Xylene                           | 50.4     |      | 10.0         | ug/l         | 50.0       |               | 101     | 70-130 |     |       |
| Decane                             | 39.0     |      | 5.0          | ug/l         | 50.0       |               | 78.1    | 70-130 |     |       |
| n-Butylcylohexane                  | 45.3     |      | 5.0          | ug/l         | 50.0       |               | 90.5    | 70-130 |     |       |
| n-Pentane                          | 65.0     |      | 5.0          | ug/l         | 50.0       |               | 130     | 70-130 |     |       |
| 1,2,4-Trimethylbenzene             | 45.8     |      | 10.0         | ug/l         | 50.0       |               | 91.6    | 70-130 |     |       |
| VPH_LCS_Aliphatic_C5-C8            | 190      |      | 5.0          | ug/l         | 150        |               | 126     | 70-130 |     |       |
| VPH_LCS_Aliphatic_C9-C12           | 84.3     |      | 10.0         | ug/l         | 100        |               | 84.3    | 70-130 |     |       |
| VPH_LCS_Aromatic_C9-C10            | 45.8     |      | 10.0         | ug/l         | 50.0       |               | 91.6    | 70-130 |     |       |
| Surrogate: 2,5- Dibromotoluene-PID |          |      | 46.7         | ug/l         | 50.0       |               | 93.3    | 70-130 |     |       |
| Surrogate: 2,5- Dibromotoluene-FID |          |      | 49.8         | ug/l         | 50.0       |               | 99.5    | 70-130 |     |       |

### Quality Control (Continued)

# Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

| Analyte                            | Result      | Qual | Reporting<br>Limit | Units | Spike<br>Level | Source<br>Result | %REC    | %REC<br>Limits | RPD   | RPD<br>Limit |
|------------------------------------|-------------|------|--------------------|-------|----------------|------------------|---------|----------------|-------|--------------|
| Batch: B3A0520 - MADEP VPH         | (Continued) |      |                    |       |                |                  |         |                |       |              |
| LCS Dup (B3A0520-BSD1)             |             |      |                    |       | Prepared 8     | & Analyzed: 0    | 1/13/23 |                |       |              |
| Benzene                            | 56.8        |      | 5.0                | ug/l  | 50.0           |                  | 114     | 70-130         | 3.26  | 25           |
| Ethylbenzene                       | 52.5        |      | 5.0                | ug/l  | 50.0           |                  | 105     | 70-130         | 1.76  | 25           |
| Methyl t-butyl ether (MTBE)        | 51.9        |      | 10.0               | ug/l  | 50.0           |                  | 104     | 70-130         | 4.28  | 25           |
| Naphthalene                        | 44.0        |      | 10.0               | ug/l  | 50.0           |                  | 88.1    | 70-130         | 3.35  | 25           |
| Toluene                            | 54.3        |      | 5.0                | ug/l  | 50.0           |                  | 109     | 70-130         | 2.97  | 25           |
| m&p-Xylene                         | 101         |      | 10.0               | ug/l  | 100            |                  | 101     | 70-130         | 1.44  | 25           |
| 2-Methylpentane                    | 60.1        |      | 5.0                | ug/l  | 50.0           |                  | 120     | 70-130         | 4.95  | 25           |
| o-Xylene                           | 49.8        |      | 10.0               | ug/l  | 50.0           |                  | 99.6    | 70-130         | 1.14  | 25           |
| n-Nonane                           | 42.9        |      | 5.0                | ug/l  | 50.0           |                  | 85.8    | 70-130         | 4.25  | 25           |
| Decane                             | 38.9        |      | 5.0                | ug/l  | 50.0           |                  | 77.8    | 70-130         | 0.411 | 25           |
| n-Butylcylohexane                  | 42.7        |      | 5.0                | ug/l  | 50.0           |                  | 85.4    | 70-130         | 5.80  | 25           |
| n-Pentane                          | 61.8        |      | 5.0                | ug/l  | 50.0           |                  | 124     | 70-130         | 5.05  | 25           |
| 1,2,4-Trimethylbenzene             | 46.0        |      | 10.0               | ug/l  | 50.0           |                  | 91.9    | 70-130         | 0.371 | 25           |
| VPH_LCS_Aliphatic_C5-C8            | 180         |      | 5.0                | ug/l  | 150            |                  | 120     | 70-130         | 5.01  | 25           |
| VPH_LCS_Aliphatic_C9-C12           | 81.6        |      | 10.0               | ug/l  | 100            |                  | 81.6    | 70-130         | 3.27  | 25           |
| VPH_LCS_Aromatic_C9-C10            | 46.0        |      | 10.0               | ug/l  | 50.0           |                  | 91.9    | 70-130         | 0.371 | 25           |
| Surrogate: 2,5- Dibromotoluene-PID |             |      | 46.9               | ug/l  | 50.0           |                  | 93.7    | 70-130         |       |              |
| Surrogate: 2,5- Dibromotoluene-FID |             |      | 49.7               | ug/l  | 50.0           |                  | 99.3    | 70-130         |       |              |

# Quality Control (Continued) ctable Detroloum Hydrocarbons (MADED-EDH)

| Analista                       | D 14        | 0    | Reporting    | 1 1          | Spike         | Source       | 0/ 050       | %REC             | סטט  | RPE  |
|--------------------------------|-------------|------|--------------|--------------|---------------|--------------|--------------|------------------|------|------|
| Analyte                        | Result      | Qual | Limit        | Units        | Level         | Result       | %REC         | Limits           | RPD  | Limi |
| Batch: B3A0706 - Sep-Funnel    | -extraction |      |              |              |               |              |              |                  |      |      |
| Blank (B3A0706-BLK1)           |             |      |              |              | repared: 01/1 | 7/23 Analyze | ed: 01/18/23 |                  |      |      |
| Unadjusted C11-C22 Aromatic    | ND          |      | 100          | ug/l         |               |              |              |                  |      |      |
| Hydrocarbons                   |             |      |              |              |               |              |              |                  |      |      |
| Naphthalene                    | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| 2-Methylnaphthalene            | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Phenanthrene                   | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Acenaphthene                   | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| Acenaphthylene                 | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Fluorene                       | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| Anthracene                     | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| Fluoranthene                   | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| Pyrene                         | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| Benzo(a)anthracene             | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Chrysene                       | ND          |      | 2.0          | ug/l         |               |              |              |                  |      |      |
| Benzo(b)fluoranthene           | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Benzo(k)fluoranthene           | ND          |      | 1.0          | ug/l         |               |              |              |                  |      |      |
| Benzo(a)pyrene                 | ND          |      | 0.2          | ug/l         |               |              |              |                  |      |      |
| Indeno(1,2,3-cd)pyrene         | ND          |      | 0.5          | ug/l         |               |              |              |                  |      |      |
| Dibenz(a,h)anthracene          | ND          |      | 0.5          | ug/l         |               |              |              |                  |      |      |
| Benzo(g,h,i)perylene           | ND          |      | 5.0          | ug/l         |               |              |              |                  |      |      |
| C9-C18 Aliphatic Hydrocarbons  | ND          |      | 200          | ug/l         |               |              |              |                  |      |      |
| C19-C36 Aliphatic Hydrocarbons | ND          |      | 200          | ug/l         |               |              |              |                  |      |      |
| C11-C22 Aromatic Hydrocarbons  | ND          |      | 100          | ug/l         |               |              |              |                  |      |      |
| Surrogate: Chlorooctadecane    |             |      | 58.5         | ug/l         | 125           |              | 46.8         | 40-140           |      |      |
| -                              |             |      | 58.5<br>68.6 | ug/l         | 125           |              | 40.8<br>54.9 | 40-140<br>40-140 |      |      |
| Surrogate: o-Terphenyl         |             |      |              |              |               |              |              |                  |      |      |
| Surrogate: 2-Fluorobiphenyl    |             |      | 41.0         | ug/l         | 50.0          |              | 81.9         | 40-140           |      |      |
| Surrogate: 2-Bromonaphthalene  |             |      | 40.4         | ug/l         | 50.0          |              | 80.8         | 40-140           |      |      |
| LCS (B3A0706-BS1)              | 20.0        |      |              |              | -             | 7/23 Analyze |              | 40.440           |      |      |
| Naphthalene                    | 29.0        |      | 1.0          | ug/l         | 40.0          |              | 72.4         | 40-140           |      |      |
| 2-Methylnaphthalene            | 29.1        |      | 1.0          | ug/l         | 40.0          |              | 72.8         | 40-140           |      |      |
| Phenanthrene                   | 38.1        |      | 1.0          | ug/l         | 40.0          |              | 95.2         | 40-140           |      |      |
| Acenaphthene                   | 29.7        |      | 5.0          | ug/l         | 40.0          |              | 74.3         | 40-140           |      |      |
| Acenaphthylene                 | 29.7        |      | 1.0          | ug/l         | 40.0          |              | 74.2         | 40-140           |      |      |
| Fluorene                       | 30.9        |      | 5.0          | ug/l         | 40.0          |              | 77.2         | 40-140           |      |      |
| Anthracene                     | 32.0        |      | 5.0          | ug/l         | 40.0          |              | 80.0         | 40-140           |      |      |
| Fluoranthene                   | 34.3        |      | 5.0          | ug/l         | 40.0          |              | 85.8         | 40-140           |      |      |
| Pyrene                         | 34.0        |      | 5.0          | ug/l         | 40.0          |              | 85.0         | 40-140           |      |      |
| Benzo(a)anthracene             | 33.9        |      | 1.0          | ug/l         | 40.0          |              | 84.8         | 40-140           |      |      |
| Chrysene                       | 34.4        |      | 2.0          | ug/l         | 40.0          |              | 86.1         | 40-140           |      |      |
| ,<br>Benzo(b)fluoranthene      | 38.4        |      | 1.0          | ug/l         | 40.0          |              | 96.0         | 40-140           |      |      |
| Benzo(k)fluoranthene           | 33.2        |      | 1.0          | ug/l         | 40.0          |              | 83.0         | 40-140           |      |      |
| Benzo(a)pyrene                 | 32.2        |      | 0.2          | ug/l         | 40.0          |              | 80.4         | 40-140           |      |      |
| Indeno(1,2,3-cd)pyrene         | 29.6        |      | 0.5          | ug/l         | 40.0          |              | 74.0         | 40-140           |      |      |
| Dibenz(a,h)anthracene          | 29.7        |      | 0.5          | ug/l         | 40.0          |              | 74.2         | 40-140           |      |      |
| Benzo(g,h,i)perylene           | 31.9        |      | 5.0          | ug/l         | 40.0          |              | 79.8         | 40-140           |      |      |
|                                |             |      |              |              |               |              |              |                  |      |      |
| Nonane                         | 13.9        |      | 5.0          | ug/l<br>ug/l | 40.0          |              | 34.7         | 30-140           |      |      |
| Decane                         | 19.0        |      | 5.0          |              | 40.0          |              | 47.6         | 40-140           |      |      |
| Dodecane                       | 22.2        |      | 5.0          | ug/l         | 40.0          |              | 55.5         | 40-140           |      |      |
| Tetradecane                    | 22.6        |      | 5.0          | ug/l         | 40.0          |              | 56.4         | 40-140           |      |      |
| Hexadecane                     | 24.0        |      | 5.0          | ug/l         | 40.0          |              | 60.0         | 40-140           |      |      |
| Octadecane                     | 27.0        |      | 5.0          | ug/l         | 40.0          |              | 67.5         | 40-140           |      |      |
| Nonadecane                     | 28.2        |      | 5.0          | ug/l         | 40.0          |              | 70.5         | 40-140           |      |      |
| Eicosane                       | 29.1        |      | 5.0          | ug/l         | 40.0          |              | 72.6         | 40-140           |      |      |
| Docosane                       | 30.0        |      | 5.0          | ug/l         | 40.0          |              | 75.0         | 40-140           |      |      |
| Tetracosane                    | 30.4        |      | 5.0          | ug/l         | 40.0          |              | 75.9         | 40-140           |      |      |
| Hexacosane                     | 30.3        |      | 5.0          | ug/l         | 40.0          |              | 75.7         | 40-140           |      |      |
| Octacosane                     | 29.7        |      | 5.0          | ug/l         | 40.0          |              | 74.3         | 40-140           |      |      |
| Triacontane                    | 28.7        |      | 5.0          | ug/l         | 40.0          |              | 71.7         | 40-140           | Page | ~ 7  |

#### Quality Control (Continued)

# Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

|                               |                  | <b>.</b> . | Reporting   |       | Spike         | Source        |             | %REC             |        | RPD   |
|-------------------------------|------------------|------------|-------------|-------|---------------|---------------|-------------|------------------|--------|-------|
| Analyte                       | Result           | Qual       | Limit       | Units | Level         | Result        | %REC        | Limits           | RPD    | Limit |
| Batch: B3A0706 - Sep-Funne    | l-extraction (Co | ontinue    | ed)         |       |               |               |             |                  |        |       |
| LCS (B3A0706-BS1)             |                  |            |             | P     | repared: 01/1 | 7/23 Analyze  | d: 01/19/23 |                  |        |       |
| Hexatriacontane               | 25.4             |            | 5.0         | ug/l  | 40.0          |               | 63.6        | 40-140           |        |       |
| EPH_LCS_Aliphatic_C19-C36     | 232              |            | 0.0         | ug/l  | 320           |               | 72.4        | 40-140           |        |       |
| EPH_LCS_Aliphatic_C9-C18      | 129              |            | 0.0         | ug/l  | 240           |               | 53.6        | 40-140           |        |       |
| EPH_LCS_Aromatic_C11-C22      | 550              |            | 0.0         | ug/l  | 680           |               | 80.9        | 40-140           |        |       |
| Surrogate: Chlorooctadecane   |                  |            | 51.6        | ug/l  | 125           |               | 41.2        | 40-140           |        |       |
| Surrogate: o-Terphenyl        |                  |            | 96.0        | ug/l  | 125           |               | 76.8        | 40-140           |        |       |
| Surrogate: 2-Fluorobiphenyl   |                  |            | 45.5        | ug/l  | 50.0          |               | 91.0        | 40-140           |        |       |
| Surrogate: 2-Bromonaphthalene |                  |            | 45.2        | ug/l  | 50.0          |               | 90.3        | 40-140           |        |       |
| LCS Dup (B3A0706-BSD1)        |                  |            |             | P     | repared: 01/1 | .7/23 Analyze | d: 01/18/23 |                  |        |       |
| Naphthalene                   | 33.8             |            | 1.0         | ug/l  | 40.0          | , , .         | 84.4        | 40-140           | 15.4   | 25    |
| 2-Methylnaphthalene           | 34.1             |            | 1.0         | ug/l  | 40.0          |               | 85.2        | 40-140           | 15.7   | 25    |
| Phenanthrene                  | 44.7             |            | 1.0         | ug/l  | 40.0          |               | 112         | 40-140           | 16.0   | 25    |
| Acenaphthene                  | 34.7             |            | 5.0         | ug/l  | 40.0          |               | 86.8        | 40-140           | 15.5   | 25    |
| Acenaphthylene                | 34.6             |            | 1.0         | ug/l  | 40.0          |               | 86.5        | 40-140           | 15.4   | 25    |
| Fluorene                      | 36.4             |            | 5.0         | ug/l  | 40.0          |               | 90.9        | 40-140           | 16.3   | 25    |
| Anthracene                    | 37.5             |            | 5.0         | ug/l  | 40.0          |               | 93.8        | 40-140           | 15.8   | 25    |
| Fluoranthene                  | 40.8             |            | 5.0         | ug/l  | 40.0          |               | 102         | 40-140           | 17.2   | 25    |
| Pyrene                        | 40.2             |            | 5.0         | ug/l  | 40.0          |               | 101         | 40-140           | 16.8   | 25    |
| Benzo(a)anthracene            | 40.7             |            | 1.0         | ug/l  | 40.0          |               | 102         | 40-140           | 18.3   | 25    |
| Chrysene                      | 41.2             |            | 2.0         | ug/l  | 40.0          |               | 103         | 40-140           | 17.9   | 25    |
| Benzo(b)fluoranthene          | 46.2             |            | 1.0         | ug/l  | 40.0          |               | 116         | 40-140           | 18.4   | 25    |
| Benzo(k)fluoranthene          | 39.5             |            | 1.0         | ug/l  | 40.0          |               | 98.8        | 40-140           | 17.4   | 25    |
| Benzo(a)pyrene                | 38.7             |            | 0.2         | ug/l  | 40.0          |               | 96.8        | 40-140           | 18.5   | 25    |
| Indeno(1,2,3-cd)pyrene        | 37.1             |            | 0.5         | ug/l  | 40.0          |               | 92.8        | 40-140           | 22.4   | 25    |
| Dibenz(a,h)anthracene         | 36.0             |            | 0.5         | ug/l  | 40.0          |               | 90.0        | 40-140           | 19.3   | 25    |
| Benzo(g,h,i)perylene          | 38.3             |            | 5.0         | ug/l  | 40.0          |               | 95.7        | 40-140           | 18.1   | 25    |
| Nonane                        | 14.0             |            | 5.0         | ug/l  | 40.0          |               | 35.0        | 30-140           | 0.789  | 25    |
| Decane                        | 18.9             |            | 5.0         | ug/l  | 40.0          |               | 47.2        | 40-140           | 0.633  | 25    |
| Dodecane                      | 22.2             |            | 5.0         | ug/l  | 40.0          |               | 55.6        | 40-140           | 0.0900 | 25    |
| Tetradecane                   | 22.6             |            | 5.0         | ug/l  | 40.0          |               | 56.4        | 40-140           | 0.00   | 25    |
| Hexadecane                    | 24.0             |            | 5.0         | ug/l  | 40.0          |               | 59.9        | 40-140           | 0.125  | 25    |
| Octadecane                    | 27.1             |            | 5.0         | ug/l  | 40.0          |               | 67.6        | 40-140           | 0.185  | 25    |
| Nonadecane                    | 28.3             |            | 5.0         | ug/l  | 40.0          |               | 70.8        | 40-140           | 0.389  | 25    |
| Eicosane                      | 29.2             |            | 5.0         | ug/l  | 40.0          |               | 73.0        | 40-140           | 0.446  | 25    |
| Docosane                      | 30.1             |            | 5.0         | ug/l  | 40.0          |               | 75.3        | 40-140           | 0.466  | 25    |
| Tetracosane                   | 30.5             |            | 5.0         | ug/l  | 40.0          |               | 76.2        | 40-140           | 0.362  | 25    |
| Hexacosane                    | 30.4             |            | 5.0         | ug/l  | 40.0          |               | 75.9        | 40-140           | 0.231  | 25    |
| Octacosane                    | 29.8             |            | 5.0         | ug/l  | 40.0          |               | 74.4        | 40-140           | 0.202  | 25    |
| Triacontane                   | 28.8             |            | 5.0         | ug/l  | 40.0          |               | 71.9        | 40-140           | 0.279  | 25    |
| Hexatriacontane               | 25.7             |            | 5.0         | ug/l  | 40.0          |               | 64.3        | 40-140           | 1.10   | 25    |
| EPH_LCS_Aliphatic_C19-C36     | 233              |            | 0.0         | ug/l  | 320           |               | 72.7        | 40-140           | 0.422  | 25    |
| EPH_LCS_Aliphatic_C9-C18      | 129              |            | 0.0         | ug/l  | 240           |               | 53.6        | 40-140           | 0.0233 | 25    |
| EPH_LCS_Aromatic_C11-C22      | 655              |            | 0.0         | ug/l  | 680           |               | 96.3        | 40-140           | 17.3   | 25    |
| Surrogate: Chlorooctadecane   |                  |            | 52.0        | ug/l  | 125           |               | 41.6        | 40-140           |        |       |
| Surrogate: o-Terphenyl        |                  |            | 52.0<br>113 | ug/l  | 125<br>125    |               | 90.5        | 40-140<br>40-140 |        |       |
| Surrogate: 2-Fluorobiphenyl   |                  |            | 53.3        | ug/l  | 125<br>50.0   |               | 90.5<br>107 | 40-140<br>40-140 |        |       |
|                               |                  |            |             | ug/l  |               |               |             |                  |        |       |
| Surrogate: 2-Bromonaphthalene |                  |            | 52.7        | ugn   | 50.0          |               | 105         | 40-140           |        |       |

| Item | Definition                                            |
|------|-------------------------------------------------------|
| Wet  | Sample results reported on a wet weight basis.        |
| ND   | Analyte NOT DETECTED at or above the reporting limit. |

| FUSS & O'NEILL              □ 146 Hartford             □ 56 Quarry Re             □ 1419 Richlar                                                                                                                                                                 | 3 A 1                  | 2040 Q       | A 01089<br>nce, RI<br>keepsie, I | )<br>02908<br>NY <mark>ک</mark> Othe       | r <u>1550 %</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Suite 400                                       | icid MA cies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|----------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHAIN-OF-CUST                                                                                                                                                                                                                                                    | DDY RECORI             | D 36154      | ļ                                | □ 24-Hour*                                 | □ 72-Hour*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>Turnaround</b><br>□ Other<br>days) *Surcharg | (days)<br>(days)<br>re Applies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Project Name                                                                                                                                                                                                                                                     | PROJECT LOCATION       |              | PROJECT NUMBE                    |                                            | Automatica (_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LABORA                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Stutesbury Library Ph II                                                                                                                                                                                                                                         |                        | K            | 20041032.                        | A22                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NETL                                            | 413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Shotesbury Library Ph II<br>REPORT TO: Matt Kissane (rekissane @fo                                                                                                                                                                                               | ricio (com)            | Analysis     |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contai                                          | ners                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| INVOICE TO: Math Kissané                                                                                                                                                                                                                                         |                        | Request      |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| P.O. NO .: 170120091032. AZZ                                                                                                                                                                                                                                     |                        |              |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  | Damilula               | . 2          | 3                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | j. the                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sampler's Signature:       Openation         Source Codes:       MW=Monitoring Well         MW=Monitoring Well       PW=Potable Water       T=Treatment Fac         SW=Surface Water       ST=Stormwater       W=Waste         X=Other       X=Trib       Slavik | ility S=Soil B=Sedimen | nt           |                                  | 221 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2    | All the second s | 12 100 100 100 100 100 100 100 100 100 1        | 21 20 11<br>23 12 20 11<br>23 12 12<br>13 12 12<br>14 12<br>1 |
| Item Transfer Check Sample Number                                                                                                                                                                                                                                |                        | ime<br>npled |                                  | 201 V. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                               | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1701230111 - 01                                                                                                                                                                                                                                                  | Mu 1/11/23 11          | .60 × × ×    |                                  |                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  |                        | 35 X X X     |                                  |                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -03                                                                                                                                                                                                                                                              | 12                     | 250 X X X    |                                  |                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  | • 13                   | 340 x X X    |                                  |                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -05                                                                                                                                                                                                                                                              | 14                     | 140 X X X    |                                  |                                            | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| V -06 •                                                                                                                                                                                                                                                          |                        | 500 X        |                                  |                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  |                        |              |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  |                        |              |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  |                        |              |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  |                        |              |                                  |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Transfer Relinquished By                                                                                                                                                                                                                                         | Accepted By            | Date Time    | Charge Exceptions:               | Exempt QA                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r)                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                  | FRIDGE 1               |              | Reporting and Detection Limit    | Requirements:                              | RCP Deliverabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | es 🔊 MCP CAM Cerr                               | RCGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 Willing Files                                                                                                                                                                                                                                                  |                        | 1/12 1245    | CAM 14 metals b                  | + 6010/7                                   | 471 , EPI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4 2 VPH by                                      | riussie ponethed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3<br>4                                                                                                                                                                                                                                                           | zegeny                 |              | Additional Comments:             |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | Page 30 of 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| MassDEP Analytical Protocol Certification Form                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| Labo                                                                                                                                                                                                                                                                                       | oratory Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ame: New England                                     | d Testing Laboratory                              | , Inc.                                            | Project #: 2009103                                  | 32.A22                           |  |  |  |  |  |  |  |
| Project Location: Shutesbury, MA RTN:                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| This Form provides certifications for the following data set: list Laboratory Sample ID Number(s):<br>3A12040                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| Matrie                                                                                                                                                                                                                                                                                     | Matrices: I Groundwater/Surface Water I Soil/Sediment I Drinking Water I Air I Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| CAM Protocol (check all that apply below):                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| 8260<br>CAM                                                                                                                                                                                                                                                                                | VOC<br>II A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7470/7471 Hg<br>CAM III B □                          | MassDEP VPH<br>(GC/PID/FID)<br>CAM IV A ⊠         | 8082 PCB<br>CAM V A □                             | 9014 Total<br>Cyanide/PAC<br>CAM VI A □             | 6860 Perchlorate<br>CAM VIII B □ |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                            | SVOC<br>II B  □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7010 Metals<br>CAM III C □                           | MassDEP VPH<br>(GC/MS)<br>CAM IV C □              | 8081 Pesticides<br>CAM V B □                      | 7196 Hex Cr<br>CAM VI B □                           | MassDEP APH<br>CAM IX A □        |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                            | Metals<br>Ⅲ A 区                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6020 Metals<br>CAM III D □                           | MassDEP EPH<br>CAM IV B ⊠                         | 8151 Herbicides<br>CAM V C □                      | 8330 Explosives<br>CAM VIII A □                     | TO-15 VOC<br>CAM IX B □          |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                            | Affirmativ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /e Responses to                                      | Questions A throug                                | gh F are required t                               | for "Presumptive Ce                                 | rtainty" status                  |  |  |  |  |  |  |  |
| А                                                                                                                                                                                                                                                                                          | Affirmative Responses to Questions A through F are required for "Presumptive Certainty" status         A       Were all samples received in a condition consistent with those described on the Chain-of-<br>Custody, properly preserved (including temperature) in the field or laboratory, and<br>prepared/analyzed within method holding times?       Image: Constant of the constant o |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| в                                                                                                                                                                                                                                                                                          | Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| С                                                                                                                                                                                                                                                                                          | Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| D                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Assurance and C                                      |                                                   |                                                   | specified in CAM VII A<br>sition and Reporting c    |                                  |  |  |  |  |  |  |  |
| E                                                                                                                                                                                                                                                                                          | a. VPH,<br>modificat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion(s)? (Refer to the                               |                                                   | for a list of significant                         |                                                     | t ⊠ Yes □ No<br>□ Yes □ No       |  |  |  |  |  |  |  |
| F                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   | -conformances identified<br>Questions A through E)? |                                  |  |  |  |  |  |  |  |
| Res                                                                                                                                                                                                                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · ·                                              |                                                   | •                                                 | mptive Certainty" st                                | atus                             |  |  |  |  |  |  |  |
| G                                                                                                                                                                                                                                                                                          | protocol(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s)?                                                  | or below all CAM repor                            |                                                   |                                                     | ⊠ Yes □ No <sup>1</sup>          |  |  |  |  |  |  |  |
| <u>Da</u><br>re                                                                                                                                                                                                                                                                            | <u>ata User Ne</u> presentati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>ote</u> : Data that achiev<br>veness requirements | ve "Presumptive Certail<br>s described in 310 CMR | nty" status may not ne<br>? 40. 1056 (2)(k) and W | cessarily meet the data u<br>SC-07-350.             | usability and                    |  |  |  |  |  |  |  |
| Н                                                                                                                                                                                                                                                                                          | Were all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | QC performance st                                    | andards specified in th                           | ne CAM protocol(s) ad                             | chieved?                                            | ⊠ Yes □ No <sup>1</sup>          |  |  |  |  |  |  |  |
| Ι                                                                                                                                                                                                                                                                                          | Were res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sults reported for the                               | e complete analyte list                           | specified in the selec                            | ted CAM protocol(s)?                                | ⊠ Yes □ No <sup>1</sup>          |  |  |  |  |  |  |  |
| <sup>1</sup> <i>All i</i>                                                                                                                                                                                                                                                                  | negative r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | esponses must be                                     | addressed in an attac                             | ched laboratory narra                             | ative.                                              |                                  |  |  |  |  |  |  |  |
| <i>I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     |                                  |  |  |  |  |  |  |  |
| Sign                                                                                                                                                                                                                                                                                       | ature: 🖗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chole Charles                                        |                                                   | Positio                                           | on: Laboratory Director                             |                                  |  |  |  |  |  |  |  |
| Print                                                                                                                                                                                                                                                                                      | ted Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | : Richard Warila                                     |                                                   | — Date:_                                          | 1/23/2023                                           |                                  |  |  |  |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                   |                                                   |                                                     | Page 31 of 31                    |  |  |  |  |  |  |  |