Phase I Initial Site Investigation & Tier I Classification Submittal 66 Leverett Road, Shutesbury, MA RTN 1-21489

The Town of Shutesbury

January 2023

1550 Main Street Suite 400 Springfield, MA 01103

Table of Contents

Phase I Initial Site Investigation & Tier I Classification Submittal 66 Leverett Road, Shutesbury, MA RTN 1-21489

Exe	cutive	Sumr	nary		ii			
1	Gen		_	Site Information (310 CMR 40.0483 (1)				
	1.2	Potentially Responsible Parties						
	1.3		• -					
	1.4	Soil Categorization						
	1.5		_	tegorization				
	1.6			p (310 CMR 40.0483(b))				
	1.7	Potent	ial Recepto	ors	3			
2	Disp	osal S	ite Bac	kground (310 CMR 40.0483(c))	4			
	2.1							
		2.1.1	Operation	ns History (310 CMR 40.0483(1)(c)(1))				
		2.1.2	Release H	istory (310 CMR 40.0483(1)(c)(2))	5			
		2.1.3	Oil and H	azardous Material Use and Storage History (310 CMR				
		40.0483	3(1)(c)(3))		5			
		2.1.4	Waste Mar	nagement, Environmental Permits, and Regulatory History	(310			
		CMR 4	0.0483(1)(c))(4)&(5))				
	2.2	Site H	ydrogeolog	gic Characteristics (310 CMR 40.0483(d))	6			
		2.2.1	Geologic S	Setting and Resources (310 CMR 40.0483(d)(3-5))				
			2.2.1.1	Soil and Bedrock Types	<i>(</i>			
			2.2.1.2	Surface Water and Drainage Features				
			2.2.1.3	Groundwater Resources				
	2.3	Field I	_	ons and Findings				
		2.3.1	OTO's Lin	mited Soil Assessment (September 2021)	9			
		2.3.2	Fuss & O'	'Neill Limited Phase II Subsurface Investigation (November	r and			
		Decem	,					
		2.3.3	Additional	l Well Installation & Groundwater Monitoring (January 202	.3)13			
3	Preli	minar	y Conc	eptual Site Model	14			
	3.1			nt of Contamination (310 CMR 40.0483(e))				
	3.2	Migrat	ion Pathw	ays and Exposure Potential (310 CMR 40.0483(f))	16			
		3.2.1						
		3.2.2	Soil Vapor	r	16			
			_					

Table of Contents

Phase I Initial Site Investigation & Tier I Classification Submittal 66 Leverett Road, Shutesbury, MA RTN 1-21489

	3.3	3.2.3 Groundwater Evaluation for Immediate Response Actions (310 CMR 40.0-	
4	Data	a Representativeness and Usability	17
5	Con	iclusions	18
6	Refe	erences	21
Tab	les		Page
1	Summ	ary of Soil Condition (2021 & 2022)	
2	Summ	ary of Groundwater Condition (2022)	
3	Summ	ary of Soil Samples (Nov 2022)	
4	Summ	ary of Soil Analytical Data & Objectives (Nov 2022)	End of Report
5		ary of Groundwater Sample (Dec 2022)	
6		ary of Groundwater Analytical Data & Objectives (Dec 2022)	End of Report
7		ary of Monitoring Well Installation (Jan 2023)	
8		ary of Groundwater Elevation Data (Jan 2023)	End of Report
9	Summ	ary of Groundwater Samples (Jan 2023)	
Figu	ıres		End of Report
1		ocation Map	•
2	Site Pl	an	
3	Groun	ndwater Elevation Contour Map (Jan 2023)	
App	endices	S	End of Report
Α	MassI	DEP BWSC Site Assessment Map	
В	Refere	ence Documents for Site History	
C	Soil B	oring and Groundwater Sampling Logs	
D	Labor	atory Reports (Nov 2022 to Dec 2022)	
E	Conce	eptual Phase II Scope of Work	
F	Public	Notice Letters	

Executive Summary

Fuss & O'Neill, Inc. (Fuss & O'Neill) prepared this *Phase I – Initial Site Investigation Report (Phase I ISI) and Tier I Classification Submittal* in accordance with the Massachusetts Contingency Plan (MCP; 310 CMR 40.0480 et seq.) on behalf of the Town of Shutesbury, for the property at 66 Leverett Road in Shutesbury, Massachusetts (the "property"). This *Phase I ISI* summarizes environmental assessment activities conducted between 2021 and 2023.

Reportable conditions, namely 120-day reportable concentrations of volatile petroleum hydrocarbons (VPHs) in soil, were identified in September 2021 as part of a limited soil assessment. On January 31, 2022, the Massachusetts Department of Environmental Protection (MassDEP) assigned Release Tracking Number (RTN) 1-21489 to the Disposal Site on the property. Thereafter, additional soil and groundwater characterization activities have been performed at the Disposal Site as described herein.

The Town of Shutesbury is a "Potentially Responsible Party (PRP)" and is undertaking MCP response actions. Environmental investigation and response actions were performed in preparation for development of the property.

The Disposal Site is not subject to ongoing immediate response actions, and no Imminent Hazards, Critical Exposure Pathways, or Conditions of Substantial Release Migration (CSRM), as defined in the MCP, have been identified at this time. The VPH Ranges in soil are located at depths greater than three feet below grade and do not pose an ongoing risk of exposure under normal site operative conditions. The Disposal Site is not located within a current or potential drinking water source area, but is within 500 feet of one or more private residential wells and is therefore subject to RCGW-1 criteria. Therefore, per 310 CMR 40.0520, this does trigger Tier I inclusionary criteria.

Additional response actions are warranted at the property, and a Permanent Solution, as defined in 310 CMR 40.0000, has not been achieved at this time for current and foreseeable future conditions. Therefore, a Tier I Classification is appropriate for the Disposal Site while those actions continue.

General Disposal Site Information (310 CMR 40.0483 (1)(a))

Introduction 1.1

This report, prepared in accordance with the Massachusetts Contingency Plan (MCP) 310 CMR 40.0480 and 310 CMR 40.0510, serves as a Phase I Initial Site Investigation (ISI) Report and Tier I Classification Submittal for the Disposal Site identified by the Massachusetts Department of Environmental Protection (MassDEP) as Release Tracking Number (RTN) 1-21489. The Disposal Site is located at 66 Leverett Road in Shutesbury, Massachusetts (the "subject property" or "property").

The Town of Shutesbury owns the property. Fuss & O'Neill, Inc. (Fuss & O'Neill) has been retained to perform "licensed site professional services" per 309 CMR and 310 CMR 40.0000, on behalf of the Town of Shutesbury.

Potentially Responsible Parties 1.2

The PRP contact is designated as follows:

Primary Point of Contact: Ms. Rebecca Torres

> Town Administrator Town of Shutesbury 1 Cooleyville Road Shutesbury, MA 01072

It should be noted that according to the United States Department of Defense (the DOD), "the Department of Defense is responsible for environmental restoration of properties that were formerly owned by, leased to, or otherwise possessed by the United States and under the jurisdiction of the Secretary of Defense prior to October 1986. Such properties are known as Formerly Used Defense Sites or FUDS. The U.S. Army is the executive agent for the program and the U.S. Army Corps of Engineers (USACOE) manages and directs the program's administration. DOD and the USACOE are dedicated to protecting human health and the environment by investigating and remediating potential contamination that may remain on these properties." Per this DOD definition, and due to the historical property use further described in Section 2.1, the Disposal Site would be classified under FUDS. Therefore, the DOD is being indicated as an additional PRP for the release associated with RTN 1-21489.

The Town of Shutesbury has designated Mr. Timothy Clinton, LSP #2082, as the LSP-of-Record with respect to response actions at the Disposal Site.

1.3 Site Description

The Disposal Site is located on a 20.2-acre plot of land identified by the Town of Shutesbury Tax Assessor as Parcel #O-32. The parcel is located south of Leverett Road and east of Pelham Hill Road in Shutesbury, Massachusetts. The Disposal Site has the following approximate coordinates:

- Latitude and longitude: 42.44765 °N, 72.41610 ° W
- UTM Coordinates (Massachusetts State Plane Meters): 4702715.22 North 712492.62 East

The parcel is currently vacant and comprised primarily of vegetated woodland. The northern portion of the parcel was formerly improved with one (1) two-story residential building constructed in 1918 according to a property card obtained from the Town of Shutesbury Assessor's Office and one (1) detached three-bay garage inferred to have been constructed between 1962 and 1972 based on aerial imagery provided by Environmental Data Resources, Inc. (EDR) for those years. It is possible that older residential buildings had existed at the northern portion of the parcel prior to 1918 based on historic topographic maps provided by EDR. The residential structure from 1918 was demolished in May of 2005 and the three-bay garage was demolished in August of 2021. The southern portion of the parcel, which is the location of the Disposal Site, was formerly developed as an Air Force Very High Frequency Omni-Directional Range (VOR) facility including a radio tower (OTO, 2021). Trees had been cleared in the 1960 aerial photo and the VOR facility can be seen in the 1962 aerial photo. The facility can no longer be seen in the 1972 aerial photo, and regrowth of cleared vegetation can be observed. At the time of the Phase I ISI, the only components of the VOR facility that remained were a concrete pad that once housed a transformer. Refer to *Appendix B* for historical aerial photographs and mapping used to substantiate the operative history of the Site.

A portion of a United States Geological Survey (USGS) topographical quadrangle map depicting the property location is attached as *Figure 1*. *Figure 2* depicts the property and the known Disposal Site boundaries.

An oil/hazardous material (OHM) 120-day release notification was reported by The Town of Shutesbury on January 28, 2022 and assigned RTN 1-21489 by MassDEP. The release was related to concentrations of VPH in soil exceeding the applicable MassDEP RCS-1 Reportable Concentrations in Soil. This condition was identified at the south end of the property, near a concrete pad associated with the former radio tower, during the Limited Subsurface Assessment performed in September 2021 by O'Reilly, Talbot & Okun Associates, Inc. (OTO) and documented in a letter report completed by OTO in October 2021 and submitted to MassDEP on January 28, 2022.

1.4 Soil Categorization

Under the MCP (310 CMR 40.0933), soil categories (S-1, S-2, or S-3) are based on receptor and exposure information (frequency and intensity). Category S-1 applies to soils that are associated with the highest potential for exposure. Category S-3 applies to soils that have the lowest potential for exposure.

Category S-1 applies to potentially accessible soil where children may be present at high frequency and for high intensity activities, or where land use is not otherwise restricted to preclude high-intensity activity or access by children. The property is slated to be developed with a public library, leading to a

higher frequency of adult and child presence at the property in the foreseeable future. Additionally, land use is not currently restricted to preclude high-intensity activity or access by children, therefore soil category S-1 applies at the subject property.

1.5 Groundwater Categorization

Under the MCP (310 CMR 40.0932), groundwater categories (GW-1, GW-2, and GW-3) are established for different exposure types:

- GW-1 applies to groundwater within a current or potential drinking water source area.
- GW-2 applies to groundwater within 30 feet of an occupied building or structure where the average annual depth to groundwater in the area is 15 feet or less, such that groundwater may be a potential source of vapor-phase oil and/or hazardous material to indoor air.
- GW-3 applies to all groundwater within the Commonwealth of Massachusetts, as it is considered a potential source of discharge to surface water.

Based on the MassDEP Bureau of Waste Site Cleanup Site Assessment Map for the Disposal Site, provided as *Appendix A*, the Disposal Site is not located within an aquifer designated as a current or potential drinking water source, nor within 500 feet of a public water supply. However, groundwater in and around the Disposal Site is located within 500 feet of one or more private drinking water wells, and therefore GW-1 applies.

Groundwater is not located within 30 feet of an occupied structure and groundwater at the site is not categorized as GW-2; however, upon completion of the slated library, groundwater may be located within 30 feet of an occupied structure, the average annual depth to groundwater in the vicinity of the library may be 15 feet or less and therefore portions of groundwater at the Site may become categorized as GW-2.

As noted above, GW-3 applies to all groundwater as a potential source of discharge to surface water. The nearest surface water body to the site, Town Farm Brook, is located approximately 750 feet northeast of the Disposal Site. Additionally, there are numerous delineated wetlands throughout the Site.

1.6 Disposal Site Map (310 CMR 40.0483(b))

The Disposal Site is depicted on Figure 2. A Bureau of Waste Site Cleanup Site Assessment Map depicting the site and its surroundings is included in Appendix A.

1.7 Potential Receptors

The Town of Shutesbury occupies an area of approximately 27.1 square miles, and the 2020 U.S. Census listed the population of the city as approximately 1,717 residents. Therefore, the population density in the Town is approximately 63 residents per square mile. There are no known institutions as defined by 310 CMR 40.0006 (a publicly or privately owned hospital, health care facility, orphanage, nursing home,

convalescent home, educational facility, or correctional facility, where such facility in whole or in part provides overnight housing) within 500 feet of the Disposal Site.

At the time of writing this report the Disposal Site is vacant wooded land. Potential receptors are adults and children who use the land for recreational or foot travel purposes. The area surrounding the property consists of vacant wooded land and residential properties. Future receptors are anticipated to include adult workers and adult and child-aged visitors of the planned library. The current conceptual development plan for the library includes construction of the building at the northern end of the parcel, approximately 250 to 500 feet from Leverett Road.

The nearest mapped surface water body, a branch of the Town Farm Brook, is located approximately 1,250 feet to the south of the subject site. Groundwater elevation measurements collected during December 2, 2022 and January 11, 2023 groundwater monitoring events, as described in the following sections, indicate that local groundwater flow is directed to the southwest. There are wetlands located across the property, with the nearest being approximately 600 feet to the north.

2 Disposal Site Background (310 CMR 40.0483(c))

The Disposal Site is located within a vacant, predominantly wooded, parcel located in the Town Center Zone (TC) of Shutesbury, Massachusetts.

2.1 Site History

The property has been owned by the Town of Shutesbury since 2004. The most recent residential structure on the site was constructed in 1918 according to the property record card, accessible via the Shutesbury assessor's database, and was demolished in May of 2005. The associated outbuilding, a three-bay garage, was constructed between 1962 and 1972 based on aerial photos provided by EDR for those years and was demolished in August of 2021. Construction of the VOR facility began prior to 1960, was completed by 1962, and was deconstructed by 1972 according to aerial photos provided by EDR for those years. An underground storage tank (UST) used to store gasoline and associated with the VOR facility was removed on September 14, 1994. The following operational history was compiled in part from references obtained from Environmental Data Resources (EDR). The following sources were obtained:

- A summary of city street directories provided by EDR for the years 1992, 1995, 2000, 2005, 2010, 2014, and 2017.
- Aerial photographs provided by EDR for the years 1938, 1951, 1960, 1962, 1972, 1975, 1981, 1987, 1992, 1997, 2006, 2010, 2014, and 2018.
- Topographic maps provided by EDR for the years 1890, 1893, 1908, 1942, 1943, 1950, 1964, 1975, 1979, 1990, 2012, 2015, and 2018.
- Sanborn Fire Insurance Maps provided by EDR were not available for the property.

Copies of the reference documents are included in *Appendix B*.

2.1.1 Operations History (310 CMR 40.0483(1)(c)(1))

An 1890 topographic map provided by EDR, the earliest record provided for the property, indicates that the north end of the property bordering Leverett road had been developed with one or more structures at that time. The most recent residential structure on the property was recorded to have been constructed in 1918 and demolished in May of 2005 according to the property card form the Assessor's database. An associated outbuilding, a three-bay garage, was constructed between 1962 and 1972 based on aerial photos provided by EDR for those years and was demolished in August of 2021.

The 1938 and 1951 aerial photos provided by EDR indicate that the southern approximately two-thirds of the property was undeveloped wooded land at that time. According to the EDR report and a USACOE Memorandum dated January 21, 2022 (USACOE, 2022), the southern portion of the property was leased from 1957 to 1967 for use as an Air Force VOR facility. The 1972 aerial photo appears to show the VOR facility had been deconstructed and that some regrowth of previously cleared vegetation had occurred.

2.1.2 Release History (310 CMR 40.0483(1)(c)(2))

A Limited Subsurface Assessment was performed in September 2021 by O'Reilly Talbot & Okun Associates (OTO) of Springfield, Massachusetts. During the September 2021 Assessment, OTO advanced ten soil borings (B1-B10) at the Site. Analysis of one soil sample from soil boring B-9 collected from 8 to 10 feet below grade surface (ft bgs), located in the approximate area of a historical gasoline UST associated with the historical VOR facility, equaled the applicable reportable concentration (the RCS-1) for C5-C8 aliphatic hydrocarbons of 100 parts per million (ppm). No other soil borings or groundwater monitoring wells were installed in the vicinity of the Disposal Site during the September 2021 Assessment. The exceedance of C5-C8 aliphatic hydrocarbons in soil boring B-9 triggered a 120-day release condition. This release condition was reported to the MassDEP by the Town of Shutesbury on January 28, 2022.

In a Notice of Responsibility (NOR) issued by the MassDEP to the Town of Shutesbury on February 1, 2022, the release condition at the Site was assigned RTN 1-21489. In the NOR, MassDEP acknowledged that historic operations by the United States Department of Defense (DOD) were considered to be the likely source of contamination at the Site. A copy of the NOR was provided to the USACOE.

2.1.3 Oil and Hazardous Material Use and Storage History (310 CMR 40.0483(1)(c)(3))

The property was formerly developed with an Air Force VOR facility from the late 1950's or early 1960's to the mid to late 1960's, with a 275-gallon UST containing gasoline having been installed on the property to supply an emergency power unit. According to the USACOE Memorandum (USACOE, 2022) at the direction of the Department of Defense Installation Restoration Program (IRP) Formerly

Used Defense Site Program, the 275-gallon gasoline UST was removed from the property on September 14, 1994 and on September 26, 1994 total of 11.5 tons of petroleum-impacted soils were removed from the property. The USACOE notes that following removal of the initial 11.5 tons of petroleum-impacted soils that two (2) confirmatory samples were collected and submitted for laboratory analysis for Total Petroleum Hydrocarbons (TPH). TPH was detected in one of the confirmatory samples at 145 milligrams per kilogram (mg/kg). The USACOE notes that an additional 89.78 tons of petroleum-impacted soils were removed at a later date, and following that, an additional confirmatory sample was collected on January 5, 1995 that had a laboratory detection of 94.9 mg/kg TPH. The USACOE Memorandum does not detail further response actions completed at the direction of the IRP at the property.

It is likely that remaining impacts from the historical gasoline UST associated with the VOR facility are the source of the release condition associated with RTN 1-21489.

2.1.4 Waste Management, Environmental Permits, and Regulatory History (310 CMR 40.0483(1)(c)(4)&(5))

Waste management practices associated with the former VOR station were not identified. No relevant environmental permits were identified in connection with the historical property uses. Historical activities have involved demolition and removal of the VOR station, removal of a UST on September 14, 1994, and excavation and offsite disposal of roughly 100 tons of petroleum-impacted soils on September 26, 1994 overseen by the USACOE. Environmental due diligence completed by OTO in 2021 discovered a reportable concentration of VPH Ranges in soil which triggered a 120-day reporting condition and the assignment of RTN 1-21489 to the Disposal Site.

2.2 Site Hydrogeologic Characteristics (310 CMR 40.0483(d))

2.2.1 Geologic Setting and Resources (310 CMR 40.0483(d)(3-5))

2.2.1.1 Soil and Bedrock Types

The topography of the Site is varied, but generally slopes gradually to the south-southeast. The regional topography is also varied, but generally slopes to the east towards the Town Farm Brook (USGS, 2018).

Surficial material at the property is mapped primarily as the Metacomet fine sandy loam complex (USDA, 2022). This complex consists of loamy till underlain by sandy lodgment till derived from gneiss, and loamy over sandy supraglacial melt-out till derived from gneiss. However, during the November 2022 soil boring investigation, clays were observed in the subsurface, and surficial ponding has been observed across the property, which is not typically characteristic of a fine sandy loam.

Bedrock beneath the Site is mapped as the Dry Hill Gneiss, which is "pink microcline-biotite and microcline-hornblende gneiss containing pink microcline megacrysts and minor quartzite" and "biotite-tourmaline schist and quartzite" (Zen, 1983). Depth to bedrock at the property was not documented in the records reviewed as part of this investigation. However, depth to bedrock was encountered at 26 ft bgs, at an abutting property, 64 Leverett Road, according to well completion reports obtained from the MassDEP Well Drilling database for a well (Well ID 647548) drilled on August 21, 2014. Bedrock was not encountered to the maximum depth of 20 fbg during the November 2022 soil boring activities.

2.2.1.2 Surface Water and Drainage Features

The nearest surface water body, a branch of the Town Farm Brook, is located approximately 1250 feet to the south of the Disposal Site (USGS, 2018). Town Farm Brook leads to Atherton Brook, which discharges to the Quabbin Reservoir. The Quabbin Reservoir is listed in the Massachusetts Surface Water Quality Standards (314 CMR 4.00) as a Class A waterway. According to 314 CMR 4.05, Class A waters are "designated as excellent habitat for fish, other aquatic life, and wildlife, including for their reproduction, migration, growth and other critical functions, and for primary and secondary contact recreation, even if not allowed. These waters shall have excellent aesthetic value. These waters are protected as Outstanding Resource Waters."

According to Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) 2501280020A, dated June 18, 1980, the Disposal Site and surrounding properties are not located in a mapped floodplain.

Refer to *Appendix A* for the MassDEP BWSC Site Assessment Map. No Areas of Critical Environmental Concern, vernal pools, species of special concern, threatened or endangered species, or fish habitats are mapped within 500 feet of the Disposal Site. According to a Wetland Delineation completed by Fuss & O'Neill in January 2023, there are mapped wetlands on, and immediately abutting, the property, with the closest being approximately 600 feet to the north of the subject site.

2.2.1.3 Groundwater Resources

The Disposal Site is not located in a Zone II aquifer, interim wellhead protection area, sole-source aquifer, or potentially productive aquifer. The property is not connected to public water and sewer. Refer to *Appendix A* for the MassDEP BWSC Site Assessment Map.

During groundwater monitoring activities in 2022 and 2023, the depth to groundwater on-site was observed at depths between 3 and 11.4 fbg. Local groundwater flow was observed to be directed towards the southwest.

2.3 Field Investigations and Findings

In accordance with 310 CMR 40.0483(d)(1) and 310 CMR 40.0483(e), this section describes the following field investigations relevant to the Disposal Site:

- September 2021 OTO limited soil assessment,
- November 2022 and December 2022 Limited Phase II Subsurface Investigation
- January 2023 well installation.

In accordance with 310 CMR 40.0483(1)(e)(2)(c), the following Tables 1 & 2 summarize the minimum and maximum concentration for each contaminant detected in OTO soil sample B-9 and in soil and groundwater samples collected during Fuss & O'Neill's 2022 Limited Phase II Subsurface Investigation.

Table 1 Soil Condition Summary – 2021 & 2022 Data Set

Chemical Compound	Minimum Concentration	Maximum Concentration	S-1/GW-1	S-1/GW-3
C5-C8 Aliphatic Hydrocarbons	9.0	<u>100</u>	100	100
C9-C12 Aliphatic Hydrocarbons	8.7	125	1,000	1,000
C9-C10 Aromatic Hydrocarbons	14.9	66	100	100
Benzene	*0.3	0.3	2	40
Ethylbenzene	0.18	0.9	40	500
Naphthalene	0.54	0.6	4	500
Total Xylenes	0.48	1.4	400	500
n-Butylbenzene	*1.2	1.2	0.7	1
sec-Butylbenzene	*0.28	0.28	10	20
Isopropylbenzene	*0.25	0.25	NS	NS
n-Propylbenzene	*1.6	1.6	NS	NS
1,2,4-Trimethylbenzene	*2.1	2.1	NS	NS
1,3,5-Trimethylbenzene	*3.2	3.2	NS	NS
C9-C18 Aliphatic Hydrocarbons	*15.2	15.2	1,000	1,000
C11-C22 Aromatic Hydrocarbons	8.95	9.11	1,000	1,000
2-Methylnaphthalene	*0.47	0.47	10	500
Lead	1.48	3.92	200	200

All units reported in milligrams/kilogram (mg/kg).

Data underlined exceeds one or more Method 1 S-1/GW-1 or S-1/GW-3 soil standards.

ND = Not Detected above laboratory reporting limits

* = Compound only detected in one sample

NS = Not Specified

Table 2
Groundwater Condition Summary – 2022 Data Set

Chemical Compound*	Minimum/ Maximum Concentration **	GW-1	GW-3
C5-C8 Aliphatic Hydrocarbons	<u>10,900</u>	300	50,000
C9-C12 Aliphatic Hydrocarbons	<u>29,500</u>	700	50,000
C9-C10 Aromatic Hydrocarbons	<u>3,420</u>	200	50,000
Ethylbenzene	<u>985</u>	700	5,000
Naphthalene	<u>161</u>	140	20,000
Toluene	933	1,000	40,000
Total Xylenes	2,770	10,000	5,000
C9-C18 Aliphatic Hydrocarbons	<u>739</u>	700	50,000
C11-C22 Aromatic Hydrocarbons	<u>234</u>	200	5,000
2-Methylnaphthalene	<u>23</u>	10	20,000
Nickel	6	100	200
Zinc	22	5,000	900
Thallium	<u>10</u>	2	3,000

All units reported in micrograms per liter µg/l.

Data underlined exceeds one or more Method 1 GW-1 or GW-3 soil standards.

2.3.1 OTO's Limited Soil Assessment (September 2021)

On September 16, 2021, a soil sample collected by OTO from soil boring B-9 exceeded the RCS-1 reportable concentration for C5-C8 aliphatic hydrocarbons of 100 milligrams per kilogram (mg/kg; equivalent to ppm). This condition was reported to the MassDEP and was assigned RTN 1-21489. The boring location B-9 is depicted on *Figure 2*.

2.3.2 Fuss & O'Neill Limited Phase II Subsurface Investigation (November and December 2022)

Between November 11 and December 2, 2022, Fuss & O'Neill conducted environmental investigations at the property, proximal to the previously-identified release condition, which included the following:

• Installation of eight (8) soil borings via Geoprobe® direct push methodology, and the characterization and collection of soil samples by a Fuss & O'Neill engineer.

^{** =} Only one sample collected

- Installation of one (1) groundwater monitoring well and collection of a groundwater sample by a Fuss & O'Neill engineer.
- Laboratory analysis of soil and groundwater samples, consistent with MassDEP and/or EPA testing methodologies.

The objectives of the November and December 2022 Limited Phase II Subsurface Investigation were to evaluate the reproducibility of the reportable concentration of VPH identified in September 2021 by OTO, to further delineate the nature and extent of the release condition, and to confirm the absence or presence of related environmental conditions in the area. The installed groundwater monitoring well and the boring locations are depicted on *Figure 2*.

Soil Investigation & Conditions

On November 11, 2022, eight (8) soil borings were advanced via direct push methodology at locations proximal to the previously identified VPH soil condition. Fuss & O'Neill soil boring B-9R was installed directly adjacent to OTO soil boring B-9, and the remaining locations were adjusted in the field based on real-time field observations. This approach was taken to better define the area of petroleum-impacted soil and to delineate soil impacts in four lateral directions (north, south, east, and west) from B-9. Direct push borings were advanced to depths of up to 20 ft bgs. Soil encountered during the investigation generally consisted of brown to gray sand and clay with trace gravel, shifting to primarily gray clays by the final boring depths. Recovered soil was screened for total volatile organics (TOV) content in the field with a photoionization device (PID) calibrated to a 100 parts per million isobutylene standard. Field observations were made regarding the evidence, or lack of, environmental impacts, groundwater, and the presence of anthropogenic materials (i.e. coal, ash, brick, concrete, etc.) commonly found in urban fill. Boring logs are included in *Appendix C*.

TOV content for screened soil ranged from 0.0 parts per million by volume (ppmv) (not detected above instrument reporting limits) to 510.5 ppmv at depth of 7 to 8 ft bgs in soil boring B-13. It should be noted that TOV readings up to 0.5 ppmv can be caused by a moisture response in the instrument and are not always indicative of the presence of volatile organic compounds. Olfactory evidence of petroleum-impacted soil was observed at multiple locations during the subsurface investigation, generally ranging between 7 and 15 ft bgs in depth and corresponding to observations of elevated TOVs. Limited visual observations indicative of urban fill were seen during the subsurface investigation, including what appeared to be ash in boring B-16 at a depth of 9.5 to 11 ft bgs. Groundwater was observed at depths ranging from 9 and 14 ft bgs during the soil boring investigation.

The sample locations and soil sample identifications are summarized in *Table 3* below.

Table 3
Summary of Soil Samples – November 11, 2022

Location	Sample Depth (ft bgs)	Soil Sample Number	Analysis
B-9R	10-12	1111-01	
B-13	9-11	1111-02	
B-14	10.5-12.5	1111-05	Lead, VPHs w/ Target VOCs, and
B-15	7-9	1111-06	EPH w/ Target PAHs
B-16	11-13	1111-07	
B-17	11-13	1111-08	
B-11	10 - 12	1111-03	Collected and placed on laboratory hold
B-12	10.5 - 12.5	11111-04	pending initial results

Notes: Only the last six digits of the sample identification number are listed.

ft bgs: feet below grade surface

The soil samples were submitted to New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island for laboratory analysis. Soil samples were analyzed for the following parameters:

- Extractable Petroleum Hydrocarbons (EPH) with Target Polycyclic Aromatic Hydrocarbons (PAH) according to MassDEP Methodology
- VPH with Target Volatile Organic Compounds (VOCs) according to MassDEP Methodology
- Lead according to the USEPA Method 6010D

Soil analytical results were compared to the Method 1 risk-based Standards established by the MCP(310 CMR 40.0000). The applicable Method 1 Standards for the Site, per 310 CMR 40.0933 and 310 CMR 40.0975, are S-1/GW-1 and S-1/GW-3, given that soil impacts are within potentially accessible soil (3 to 15 ft bgs, unpaved) and the potential for high frequency presence of children following future development of the Site.

Concentrations of select EPH Ranges and Target PAHs exceeded the laboratory reporting limits in samples from B-13 and B-16; however, no concentrations exceeded the applicable Method 1 Standards.

Concentrations of select VPH Ranges and Target VOCs exceeded the laboratory reporting limits in samples from B-9R, B-13, B-14, B-15, B-16, and B-17; however, no concentrations exceeded the applicable Method 1 Standards.

Concentrations of Lead exceeded the laboratory reporting limits in the eight samples that were analyzed; however, no concentrations exceeded the applicable Method 1 Standards.

Refer to *Table 4* for a summary of the analytical results compared to the applicable criteria. The laboratory analytical reports are included as *Attachment C*.

Groundwater Investigation & Conditions

On November 11, 2022, Fuss & O'Neill also oversaw the installation of a two-inch diameter polyvinyl chloride (PVC) monitoring well, designated MW-09. The well was installed adjacent to soil boring B-13, which exhibited the highest TOV readings during the soil boring investigation. The monitoring well was screened from approximately 10 to 20 ft bgs based on the observed groundwater depth of approximately 12 to 13 ft bgs. The elevation of the top of casing of the monitoring well was surveyed by a licensed professional surveyor to be 1187.95 feet above mean sea level. Fuss & O'Neill returned to the Site on November 29, 2022, to develop monitoring well MW-09 using industry standard methodology. The purge water exhibited a slight petroleum odor but did not exhibit visible sheen or non-aqueous phase liquids (NAPL).

Fuss & O'Neill returned to the Site on December 2, 2022, to collect a groundwater sample from monitoring well MW-09. The monitoring well was purged prior to sample collection using industry standard low-flow procedures. The groundwater sampling log is provided in *Attachment B*.

The groundwater sample was submitted to NETLAB for laboratory analysis of the following parameters:

- EPH with Target PAHs according to the MassDEP Method
- VPH with Target VOCs according to the MassDEP Method
- MassDEP CAM 14 Metals according to the USEPA Methods 6020B (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Silver, Thallium, Vanadium, and/or Zinc).

A summary of the groundwater sample submitted for laboratory analysis is included below in *Table 5*.

Table 5
Summary of Groundwater Sample - December 2, 2022

Location	Sample Number	Analysis
		CAM 14 Metals, EPH w/
MW-09	1202-01	target PAHs, and VPH w/
		Target VOCs

Notes: Only the last six digits of the sample identification number are listed.

Groundwater analytical results were compared to the MassDEP GW-1 and GW-3 standards. Concentrations of select VPH Ranges and Target VOCs were detected above laboratory reporting limits in the sample collected from monitoring well MW-9. Concentrations of C5-C8 Aliphatic Hydrocarbons, C9-C12 Aliphatic Hydrocarbons, C9-C10 Aromatic Hydrocarbons, Ethylbenzene, and Naphthalene exceeded applicable GW-1 Method 1 Standards. Toluene, m&p Xylene, and o-Xylene were detected above laboratory reporting limits but reported concentrations for these compounds did not exceed applicable GW-1 Method 1 Standards.

Concentrations of select EPH Ranges and Target PAHs were detected above the laboratory reporting limits in the sample collected from monitoring well MW-09. 2-Methylnaphthelene, C9-C18 Aliphatic

Hydrocarbons, and C11-C22 Aromatic Hydrocarbons were detected above applicable GW-1 Method 1 Standards. Naphthalene was detected above laboratory reporting limits but reported concentrations did not exceed applicable Method 1 Standards.

Concentrations of select CAM 14 Metals were detected above laboratory reporting limits in the sample collected from monitoring well MW-09. Thallium was detected above the applicable GW-1 Method 1 Standard. Nickel and Zinc were detected above laboratory reporting limits but reported concentrations did not exceed applicable Method 1 Standards.

Additional groundwater testing and characterization was performed, as described below in *Section 2.3.3* to better characterize the nature and extent of constituents in groundwater.

A summary of the December 2022 groundwater analytical data is presented in *Table 6*. Copies of laboratory analytical reports are provided in *Appendix D*.

2.3.3 Additional Well Installation & Groundwater Monitoring (January 2023)

Following review of the initial groundwater data from monitoring well MW-9, it was determined that additional groundwater monitoring wells were necessary to better characterize the nature and extent of the groundwater condition, as well as to better assess the groundwater flow direction and hydraulic gradient at the Site. On January 4, 2023, Fuss & O'Neill returned to the Site to oversee the installation of four (4) additional monitoring wells, designated MW-10, MW-12, MW-13, and MW-14. Monitoring wells were completed with ten feet of screen. Monitoring well development was completed on January 10, 2023, to improve the hydraulic interaction with the surrounding aquifer. A relative survey, based off the surveyed elevation of monitoring well MW-09, was completed for the top of casing elevation of monitoring wells MW-10, MW-12, MW-13, and MW-13. Monitoring well construction and top of casing elevation are summarized in *Table 7* below.

Table 7
Summary of Monitoring Well Installation – January 4, 2023

Location	Ground Surface Elevation (FT AMSL)	Approx. Well Screen Interval (fbg)
MW-10	1188.11	4.0-14.0
MW-12	1187.97	5.0-15.0
MW-13	1188.14	4.0-14.0
MW-14	1188.14	7.0-17.0

FT AMSL: feet above mean sea level

Fuss & O'Neill returned to the Site on January 11, 2023 to complete sampling of monitoring wells MW-09, MW-10, MW-12, MW-13, and MW-14. As part of the groundwater monitoring activity in January 2023, the depth to water was recorded at the monitoring well location. Depth to water was observed

between approximately 3 and 7.6 feet bgs. Groundwater elevation data for the January 11, 2023, sampling event is presented in *Table 8*. Groundwater contours depicting the measured groundwater gradient at the Site are depicted on *Figure 3*. Local groundwater flow in the vicinity of the Disposal Site is to the southwest, based on the January 2023 measurements.

The monitoring wells were purged prior to sample collection using industry standard low-flow procedures. The groundwater sampling logs are provided in *Attachment C*.

The groundwater sample was submitted to NETLAB for laboratory analysis of the following parameters:

- EPH with Target PAHs according to the MassDEP Method
- VPH with Target VOCs according to the MassDEP Method
- MassDEP CAM 14 Metals according to the USEPA Methods 6020B (Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium, Silver, Thallium, Vanadium, and/or Zinc).

A summary of the groundwater samples submitted for laboratory analysis is included below in Table 9.

Table 9
Summary of Groundwater Samples – January 11, 2023

Location	Sample Number	Analysis
MW-09	0111-01	
MW-10	0111-02	CAM 14 Metals, EPH w/
MW-12	0111-03	target PAHs, and VPH w/
MW-13	0111-04	Target VOCs
MW-14	0111-05	

Notes: Only the last six digits of the sample identification number are listed.

Analysis of analytical data for the groundwater samples collected in January 2023 is pending and results will be submitted within the next regulatory submittal.

3 Preliminary Conceptual Site Model

A preliminary conceptual site model (CSM) has been developed for the Site based on the data collected to date regarding the nature of the release, hydrogeologic conditions, environmental setting, and current and foreseeable site uses. The data documented above was used to develop the preliminary CSM, which was used to support initial findings regarding the extent of contamination, media affected by the release, and areas warranting further testing and evaluation. A discussion of the source, site hydrogeology, migration pathways, and the nature and extent of contamination follows.

The CSM is an interpretation of the information available regarding a Disposal Site. Therefore, future findings may lead to future refinements of the CSM.

3.1 Nature and Extent of Contamination (310 CMR 40.0483(e))

The primary constituents of concern (COC) for the Site are petroleum-related compounds, specifically EPH Ranges and Target PAHs and VPH Ranges and Target VOCs. The source of these materials is correlated with the location of the historic gasoline UST, associated with the former Air Force VOR station on the south portion of the property. During soil exploratory activities in November 2022, olfactory evidence (petroleum odors) and high TOVs were identified in multiple soil borings at depths of about 7 to 14 feet and generally correlated to layers of the soil column in the vadose zone bordering moist or wet soils. Trace evidence of fill material was identified in soil boring B-16 at a depth of approximately 9.5 feet.

Soil screening and analytical data from the source area (observed to be between Fuss & O'Neill soil borings B-9R and B-13) appear to show that petroleum-impacted soil generally exists at depths ranging from 7 to 14 ft bgs. Additionally, soil data in the four lateral directions from the source area, appear to show that petroleum impacts in soil are localized and do not extend more than ~25 ft from the area around soil borings B-9R and B-13. It is likely that the former UST, removed in September 1994, was the primary source of the observed constituents within the soil and groundwater. Approximately 100-tons of hydrocarbon-impacted soil was removed from the property in the area of the former UST in 1994, though analytical testing since that time indicates the continued presence of constituents in soil and groundwater above background levels and, with respect to groundwater, above applicable Method 1 risk-based standards.

During OTO's assessment in September 2021, one soil sample collected at a depth of 8 to 10 fbg from soil boring B-9 contained C5-C8 aliphatic hydrocarbons detected at the RCS-1 reportable concentration of 100 milligrams per kilogram (mg/Kg). This condition was reported, and on January 31, 2022, MassDEP assigned RTN 1-21489 to the Disposal Site on the property.

Additional soil samples collected from borings conducted by Fuss and O'Neill in November 2022 indicated the presence of hydrocarbon ranges in soil. The results were below the S-1/GW-1 and S-1/GW-3 MassDEP Method 1 soil standards, but above background levels.

The groundwater monitoring conducted by Fuss and O'Neill in December 2022 identified EPH Ranges and Target PAHs, Thallium, and VPH Ranges and Target VOCs at concentrations above applicable GW-1 MassDEP Method 1 groundwater standards, but below the applicable GW-3 standards. Ongoing additional groundwater monitoring in the vicinity of monitoring well MW-09 is required to better characterize the nature and extent of the groundwater condition, as well as to better assess the groundwater flow direction and hydraulic gradient at the Site. This subsequent investigation will also allow for a more comprehensive assessment of the Thallium in groundwater condition, to determine if it is being caused by a natural or anthropogenic source. Results from subsequent groundwater investigation activities will be contained within future regulatory submittals.

3.2 Migration Pathways and Exposure Potential (310 CMR 40.0483(f))

3.2.1 Soil

The primary constituents of concern in soil are EPH Ranges and Target PAHs and VPH Ranges and Target VOCs. Risks associated with petroleum-impacted soil are direct soil contact and inhalation or ingestion of dust. Therefore, the primary risk mechanism is associated with human health risks from direct soil contact. The property is not currently occupied, although it is municipally-owned and used for passive recreational purposes, and is slated to host a library on the northern portion of the property in the near future. The property use is not restricted by institutional controls (e.g. Activity and Use Limitation). Although present soil exposure potential is limited based on the depth of the condition (greater than three feet below grade), the soil could be rendered accessible by future redevelopment activities and therefore, a Condition of No Significant Risk does not exist at this time.

3.2.2 Soil Vapor

As noted above, a total of five (5) VOCs were detected at levels exceeding the GW-2 standards at monitoring well MW-09 during the December 2022 groundwater monitoring event. However, there are no current, or proposed, occupied structures in or near the Disposal Site. Therefore, vapor migration has not been identified as a significant human health risk pathway at this Disposal Site.

3.2.3 Groundwater

During groundwater monitoring activities in December 2022 and January 2023, the depth to groundwater in and around the Disposal Site has been observed from 3.0 and 11.6 ft bgs.

Concentration of various constituents, including multiple EPH and VPH Ranges as well as, ethylbenzene, naphthalene, 2-methylnaphthalene, and thallium in groundwater (MW-09) were detected at levels exceeding GW-1 standards, but not exceeding GW-3 standards, during the December 2022 groundwater monitoring activities. Groundwater in and around the Disposal Site is located within 500' of one or more residential wells located along Pelham Hill Road however, based on soil characterization in the area, and levels of compounds detected in monitoring well MW-9, migration to nearby residential wells is not considered a likely migration pathway at this time. There are multiple wetlands and a mapped stream in proximity to the Disposal Site and they are therefore potential environmental receptors. However, to date, no compounds were detected in groundwater samples at levels which exceeded applicable GW-3 standards.

3.3 Evaluation for Immediate Response Actions (310 CMR 40.0483(g))

Per 310 CMR 40.0412, Immediate Response Actions (IRA) are required if there is a release of oil/hazardous material that requires a "Two Hour" or "72 Hour" notification, an Imminent Hazard has been identified, or where MassDEP has determined that an immediate or accelerated response action is required. No imminent hazard conditions have been identified in connection with the Disposal Site. As noted in previous sections, based on the current dataset, the risk associated with the Disposal Site is limited to direct soil contact. Currently however, the affected soil is not accessible (within 0 to 3 ft bgs). While there are impacts to groundwater at levels exceeding applicable GW-1 criteria within 500 feet of one or more private residential wells, the release associated with the Disposal Site appears to be localized and relatively small in extent. At this time, the current dataset does not suggest that the release is impacting private residential wells in the area. Additionally, there are no known institutions as defined by 310 CMR 40.0006 within 500 feet of the Disposal Site. Therefore, no triggers for immediate response actions have been identified in connection with the Disposal Site at this time.

4 Data Representativeness and Usability

Data Usability Summary

The soil sample (B-9 (8-10)) that triggered the 120-day reporting condition associated with RTN 1-21489 was collected by OTO at soil boring location B-9. A "MassDEP MCP Analytical Method Report Certification Form" appended to the January 2022 OTO report indicated multiple points of noncompliance with Compendium of Analytical Methods (CAM) protocol with "no" responses provided for the questions, "were the reporting limits at or below all CAM reporting limits specified in the selected CAM protocol(s) and "were all QC performance standards specified in the CAM protocol(s) achieved". Additionally, a qualifier for OTO Sample B-9 (8-10) indicated that for analyses of VPH and Target VOCs, that "soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but less than the method-specified amount". This qualification may have impacted the overall quality of the VPH analysis and data for this sample. Additionally, a qualifier for OTO Sample B-9 (8-10) indicated that for VPH and Target VOCs, "surrogate recovery was outside of control limits due to suspected multiple matrix interference. Chromatogram(s) is attached". The laboratory analytical report indicates that for sample B-9 (8-10), the surrogate recovery exceeded the method acceptance limits. High surrogate recovery may have caused the VPH for sample B-9 (8-10) to be biased high. To be conservative, for the purposes of this Phase I ISI and Tier Classification, Fuss & O'Neill is using the reported values from the OTO report in support of the CSM, despite potential high bias.

Samples collected during the 2022 Fuss & O'Neill Limited Phase II Subsurface Investigation were collected using SW-846 and industry-standard protocols. Samples were analyzed using CAM-approved methods to evaluate for the contaminants of concern. CAM-compliant data was obtained for all analytical data collected during the 2022 Fuss & O'Neill environmental investigations. The Case Narratives for both the soil and groundwater analytical reports from the 2022 Fuss & O'Neill Phase II Limited Subsurface Investigation indicate that "the samples associated with this work order were

received in appropriately cooled and preserved containers", that "the chain of custody was adequately completed and corresponded to the samples submitted", that "all samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures", and that "the results for the associated calibration, method blank and laboratory control sample (LCS) were within specified quality control requirements and allowances." Therefore, for the purpose of the Phase I ISI, the analytical data set prepared to date is valid and usable for the preliminary characterization of release conditions. Copies of laboratory analytical reports and CAM certification forms, as applicable, are provided in *Appendix D*.

Data Representativeness Summary

OTO's September 2021 investigation targeted the area of the subject property documented to have been operated as the Air Force VOR and where a gasoline UST and petroleum-impacted soil were removed circa 1994. A soil sample for laboratory analysis was collected from a boring advanced in this area, at depths where evidence of petroleum impacted soil was observed.

Fuss & O'Neill returned to this area of the property during its 2022-2023 investigation activities. A soil boring was advanced at the approximate location of OTO's soil boring B-9, where the reportable release conditions were identified. Additional borings were advanced in lateral directions surrounding B-9 to evaluate the extent of the impact in both soil and groundwater, and whether or not contaminant levels increased moving away from the initial release area. Fuss & O'Neill collected soil samples for lab analysis from locations and depth intervals exhibiting relatively high levels of impact, considering PID screening results and olfactory evidence. Where no evidence of release was observed, soil samples were collected just above the water table, given that the release in question is a light NAPL and contaminants would be expected to concentrate at the soil-groundwater interface. Lastly, monitoring well MW-9 was installed at the location of highest observed impact.

In summary, the analytical data presented herein correspond to samples collected from locations exhibiting relatively high magnitude evidence of petroleum impacts. And, in an effort to characterize the extent of the release, soil samples surrounding the identified release area were collected for laboratory analysis. Therefore, the dataset associated with this Phase I ISI is considered appropriately representative of the release conditions.

5 Conclusions

Fuss & O'Neill performed environmental site assessment activities at the property located at 66 Leverett Road in Shutesbury, Massachusetts. Fuss & O'Neill has developed the following conclusions with regard to the Disposal Site:

- RTN 1-21489 was assigned on January 31, 2022 due to the presence of VPHs in on-site soil.
 This condition was identified in September 2021 during the limited soil assessment conducted by OTO.
- The release source for RTN 1-21489 appears to be related to impacted soils and groundwater left in place following the removal of a gasoline UST from the disposal site in 1994 under the direction of the IRP.

- Due to a lack of occupied buildings in the area of the Disposal Site, VOCs and vapor intrusion conditions are not considered ongoing risk pathways at the Disposal Site.
- Soil data collected during the November 2022 Fuss & O'Neill soil investigation did not replicate the reportable concentration of a VPH Range in soil boring B-9 that was discovered during OTO's 2021 investigation and triggered the 120-day reportable condition. However, petroleum-related compounds were detected at levels exceeding background conditions at several soil borings in the vicinity of OTO soil boring B-9 which would indicate petroleum-related subsurface impacts in soil remain.
- Soil screening and analytical data from the source area (observed to be between Fuss & O'Neill soil borings B-9R and B-13) appear to show that petroleum-impacted soil generally exists at depths ranging from 7 to 14 ft bgs. Additionally, soil data in the four lateral directions from the source area, appear to show that petroleum impacts in soil are localized and do not extend more than ~25 ft from the area around soil borings B-9R and B-13.
- Multiple exceedances of applicable GW-1 Method 1 Standards in groundwater for select EPH
 Ranges and Target PAHs and VPH Ranges and Target VOCs indicate that petroleum-related
 groundwater impacts exist in the vicinity of the historical UST at levels exceeding risk-based
 MassDEP criteria. While Thallium also exceeded the applicable GW-1 Method 1 Standard, it is
 not generally a contaminant of concern related to a petroleum release. Thallium can naturally
 occur in groundwater at elevated levels due to the presence of higher thallium content in certain
 soil.
- No imminent hazards, conditions of substantial release migration, critical exposure pathways, or other triggers for an IRA have been identified at this time.

Because a condition of No Significant Risk has not been documented in soil or groundwater, a Permanent Solution has not been achieved at the Disposal Site at this time. Based on the conditions summarized above, a Tier I Classification is appropriate for the Disposal Site under current conditions.

Additional response actions will be performed to address the ongoing soil condition, prior to the submission of a Permanent Solution Statement. Generally, it is anticipated that Release Abatement Measure (RAM) involving the excavation and off-site disposal of petroleum-impacted soils will be performed at a later date to address soil conditions which appear to be degrading groundwater quality. Additionally, it is anticipated that periodic groundwater monitoring in the vicinity of the Disposal Site will continue to assess groundwater conditions. Future groundwater monitoring may include installation of additional monitoring wells to further assess the nature and extent of the release. A conceptual Phase II Scope of Work is included with this transmittal, provided as *Appendix E*.

As noted above, it is the opinion of the Town of Shutesbury, that this Disposal Site qualifies under the DOD definition of a FUDS, and therefore the DOD should be responsible for response actions related to this condition moving forward. Communication with the DOD regarding this matter is ongoing. The Town of Shutesbury will continue to ensure that regulatory compliance is maintained at the Disposal Site while this matter is ongoing.

A Tier I Classification is being concurrently filed with the MassDEP. Public notice, including letters to the Chief Municipal Officer and Chair of the Board of Health, and legal notices describing the

applicability of the Tier I Classification, have been attached as Appendix F and will be distributed and/or published as required per 310 CMR 40.1402.

6 References

Commonwealth of Massachusetts Executive Office of Environmental Affairs, Office of Geographic and Environmental Affairs (MassGIS); via https://maps.massgis.digital.mass.gov/MassMapper/MassMapper.html, accessed January 2023.

FEMA, Flood Map Service Center, Map 2501280020A, June 18, 1980; via https://msc.fema.gov/portal, accessed January 2023.

O'Reilly, Talbot & Okun, October 2021. Limited Subsurface Assessment for 66 Leverett Road, Parcel O-32.

Fuss & O'Neill, January 2023. Limited Phase II Subsurface Investigation for 66 Leverett Road.

Massachusetts Department of Environmental Protection, 2014, 310 CMR 40.000: Massachusetts Contingency Plan.

Massachusetts Department of Environmental Protection, 2007, 314 CMR 4.00: Surface Water Quality Standards.

United States Army Corp of Engineers, January 2022, Memorandum – Shutesbury – Westover Remote Site: Terminal VHF Omni-Range Facility (TVOR) by Westover AFB.

USGS, 2018, Shutesbury Quadrangle, Massachusetts, 7.5-Minute Series Topographic Map; United States Department of the Interior, U.S. Geological Survey, 2018.

USDA, 2022, Web Soil Survey, United States Department of Agriculture, Natural Resources Conservation Service; via http://websoilsurvey.nrcs.usda.gov/, accessed January 2023.

Zen, Ean, 1983. Bedrock Geologic Map of Massachusetts; United State Department of the Interior, U.S. Geological Survey, in cooperation with the Commonwealth of Massachusetts Department of Public Works and Joseph A. Sinnot, State Geologist.

Tables

Table 4 Summary of Soil Quality Data and Objectives Shutesbury Library Ph II Shutesbury, Massachusetts Samples Collected November 11, 2022

	Sample Location	B-9R	B-13	B-14	B-15	B-16	B-17	MassDEP Method	I 1 Soil Standards
	Sample Depth (ft bgs)	10 - 12	9 - 11	10.5 - 12.5	7 - 9	11 - 13	11 - 13	0.4/07//4	0.4 (CW) 2
	Sample ID	1701221111-01	1701221111-02	1701221111-05	1701221111-06	1701221111-07	1701221111-08	S-1/GW-1	S-1/GW-3
EPHs and Target PAHs (MassDEP methodology)									
Naphthalene	mg/kg	ND<0.37	0.6	ND<0.35	ND<0.36	ND<0.36	ND<0.36	4	500
2-Methylnaphthalene	mg/kg	ND<0.37	0.47	ND<0.35	ND<0.36	ND<0.36	ND<0.36	0.7	300
Phenanthrene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	10	500
Acenaphthene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	4	1,000
Acenaphthylene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1	10
Fluorene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1,000	1,000
Anthracene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1,000	1,000
Fluoranthene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1,000	1,000
Pyrene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1,000	1,000
Benzo(a)anthracene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	7	7
Chrysene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	70	70
Benzo(b)fluoranthene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	7	7
Benzo(k)fluoranthene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	70	70
Benzo(a)pyrene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	2	2
Indeno(1,2,3-cd)pyrene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	7	7
Dibenz(a,h)anthracene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	0.7	0.7
Benzo(g,h,i)perylene	mg/kg	ND<0.37	ND<0.36	ND<0.35	ND<0.36	ND<0.36	ND<0.36	1,000	1,000
C9-C18 Aliphatic Hydrocarbons	mg/kg	ND<15.0	15.2	ND<14.3	ND<14.5	ND<14.3	ND<14.4	1,000	1,000
C19-C36 Aliphatic Hydrocarbons	mg/kg	ND<15.0	ND<14.4	ND<14.3	ND<14.5	ND<14.3	ND<14.4	3,000	3,000
C11-C22 Aromatic Hydrocarbons	mg/kg	ND<7.55	8.95	ND<14.3	9.11	ND<7.19	ND<7.22	1,000	1,000
Total Metals (USEPA method 6010)									
Lead	mg/kg	3.92	2.10	2.83	1.49	1.58	1.48	200	200
VPHs and Target VOCs (MassDEP methodology)									
Benzene	mg/kg	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.2	ND<0.3	2	40
Ethylbenzene	mg/kg	ND<0.3	ND<0.3	0.9	ND<0.3	ND<0.2	ND<0.3	40	500
Methyl t-butyl ether (MTBE)	mg/kg	ND<0.06	ND<0.06	ND<0.05	ND<0.05	ND<0.05	ND<0.05	0.1	100
Naphthalene	mg/kg	ND<0.6	ND<0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	4	500
Toluene	mg/kg	ND<0.3	ND<0.3	ND<0.3	ND<0.3	ND<0.2	ND<0.3	30	500
m&p-Xylene	mg/kg	ND<0.6	ND<0.6	1.4	ND<0.5	ND<0.5	ND<0.5	400	500
o-Xylene	mg/kg	ND<0.6	ND<0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	400	500
Total xylenes	mg/kg	ND<0.6	ND<0.6	1.4	ND<0.5	ND<0.5	ND<0.5	400	500
C5-C8 Aliphatic Hydrocarbons	mg/kg	9.0	22.5	76.1	ND<5.1	ND<4.9	ND<5.0	100	100
C9-C12 Aliphatic Hydrocarbons	mg/kg	75.2	73.4	125	ND<5.1	ND<4.9	8.7	1,000	1,000
C9-C10 Aromatic Hydrocarbons	mg/kg	14.9	21.4	33.9	ND<5.1	ND<4.9	ND<5.0	100	100

Created By: <u>CO</u> Checked By: <u>MK</u>

NOTES:
MassDEP: Masschusetts Department of Environmental Protection
USEPA: United States Environmental Protection Agency
CAM: Compendium of Analytical Methods
mg/kg milligrams per killogram
ND: Not Detected above reporting limit

EPHs: Extractable Petroleum Hydrocarbons
PAHs: Polycyclic Aliphatic Hydrocarbons
VPHs: Volatile Petroleum Hydrocarbons
VOCs: Volatile Oganic Compounds
Results in shaded, bold, and italies meet or exceed one or more applicable Method 1 Cleanup Standards

Table 6

Summary of Groundwater Quality Data and Objectives Shutesbury Library Limited Ph II Subsurface Investigation Shutesbury, Massachusetts Sample Collected December 2, 2022

	Sample Location	MW-9	MassDEP Method 1 Groundwater Stand	
	Sample ID	1701221202-01	GW-1	GW-3
	Screened Interval	10 - 20 feet	GW-1	Gw-3
EPHs and Target PAH (MassDEP methodology)				
Naphthalene	ug/l	101	140	20,000
-Methylnaphthalene	ug/l	23	10	20,000
henanthrene	ug/l	ND<1.0	40	10,000
Acenaphthene	ug/l	ND<5.0	20	10,000
Acenaphthylene	ug/l	ND<1.0	30	40
luorene	ug/l	ND<5.0	30	40
inthracene	ug/l	ND<5.0	60	30
luoranthene	ug/l	ND<5.0	90	200
yrene	ug/l	ND<5.0	60	20
Senzo(a)anthracene	ug/l	ND<1.0	1	1,000
Chrysene	ug/l	ND<2.0	2	70
Benzo(b)fluoranthene	ug/l	ND<1.0	1	400
Benzo(k)fluoranthene	ug/l	ND<1.0	1	100
Senzo(a)pyrene	ug/l	ND<0.2	0.2	500
ndeno(1,2,3-cd)pyrene	ug/l	ND<0.5	0.5	100
Dibenz(a,h)anthracene	ug/l	ND<0.5	0.5	40
Senzo(g,h,i)perylene	ug/l	ND<5.0	50	20
9-C18 Aliphatic Hydrocarbons	ug/l	739	700	50,000
19-C36 Aliphatic Hydrocarbons	ug/l	ND<200	14,000	50,000
111-C22 Aromatic Hydrocarbons	ug/l	234	200	5,000
CAM 14 Metals; Total Metals (USEPA methods 6010/7470)	32			
antimony	mg/l	ND<0.005	0.006	8
rsenic	mg/l	ND<0.01	0.01	0,9
arium	mg/l	ND<0.005	2	50
Beryllium	mg/l	ND<0.005	0.004	0.2
admium	mg/l	ND<0.005	0.005	0.004
Chromium	mg/l	ND<0.005	0.1	0.3
ead	mg/l	ND<0.005	0.015	0.01
lickel	mg/l	0.006	0.1	0.2
elenium	mg/l	ND<0.01	0.05	0.1
ilver	mg/l	ND<0.005	0.1	0.007
Vanadium	mg/l	ND<0.005	0.03	4
inc	mg/l	0.022	5	0,9
hallium	mg/l	0.01	0.002	3
Iercury	mg/l	ND<0.0005	0.002	0.02
PHs and Target VOCs (MassDEP methodology)	5/ -	112 0.0003	0.002	0.02
enzene	ug/l	ND<5.0	5	10,000
thylbenzene	ug/1 ug/l	985	700	5,000
fethyl t-butyl ether (MTBE)	ug/1	ND<10.0	700	50,000
Japhthalene	ug/l	161	140	20,000
oluene	ug/l	933	1,000	40,000
onene n&p-Xylene	ug/1 ug/l	2,000	10,000	5,000
-Xylene	ug/l	2,000 770	10,000	5,000
-Ayiene 'otal xylenes	ug/l ug/l	2,770	10,000	5,000
Otal xylenes C5-C8 Aliphatic Hydrocarbons	ug/l ug/l	10,900	300	50,000
J-CO AHDHAUC ITVUIOCAIDOHS	ug/1			
29-C12 Aliphatic Hydrocarbons	ug/l	29,500	700	50,000

NOTES:

MassDEP: Massachusetts Department of Environmental Protection USEPA: United States Environmental Protection Agency CAM: Compendium of Analytical Methods mg/l: milligrams per liter ug/l: micrograms per liter ND: Not Detected above reporting limit

Created By: <u>CO</u> Checked By: <u>MK</u>

EPHs: Extractable Petroleum Hydrocarbons PAHs: Polycyclic Aliphatic Hydrocarbons VPHs: Volatile Petroleum Hydrocarbons VOCs: Volatile Organic Compounds

Results in shaded, bold, and italics meet or exceed one or more applicable Method 1 Cleanup Standards

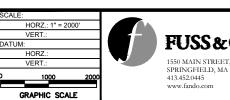
Table 8 Summary of Groundwater Elevations December 2022 - January 2023

66 Leverett Road Shutesbury, Massachusetts

Location ID	Date Measured	Depth to Water (feet below PVC)	Groundwater Elevation (feet)
MW-09	12/2/2022	13.98	1173.79
PVC Elev = 1187.77	1/11/2023	10.16	1177.61
MW-10	12/2/2022	NM	NM
PVC Elev = 1187.93	1/11/2023	6.55	1181.38
MW-12	12/2/2022	NM	NM
PVC Elev = 1187.84	1/11/2023	7.76	1180.08
MW-13	12/2/2022	NM	NM
PVC Elev = 1188.00	1/11/2023	7.95	1180.05
MW-14	12/2/2022	NM	NM
PVC Elev = 1187.97	1/11/2023	10.37	1177.60

Created By: CJO Reviewed By: MK

Notes:


PVC elevations were calculated based on surveyed elevations and measured casing and PVC heights

PVC: top of PVC well casing; ground elevation NM: Not Measured: well not yet constructed

Figures

1107

MAP REFERENCE:

EONARD

ROAD

SH

SITE LOCATION-

FUSS&O'NEILL

SITE LOCATION MAP

TOWN OF SHUTESBURY

66 LEVERETT ROAD

THIS MAP WAS PREPARED FROM USGS TOPOGRAPHIC QUADRANGLE IMAGES

SOURCE: OFFICE OF GEOGRAPHIC AND ENVIRONMENTAL INFORMATION (MASSGIS), COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS

SPRINGFIELD, MA 01103

MASSACHUSETTS

BDY

SHUTESBURY STATE FOREST

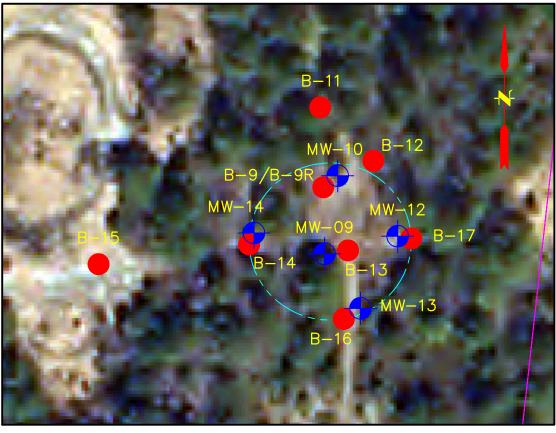
FIGURE 1

PROJ. No.: 20091032.A22 DATE: 01/26/2023

Osgood

PLAZA RO

B Bartlett


Shutesbury

SHUTESBURY

500-FOOT AND 0.5-MILE RADII AROUND DISPOSAL SITE

ROAD

INSET SCALE: 1"= 50'

SHUTESBURY

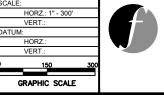
LEGEND

B-XX

SOIL BORING

MW-XX

MONITORING WELL +

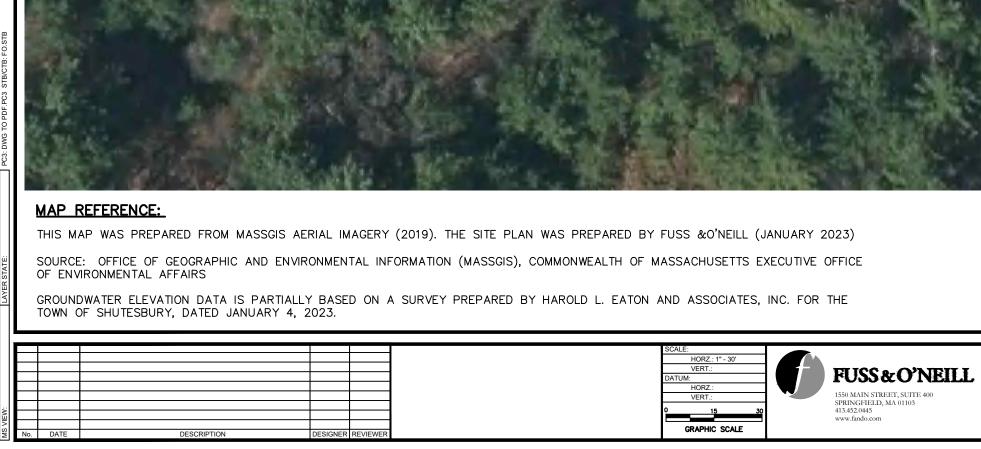

PRELIMINARY DISPOSAL SITE BOUNDARY

PROPERTY BOUNDARY

THIS MAP WAS PREPARED FROM MASSGIS AERIAL IMAGERY (2005). THE SITE PLAN WAS PREPARED BY FUSS &O'NEILL (JANUARY 2023)

SOURCE: OFFICE OF GEOGRAPHIC AND ENVIRONMENTAL INFORMATION (MASSGIS), COMMONWEALTH OF MASSACHUSETTS EXECUTIVE OFFICE OF ENVIRONMENTAL AFFAIRS

š						
ΝĒ						
S	No.	DATE	DESCRIPTION	DESIGNER	REVIEWER	


TOWN OF SHUTESBURY

SITE PLAN

66 LEVERETT ROAD

FIGURE 2

MASSACHUSETTS

GROUNDWATER ELEVATIONS (FT AMSL)

MW-09	1177.60
MW-10	1181.38
MW - 12	1180.08
MW-13	1180.05
MW-14	1177.61

NOTES: FT AMSL= FEET ABOVE MEAN SEA LEVEL ELEVATIONS MEASURED ON 1/11/2023

LEGEND

MONITORING WELL 💠

PRELIMINARY DISPOSAL SITE BOUNDARY

GROUNDWATER ELEVATION CONTOURS — 1181 —

MW-XX

FLOW DIRECTION

GROUNDWATER

TOWN OF SHUTESBURY

GROUNDWATER ELEVATION CONTOUR MAP

66 LEVERETT ROAD

PROJ. No.: 20091032.A22 DATE: 01/26/2023

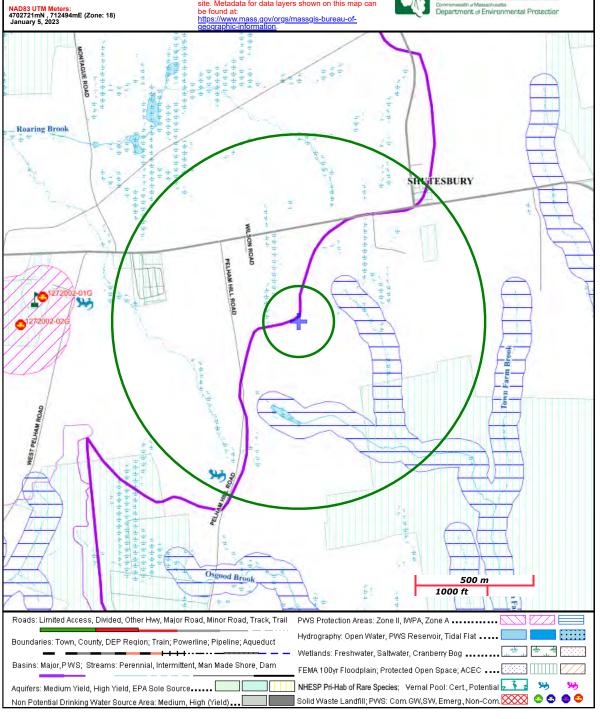
FIGURE 3

SHUTESBURY

MASSACHUSETTS

Appendix A

MassDEP BWSC Site Assessment Map



MassDEP - Bureau of Waste Site Cleanup Phase 1 Site Assessment Map: 500 feet & 0.5 Mile Radii

Site Information: 66 LEVERETT ROAD 66 LEVERETT ROAD SHUTESBURY, MA

The information shown is the best available at the date of printing. However, it may be incomplete. The responsible party and LSP are ultimately responsible for ascertaining the true conditions surrounding the site. Meta

Appendix B

Reference Documents for Site History

66 Leverett Road

66 Leverett Road Shutesbury, MA 01072

Inquiry Number: 7221882.8

January 11, 2023

The EDR Aerial Photo Decade Package

EDR Aerial Photo Decade Package

01/11/23

Site Name: Client Name:

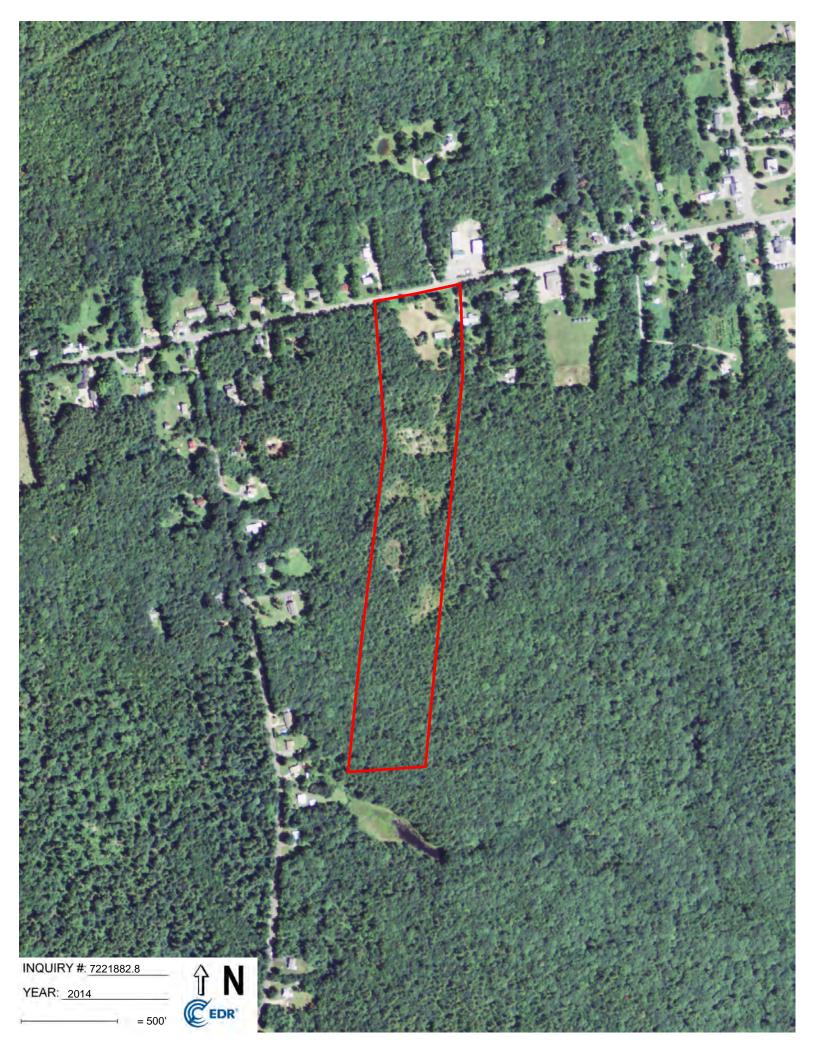
66 Leverett Road Fuss & O'Neill
66 Leverett Road 317 Iron Horse Way
Shutesbury, MA 01072 Providence, RI 02908
EDR Inquiry # 7221882.8 Contact: Clifford Otis

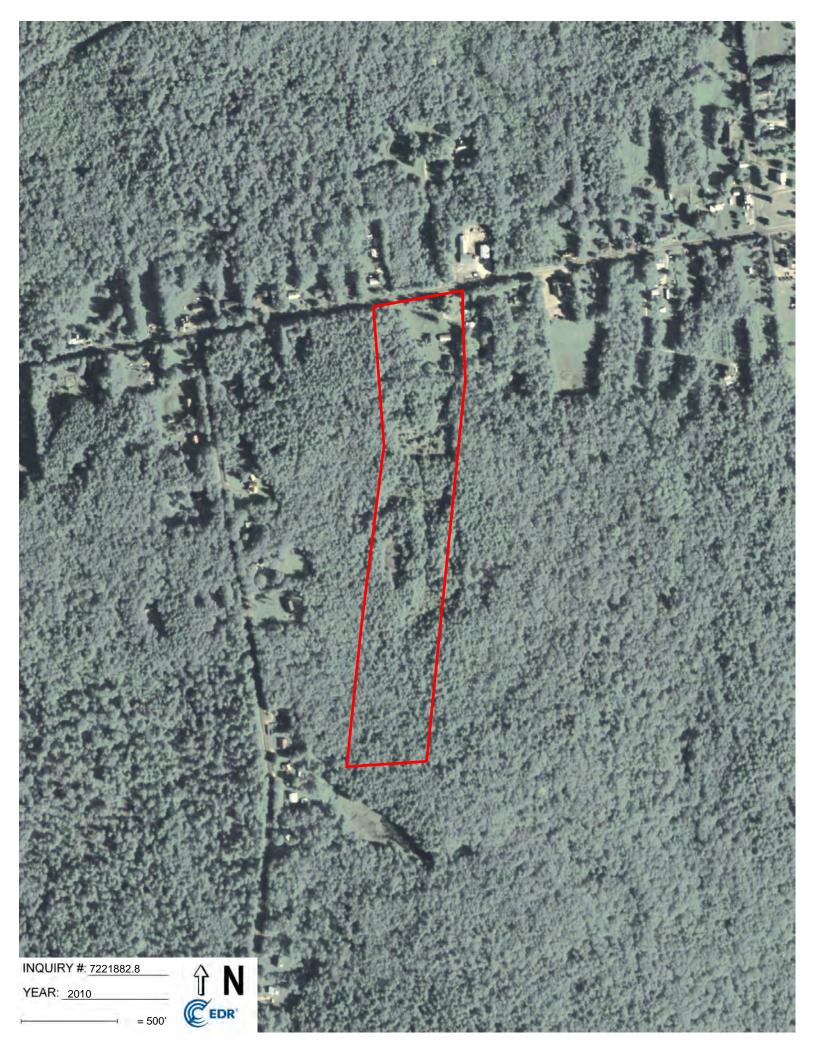
Environmental Data Resources, Inc. (EDR) Aerial Photo Decade Package is a screening tool designed to assist environmental professionals in evaluating potential liability on a target property resulting from past activities. EDR's professional researchers provide digitally reproduced historical aerial photographs, and when available, provide one photo per decade.

Search Results:

Year	Scale	Details	Source
			
2018	1"=500'	Flight Year: 2018	USDA/NAIP
2014	1"=500'	Flight Year: 2014	USDA/NAIP
2010	1"=500'	Flight Year: 2010	USDA/NAIP
2006	1"=500'	Flight Year: 2006	USDA/NAIP
1997	1"=500'	Flight Date: April 30, 1997	USGS
1992	1"=500'	Acquisition Date: April 28, 1992	USGS/DOQQ
1987	1"=500'	Flight Date: May 13, 1987	USGS
1981	1"=500'	Flight Date: April 07, 1981	USGS
1975	1"=500'	Flight Date: October 28, 1975	USGS
1972	1"=500'	Flight Date: April 26, 1972	USGS
1962	1"=500'	Flight Date: April 28, 1962	USGS
1960	1"=500'	Flight Date: May 01, 1960	USGS
1951	1"=500'	Flight Date: September 26, 1951	USDA
1938	1"=500'	Flight Date: November 16, 1938	USGS

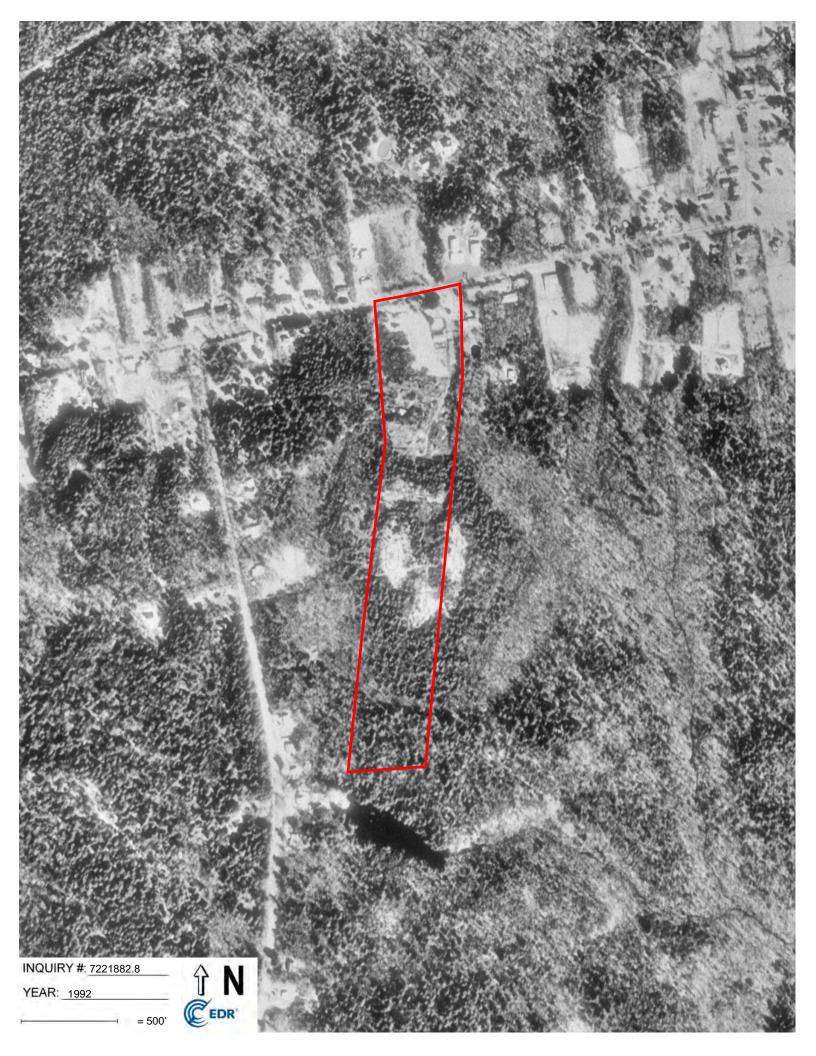
When delivered electronically by EDR, the aerial photo images included with this report are for ONE TIME USE ONLY. Further reproduction of these aerial photo images is prohibited without permission from EDR. For more information contact your EDR Account Executive.

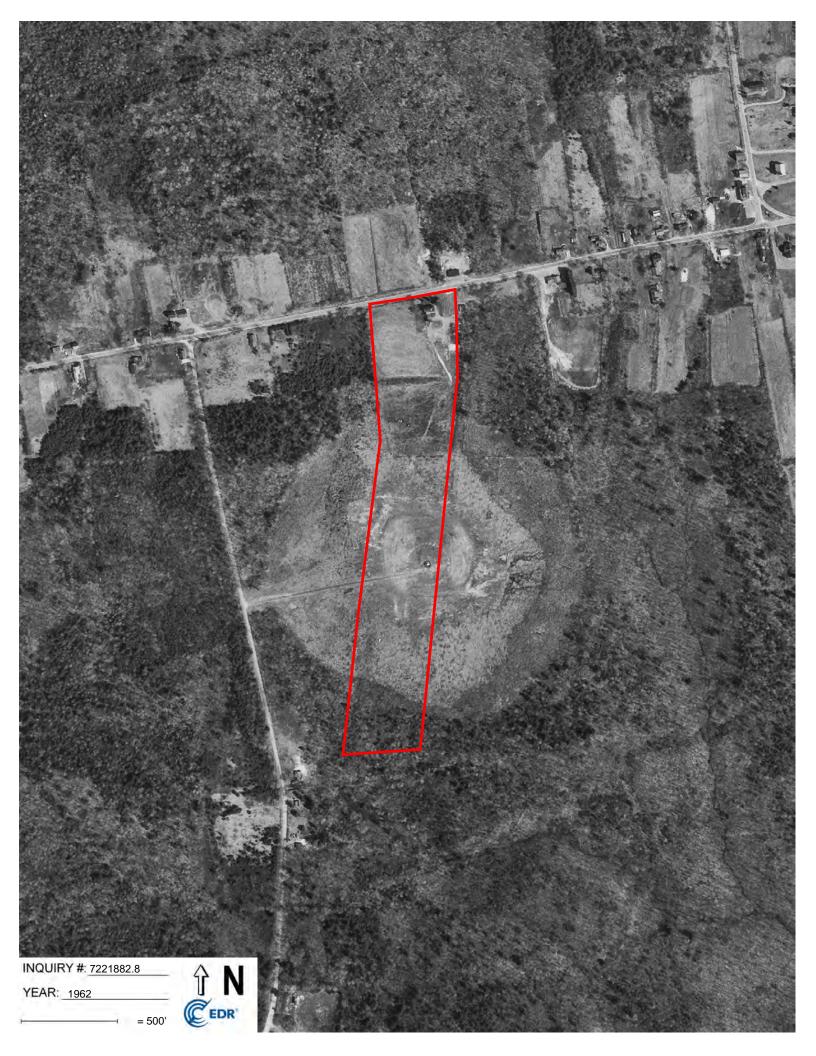

Disclaimer - Copyright and Trademark Notice

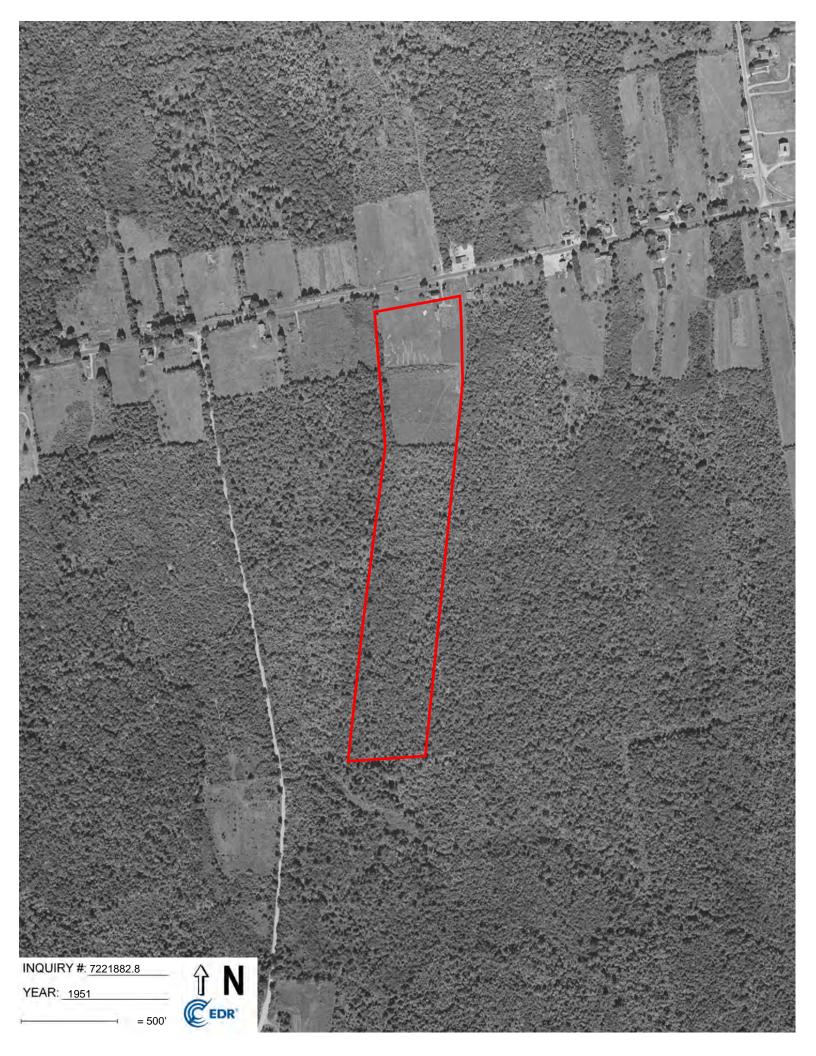

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk or conditions in, on or at any property.

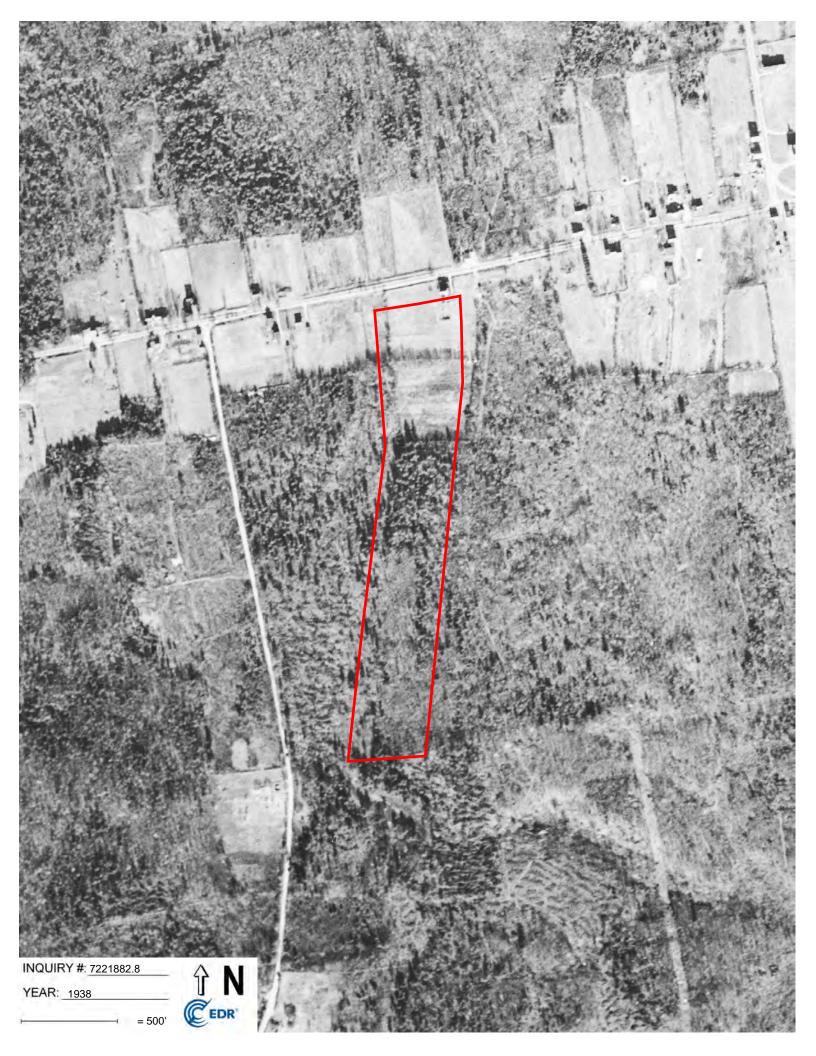
Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.









66 Leverett Road 66 Leverett Road Shutesbury, MA 01072

Inquiry Number: 7221882.4

January 10, 2023

EDR Historical Topo Map Report

with QuadMatch™

EDR Historical Topo Map Report

01/10/23

Site Name: Client Name:

66 Leverett Road Fuss & O'Neill
66 Leverett Road 317 Iron Horse Way
Shutesbury, MA 01072 Providence, RI 02908
EDR Inquiry # 7221882.4 Contact: Clifford Otis

EDR Topographic Map Library has been searched by EDR and maps covering the target property location as provided by Fuss & O'Neill were identified for the years listed below. EDR's Historical Topo Map Report is designed to assist professionals in evaluating potential liability on a target property resulting from past activities. EDRs Historical Topo Map Report includes a search of a collection of public and private color historical topographic maps, dating back to the late 1800s.

Search Res	ults:	Coordinates:	
P.O.#	20091032.A22	Latitude:	42.447711 42° 26' 52" North
Project:	Shutesbury Library	Longitude:	-72.416233 -72° 24' 58" West
-	, ,	UTM Zone:	Zone 18 North
		UTM X Meters:	712481.47
		UTM Y Meters:	4702721.66
		Elevation:	1191.00' above sea level
Maps Provid	ded:		
2018	1943		
2015	1942		
2012	1908		
1990	1893		
1979	1890		
1975			
1964			
1950			

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, LLC. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. This Report is provided on an "AS IS", "AS AVAILABLE" basis. NO WARRANTY EXPRESS OR IMPLIED IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT.

ENVIRONMENTAL DATA RESOURCES, LLC AND ITS SUBSIDIARIES, AFFILIATES AND THIRD PARTY SUPPLIERS DISCLAIM ALL WARRANTIES, OF ANY KIND OR NATURE, EXPRESS OR IMPLIED, ARISING OUT OF OR RELATED TO THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES REGARDING ACCURACY, QUALITY, CORRECTNESS, COMPLETENESS, COMPREHENSIVENESS, SUITABILITY, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, MISAPPROPRIATION, OR OTHERWISE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, LLC OR ITS SUBSIDIARIES, AFFILIATES OR THIRD PARTY SUPPLIERS BE LIABLE TO ANYONE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, CONSEQUENTIAL OR OTHER DAMAGES OF ANY TYPE OR KIND (INCLUDING BUT NOT LIMITED TO LOSS OF PROFITS, LOSS OF USE, OR LOSS OF DATA), ARISING OUT OF OR IN ANY WAY CONNECTED WITH THIS REPORT OR ANY OF THE DATA AND INFORMATION PROVIDED IN THIS REPORT. Any analyses, estimates, ratings, environmental risk levels, or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only an assessment performed by a qualified environmental professional can provide findings, opinions or conclusions regarding the environmental risk or conditions in, on or at any property.

Copyright 2023 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

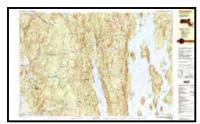
EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, LLC or its affiliates. All other trademarks used herein are the property of their respective owners.

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

2018 Source Sheets

Shutesbury 2018 7.5-minute, 24000

2015 Source Sheets



Shutesbury 2015 7.5-minute, 24000

2012 Source Sheets

Shutesbury 2012 7.5-minute, 24000

Shutesbury 1990 7.5-minute, 25000 Aerial Photo Revised 1981

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1979 Source Sheets

Shutesbury 1979 7.5-minute, 25000 Aerial Photo Revised 1975

1975 Source Sheets

Shutesbury 1975 7.5-minute, 25000 Aerial Photo Revised 1975

1964 Source Sheets

Shutesbury 1964 7.5-minute, 24000

Shutesbury 1950 7.5-minute, 24000

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

1943 Source Sheets

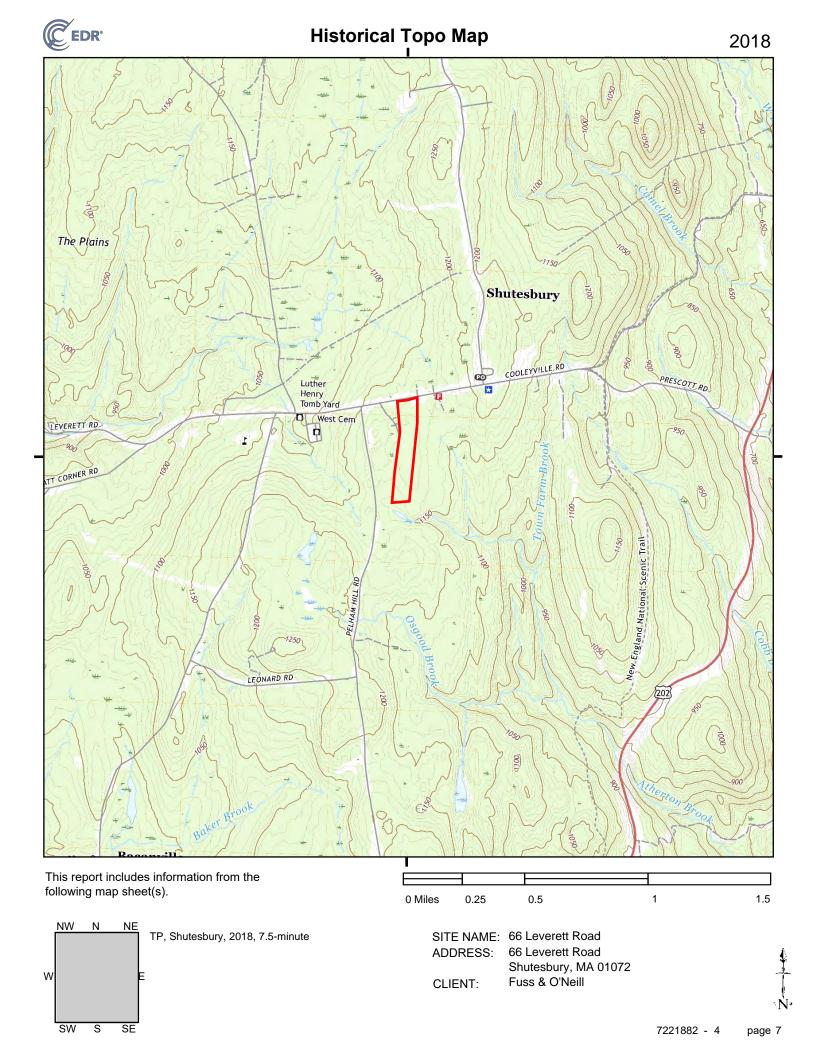
Shutesbury 1943 7.5-minute, 31680

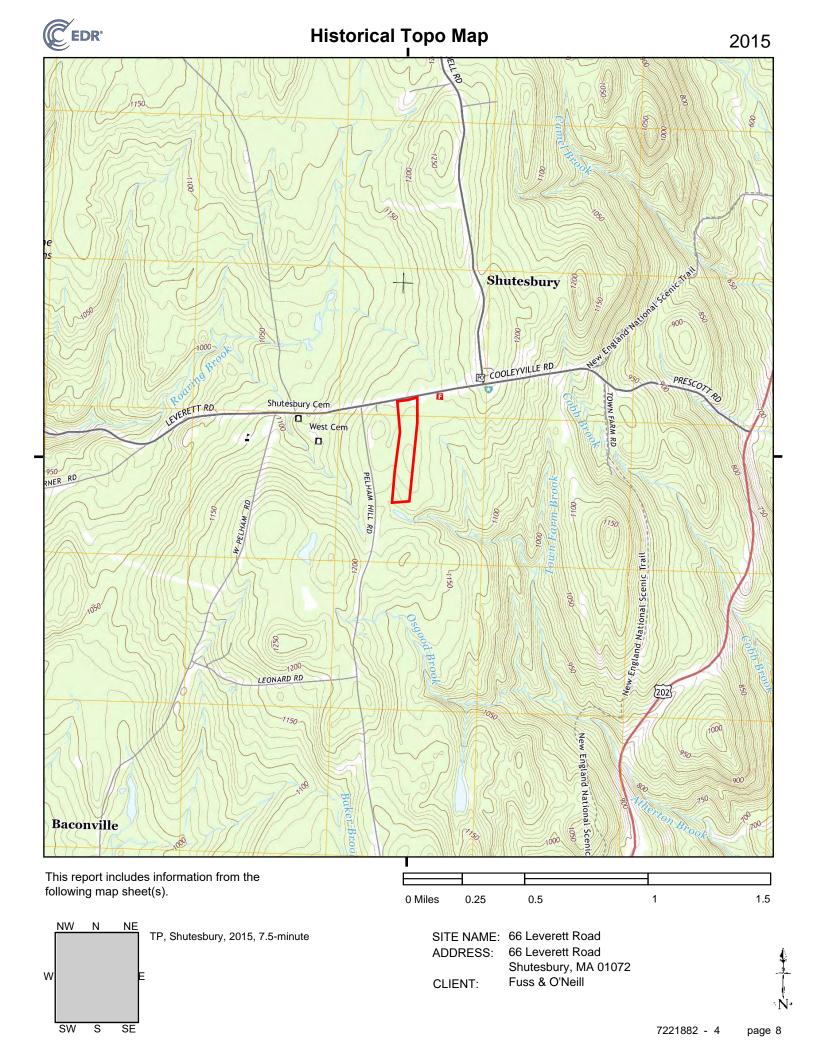
1942 Source Sheets

Shutesbury 1942 7.5-minute, 31680

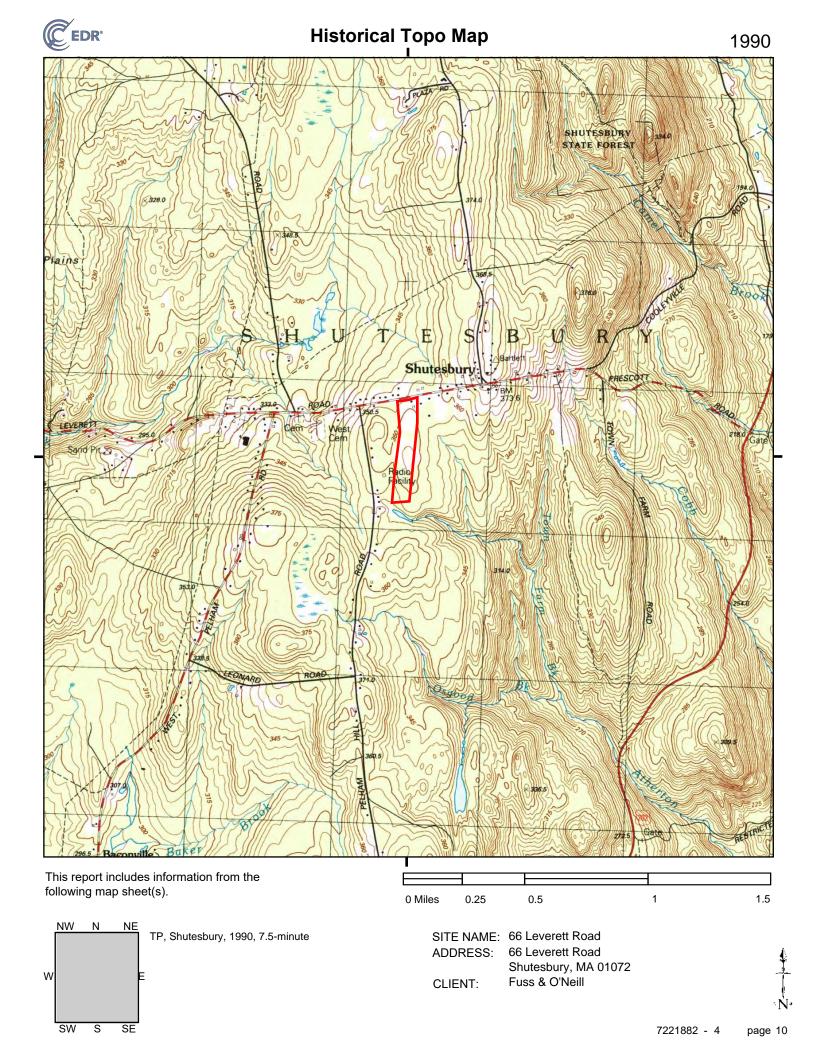
1908 Source Sheets

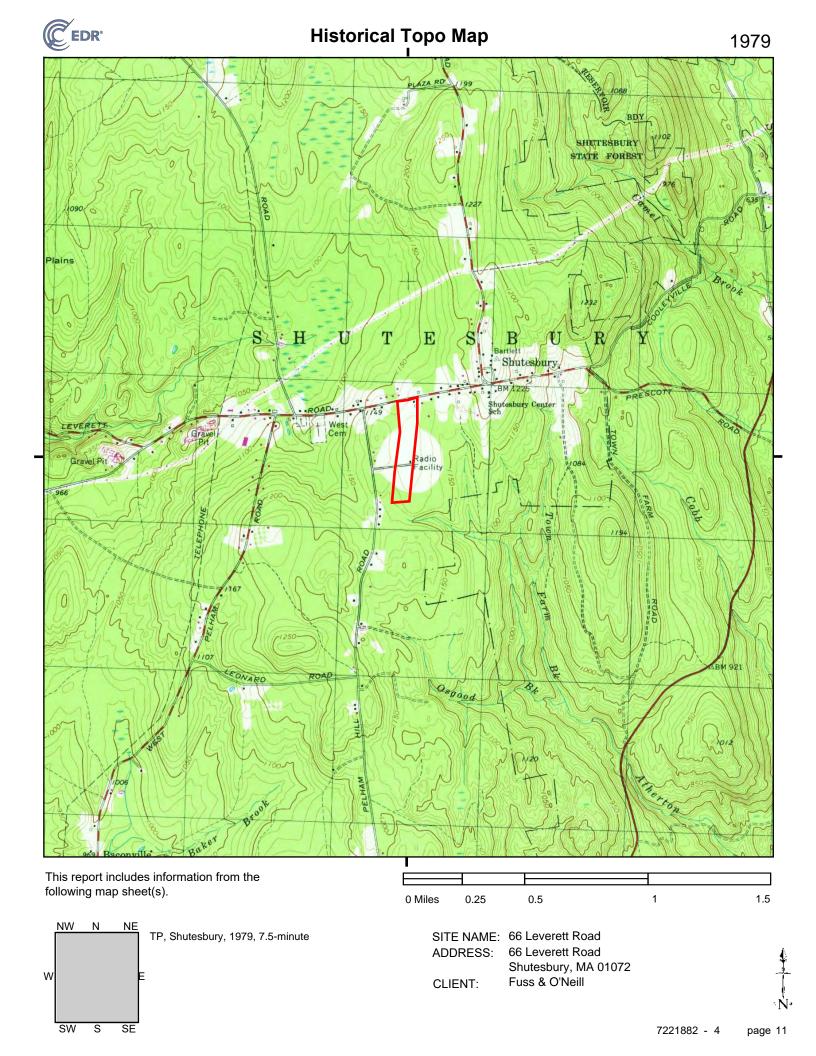
Ware 1908 30-minute, 125000

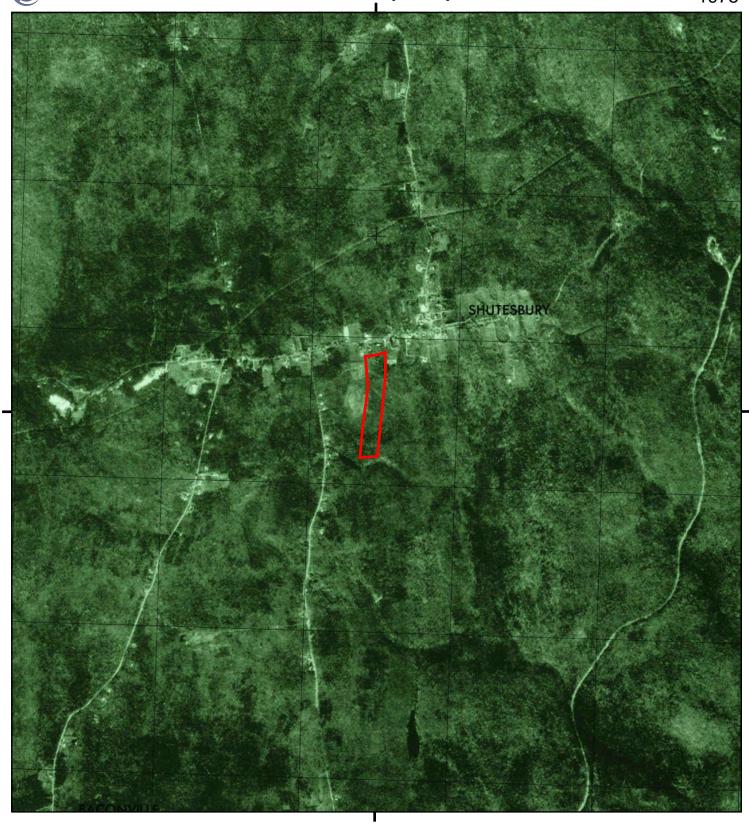


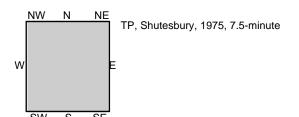

Belchertown 1893 15-minute, 62500

This EDR Topo Map Report is based upon the following USGS topographic map sheets.

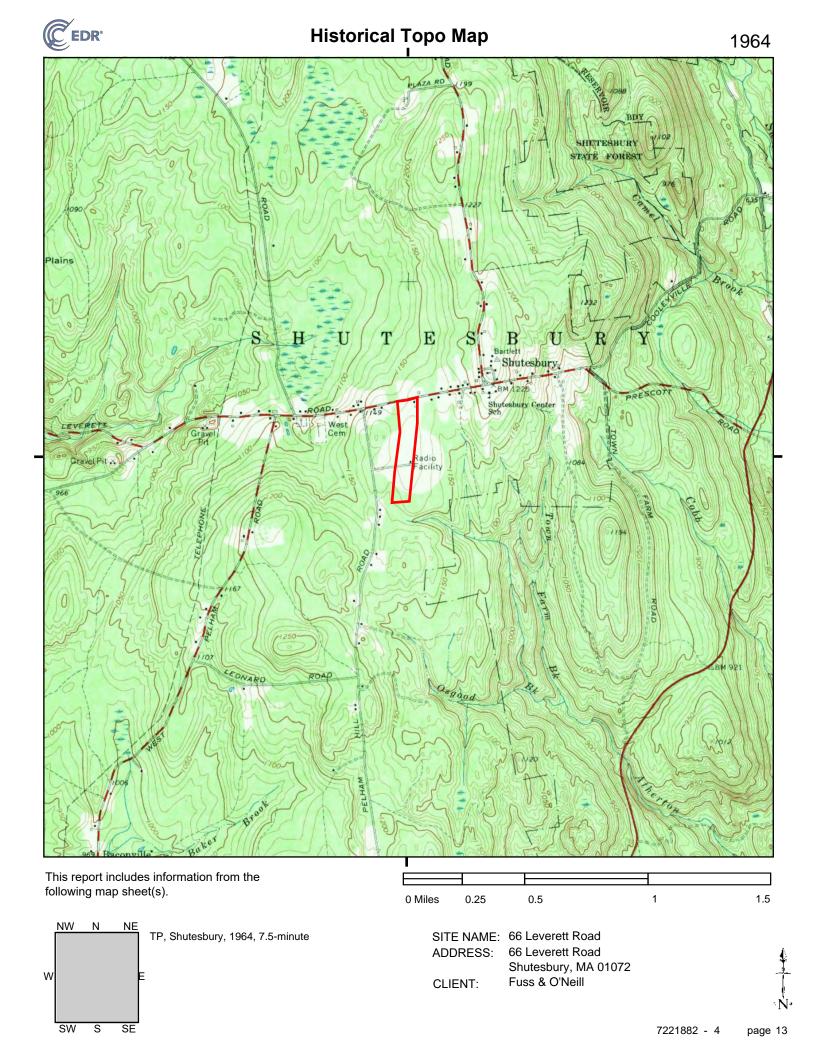



Belchertown 1890 15-minute, 62500





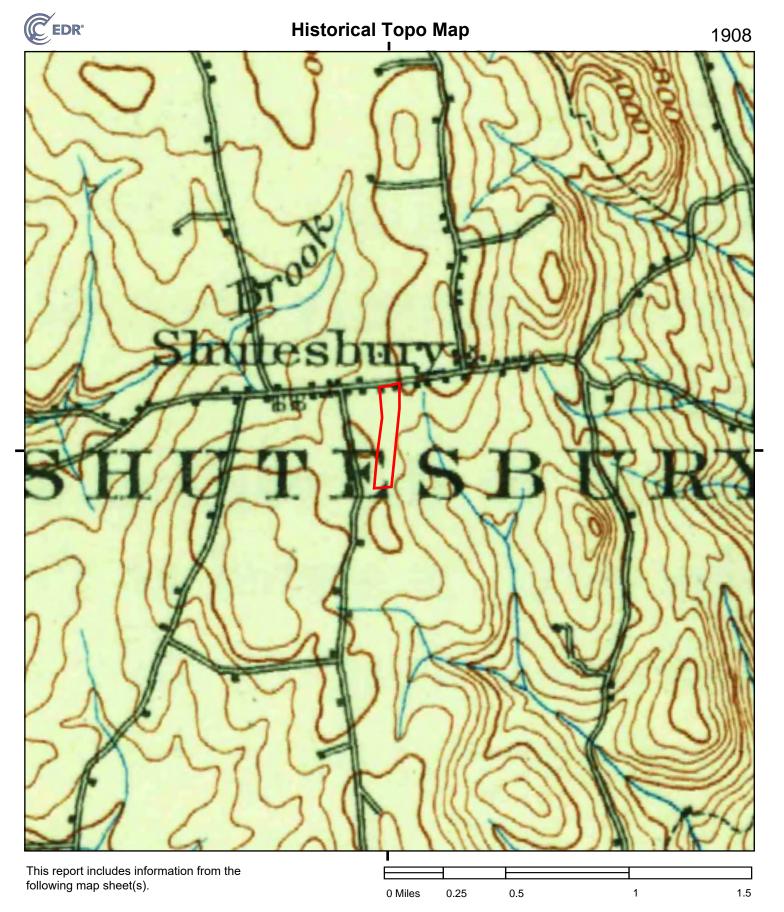
This report includes information from the following map sheet(s).

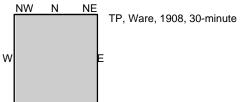


0 Miles 0.25 0.5 1 1.5

SITE NAME: 66 Leverett Road ADDRESS: 66 Leverett Road

Shutesbury, MA 01072

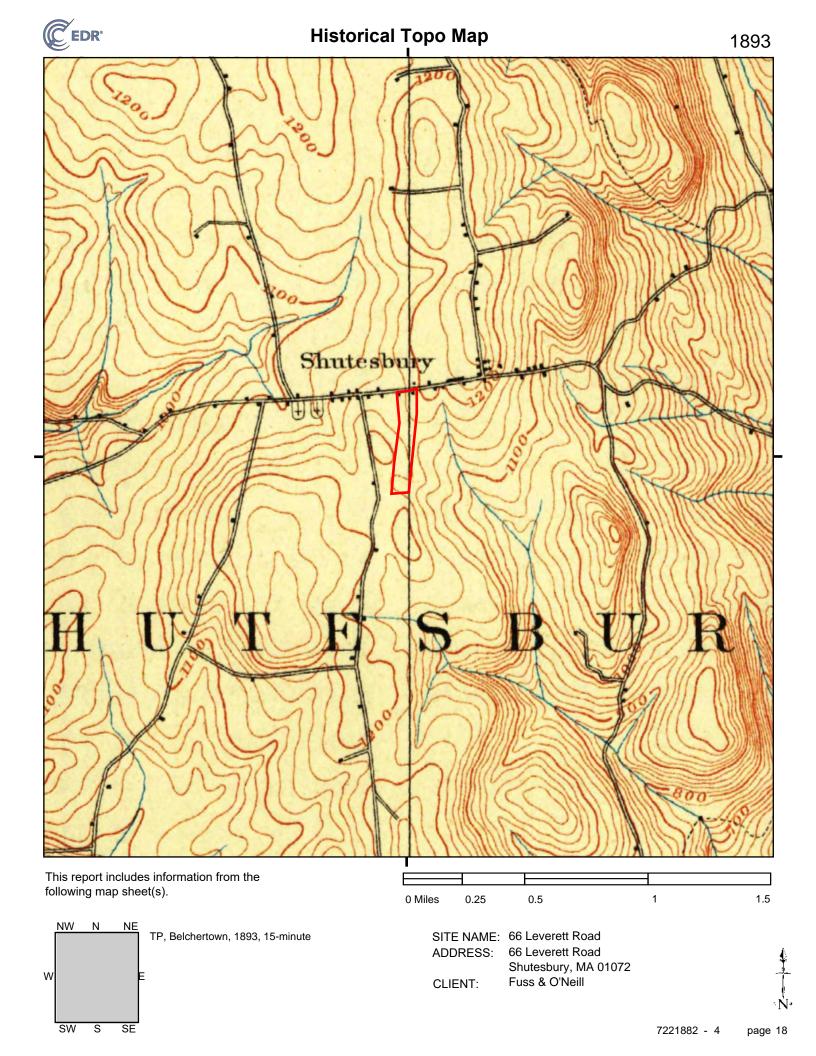

CLIENT: Fuss & O'Neill

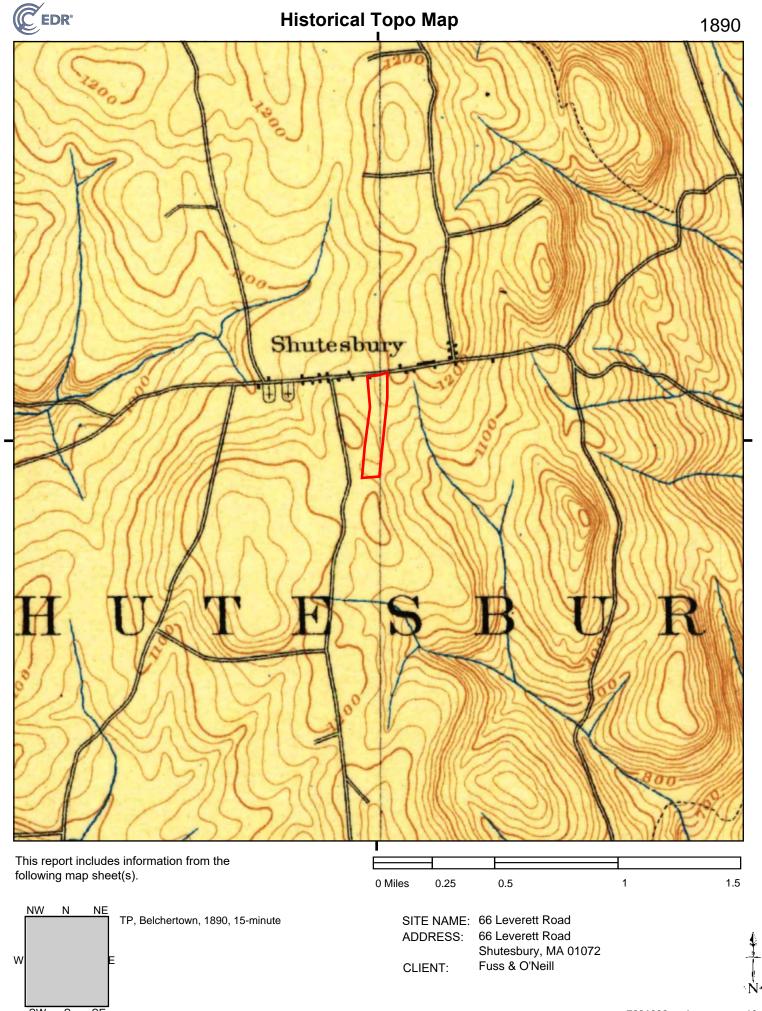


Shutesbury, MA 01072

Fuss & O'Neill

CLIENT:





SITE NAME: 66 Leverett Road ADDRESS: 66 Leverett Road

Shutesbury, MA 01072

CLIENT: Fuss & O'Neill

J2060-02-01 October 5, 2021

Town of Shutesbury MN Spear Memorial Library P.O. Box 276 Shutesbury, Massachusetts 01072

Attn: Ms. Mary Anne Antonellis, Library Director

Re: Limited Subsurface Assessment 66 Leverett Road. Parcel O-32

Shutesbury, Massachusetts

Dear Ms. Antonellis:

On behalf of the Town of Shutesbury, O'Reilly, Talbot & Okun Associates, Inc. (OTO) is pleased to provide the results of our limited subsurface assessment at the above referenced property (the Site). Our assessment was performed in general accordance with our proposal for environmental services to the Town of Shutesbury dated August 30, 2021. This report is subject to the Limitations in Appendix A.

BACKGROUND

The subject Site consists of one 21.2-acre parcel of land owned by the Town of Shutesbury (parcel ID# O-32). It is OTO's understanding that the northern portion of the Site is being considered for the construction of a new town library. Existing groundwater well MW-2D was installed on the property in 2014 by Cushing & Sons, Inc. on behalf of the Town. This well is a bedrock monitoring well drilled to approximately 100 feet below the ground surface (open-borehole) with a 6-inch diameter steel casing sticking up above the ground surface. The Town is assessing whether groundwater from this well might be a suitable future source of drinking water.

The northern portion of the property formerly contained a residence and detached garage building which have been demolished by the Town. The Town also recently removed areas of debris and common trash left on the northern portion of property by others. The southern portion of the Site is wooded with some overgrown trails. The southern portion was historically used by the Air Force for a terminal very high frequency omni-directional range (TVOR) facility, a type of short-range radio navigation system for aircraft.

For OTO's review, the Town of Shutesbury provided copies of an *Updated Environmental Transaction Screen* by Fuss & O'Neill, dated December 29, 2010, a prior *Environmental Transaction Screen by* Fuss & O'Neill, dated July 14, 2010, a *Release Retraction Documentation* letter for Release Tracking Number (RTN) 1-

18707 prepared by Cold Spring Environmental Consultants, Inc, dated May 30, 2012, and monitoring well completion reports from 2014 by Cushing & Sons, Inc. There is no mention of the former TVOR facility in the documents provided to OTO.

Based on limited information available on the U.S. Army Corps of Engineers website1, the former TVOR facility was known as the Westover Remote Site under the federal Formerly Used Defense Sites (FUDS) Program. The United States leased the Site along with leaseholds/purchase on other surrounding land in 1957. The Air Force constructed a circular concrete TVOR pad with tower and an Emergency Power Unit Shelter (4'x8') at the site and an associated underground fuel storage tank. Thirty-five wooden posts in a 100-foot radius around the TVOR pad were constructed to be used in conjunction with the TVOR facility to affect the transmission. The Air Force used the site until 1967; the leaseholds apparently were not extended beyond June 1967. In 1992, the Department of Defense Installation Restoration Program (IRP) recommended to remove one 275-gallon underground storage tank (UST), contents, piping and any contaminated soil. Soil sampling throughout the site was also By August 1995, it appears that approximately 100 tons of recommended. hydrocarbon contaminated soil was removed, and test pits were conducted. It is unknown whether the UST was removed from the property.

The MassDEP on-line Phase I Site Assessment Map of the vicinity is in Appendix B. A wetland area and hydraulic divide is mapped at the Site. Zone A surface water buffer areas are mapped to the east and south of the Site. The Site is more than 500 feet from a public water supply line. Therefore, for the purposes of groundwater and soil classification under the Massachusetts Contingency Plan, groundwater is classified as RCGW-1 and soil is classified as RCS-1.

SITE VISIT

On September 8, 2021, OTO walked the Site with the Shutesbury Town Manager and Library Director to select and pre-mark soil boring locations (B-1 through B-10) based on the following rational and former Site features:

- B-1: former garage area;
- B-2: outside storage area behind former garage;
- B-3: down-gradient of former garage and former garage UST;
- B-4: proposed footprint of new library building;
- B-5: proposed footprint of new library building;
- B-6: proposed area for a new septic system leach field;
- B-7: area of removed debris;
- B-8: area of removed debris;
- B-9: concrete pad for an unknown abandoned utility/feature;
- B-10: area of removed debris and removed abandoned car.

¹ https://fudsportal.usace.army.mil/ems/ems/inventory/map/map?id=59569

SOIL ASSESSMENT

On September 16, 2021, Martin Geo/Environmental, LLC and OTO performed ten soil borings (B-1 through B-10) at the locations shown on the attached Figures with a direct-push drill rig. OTO logged the borings, field screened soil samples with a photo-ionization detector (PID) and retained soil samples for laboratory analysis. Soil descriptions and field data is summarized within the boring logs in Appendix C.

Soil samples were selected for laboratory analysis based on the location, depth, and field observations considering conceptual models for a release of oil or hazardous material to the environment. Samples were analyzed for volatile organic compounds (VOCs), polychlorinated biphenyls (PCBs), volatile and extractable petroleum hydrocarbons (VPH/EPH) by Con-Test, a Pace Analytical Laboratory, in East Longmeadow, Massachusetts. Laboratory analytical reports are attached in Appendix D.

No constituents of concern were detected above laboratory method reporting limits in soil samples analyzed from borings B-1 through B-8, and B-10. VPH was detected in a soil sample collected from 8 to 10 feet below the ground surface at boring B-9, which was adjacent to a concrete pad. The B-9 detections are summarized on Table 1 and compared against the reportable concentrations listed under 310 CMR 40.1600 of the Massachusetts Contingency Plan (MCP). As indicated the C5-C8 aliphatic hydrocarbon concentration of 100 mg/Kg is equal to the reportable concentration for RCS-1 classified soil.

GROUNDWATER SAMPLING AND ANALYSIS

On September 8, 2021, OTO collected a groundwater sample from monitoring well MW-2D. Groundwater was measured approximately 8 feet below the ground surface. Purging and sampling was performed using high-density polyethylene tubing connected to a down well pump. The sample was preserved in laboratory provided glassware and submitted to Con-Test. Con-Test analyzed the sample for VOCs, perand polyfluoroalkyl substances (PFAS), PCBs, total coliform bacteria, pH, color, turbidity, hardness, iron, manganese, sodium, nitrate and nitrite. The laboratory analytical report is included in Appendix D. A sampling record is in Appendix E.

As indicated in the laboratory report, no VOCs, PFAS or PCBs were detected in the groundwater sample from MW-2D. The groundwater sample was turbid with low levels of total coliform bacteria, iron, and manganese detected in the sample.

OPINIONS AND CONCLUSION

No constituents of concern were detected in soil samples analyzed from borings B-1 through B-8 in the vicinity of the proposed library project.

Pursuant to 310 CMR 40.0315(3), the concentration of C5-C8 aliphatic hydrocarbons detected in soil at boring B-9 is a condition which requires release notification to MassDEP. The hydrocarbon profile detected is consistent with impacts frequently associated with releases of gasoline. Under the MCP at 310 CMR 40.0315, persons required to notify under 310 CMR 40.0331 shall inform MassDEP within 120 days after obtaining knowledge of a release to the environment indicated by the measurement of oil in soil in an amount equal to or greater than the applicable Reportable Concentration listed at 310 CMR 40.1600. We recommend providing notice to MassDEP on or before January 28, 2022, based on the date of receipt of the laboratory report. Further assessment is warranted to evaluate the source, nature, and extent of the release detected at boring B-9.

No VOCs, PFAS or PCBs were detected in the groundwater sample from well MW-2D. Due to the low levels of total coliform bacteria, iron, turbidity, and manganese detected in the sample, further well development and/or treatment would be necessary for groundwater from this well to be suitable for drinking. We recommend contacting a company that specializes in drinking water supply well installation, maintenance, and compliance.

We appreciate the opportunity to assist you on this project. Please contact us if you have any questions.

Sincerely,

O'Reilly, Talbot & Okun Associates, Inc.

Erica L. Escobar Staff Scientist

Sabrina A. Moreau

Project Manager, reviewer

Project Manager

Mark E. O'Mallev

Attachments:

FIGURES

Table 1 Soil Analytical Results

Table 2 Groundwater Analytical Results

FIGURES

Figure 1 Site Locus
Figure 2 Site Plan
Figure 3 Site Detail Plan

APPENDICES

Appendix A Limitations

Appendix B Phase I Site Assessment Map

Appendix C Boring Logs

Appendix D Laboratory Analytical Report Appendix E Groundwater Sampling Record

O:\J2000\2060 Town of Shutesbury\02-01 Library Project\Report 66 Leverett

Table 1 Soil Analytical Results Volatile Petroleum Hydrocarbons (VPH) Concentrations in mg/kg 66 Leverett Road Shutesbury, Massachusetts

Sample No.:	B-9	Reportable
Depth (feet):	8-10'	Conc.
Date Collected:	9/16/21	RCS-1
PID Reading (ppmv):	780	NA
VPH Fractions		
C5-C8 Aliphatics	100	100
C9-C12 Aliphatics	89	1,000
C9-C10 Aromatics	66	100
VPH Target Compounds		
Benzene	0.3	2
Ethylbenzene	0.18	40
Methyl tert-butyl ether	<0.085	0.1
Naphthalene	0.54	4
Toluene	<0.085	30
Xylenes (total)	0.48	100
VOCs by 8260		
n-Butylbenzene	1.2	NS
sec-Butylbenzene	0.28	NS
Isopropylbenzene	0.25	1,000
n-Propylbenzene	1.6	100
1,2,4-Trimethylbenzene	2.1	1,000
1,3,5-Trimethylbenzene	3.2	10

NOTES:

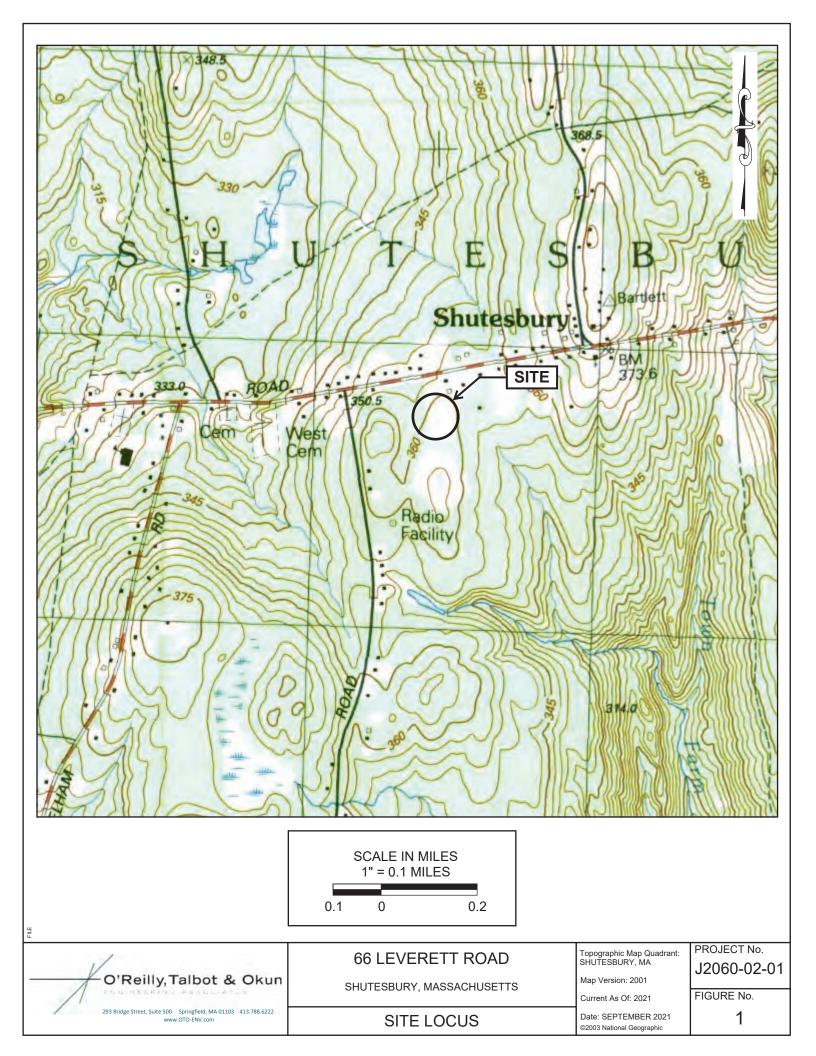
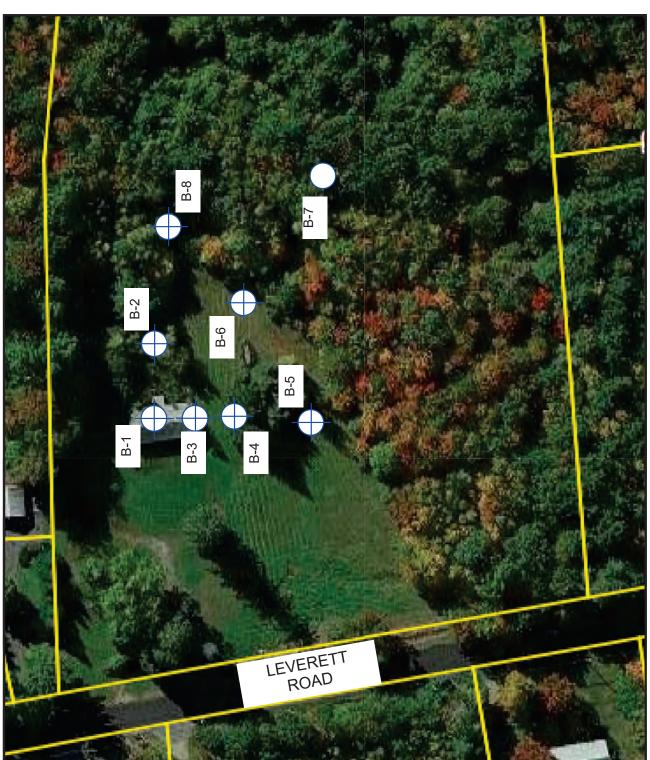

- 1. Concentrations in mg/kg (parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. "PID"=Photoionization detector soil headspace measurement in
- 5. Only analytes detected in at least one sample are shown; refer to laboratory reports for full analyte listing.
- 6. Values shown in **bold** are equal to or exceed Reportable Concentrations.

Table 2 Summary of Groundwater Analytical Results 66 Leverett Road Shutesbury, MA

Sampling Location	MW-2D	MCL/SMCL MA
Sample Date:	9/8/21	ORSG
VOCs EPA 524.2 (ug/L)	Not Detected	
PCBs SW-846 8082S (ug/L)	Not Detected	
PFAS EPA 537.1 (ng/L)	Not Detected	
SW-846 610D (mg/L) Metals Digestion	1	
Iron	6.3	0.3
Manganese	0.11	0.05
Sodium	5.6	20
Hardness	20	
EPA 300.0 (mg/L)		
Chloride	1.2	250
Nitrate	ND (0.10)	10
Nitrite	ND (0.10)	1
SM 92238B - Colilert (MPN/100mL)		
Total Coliform	3.1	Absent
E. Coli	ND (1.0)	
EPA 180.1 (NTU)		
Turbidity	39	
SM21-23 2120B (Color Units)		
Apparent Color	75	15
SM21-23 4500 H B (pH Units)		
рН	6.9	8.5

NOTES:

- 1. "ND" indicates not detected; value is quantitation limit.
- 2. "--" indicates no published value, compound specific or not applicable.
- 3. MCL/SMCL = Massachusetts Maximum Contaminant Level/Secondary Maximum Contamina
- 4. MA ORSG = Massachusetts Department of Environmental Protection Office of Research and Standards (ORS) Guidelines. Updated in January 2020. For reference only.
- 5. Values shown in **bold** exceed the MCL/SMCL or ORSG.



Designed By: ELE
Drawn By: ELE
Checked By: MEO
Date: 09/27/20/21
Source ::Https://
www.mainstreetmaps.com/
ma/shutesbury/public.asp
All features are approximate.

O'Reilly, Talbot & Okun
293 Bridge Street, Suite 500 Springfield, MA 01103 413.788.6222
www.OTO-ENV.com

66 LEVERTT ROAD SHUTESBURY, MASSACHUSETTS

CHECKED BY: MEO

DATE: 9/27/2021 REV. DATE:

DESIGNED BY: ELE DRAWN BY: ELE

SITE DETAIL PLAN

PROJECT No.

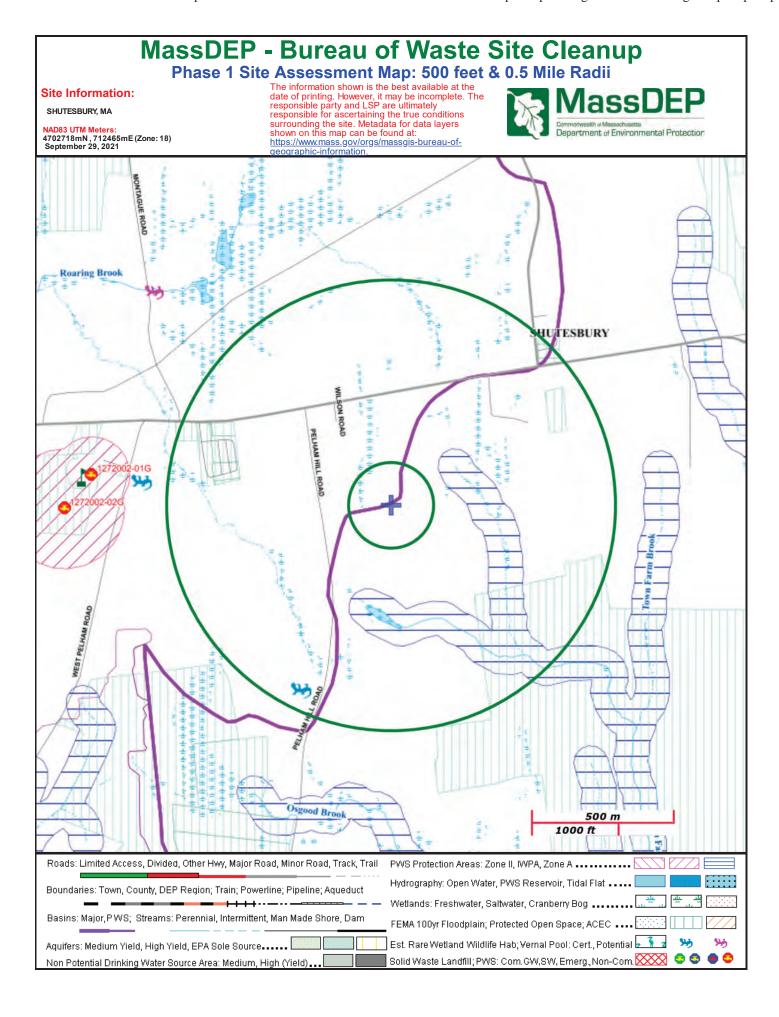

J2060-02-01

FIGURE No.

FILE

LIMITATIONS

- 1. Our report does not present scientific certainties, but rather our professional opinions on the data obtained through our assessment. Our report was prepared for the exclusive benefit of our client and its mortgage lender. Reliance upon the report and its conclusions is not made to third parties or future property owners. We would be pleased to discuss extension of reliance to third parties through execution of a written contract with such parties.
- 2. The observations presented in this report were made under the conditions described herein. The conclusions presented in this report were based solely upon the services described in the report and not on scientific tasks or procedures beyond the scope of the project or the time and budgetary constraints imposed by the client. The work described in this report was carried out in accordance with the contract Terms and Conditions.
- 3. In preparing the report, O'Reilly, Talbot, Okun & Associates, Inc. relied on certain information provided by state and local officials and other parties referenced herein, and on information contained in prior site reports. Although there may have been some degree of overlap in the information provided by these sources, O'Reilly, Talbot, Okun & Associates, Inc. did not attempt to independently verify the accuracy or completeness of all information reviewed or received during the course of this assessment.
- 4. Observations were made of the site and of the structures on the site, as indicated within the report. Where access to portions of the site or to structures on the site was unavailable or limited, we render no opinion as to the presence of hazardous materials or oil, or to the presence of indirect information relating to hazardous materials or oil in that portion of the site. In addition, we render no opinion as to the presence of hazardous materials or oil, where direct observations of portions of the site were obstructed by objects or coverings on or over these surfaces.
- 5. Unless otherwise specified in the Report, we did not perform testing or analyses to determine the presence or concentration of asbestos at the site or in the environment at the site.
- 6. The purpose of this Report was to assess the physical characteristics of the subject site with respect to the presence of hazardous material or oil in soil or groundwater at the site. No specific attempt was made to check on the compliance of present or past owners or operators of the site with federal, state, or local laws and regulations, environmental or otherwise.

1 of 1 9/29/2021, 4:04 PM

BORING LOGS

SUMMARY OF THE BURMISTER SOIL CLASSIFICATION SYSTEM (MODIFIED)

RELATIVE DENSITY (of non-plastic soils) OR CONSISTENCY (of plastic soils)

STANDARD PENETRATION TEST (SPT)

Method: Samples were collected in accordance with ASTM D1586, using a 2" diameter split spoon sampler driven 24 inches. If samples were collected using direct push methodology (Geoprobe), SPTs were not performed and relative density/consistency were not reported. N-Value: The number of blows with a 140 lb. hammer required to drive the sampler the middle 12 inches.

WOR: Weight Of Rod (depth dependent) WOH: Weight Of Hammer (140 lbs.)

COHESIONL	ESS SOILS	COHESIVE SOILS				
BLOWS/FOOT	RELATIVE	BLOWS/FOOT	CONSISTENCY			
(SPT N-Value)	DENSITY	(SPT N-Value)	CONSISTENCY			
0-4	Very loose	<2	Very soft			
4-10	Loose	2-4	Soft			
10-30	10-30 Medium dense		Medium Stiff			
30-50	30-50 Dense		Stiff			
>50 Very dense		15-30	Very stiff			
*Based upon uncorr	ected field N-values	>30	Hard			

MATERIAL: (major constituent identified in CAPITAL letters)

COHESIONLESS SOILS						
MATERIAL	FRACTION	GRAIN SIZE RANGE				
GRAVEL	Coarse	3/4" to 3"				
GRAVEL	Fine	1/4" to 3/4"				
	Coarse	1/16" to 1/4"				
SAND	Medium	1/64" to 1/16"				
	Fine	Finest visible & distinguishable particle				
SILT/CLAY	see adjacent table	Cannot distinguish individual particles				
COBBLES	3" to 6" in diameter					
BOULDERS	> 6" in diameter					
Note: Boulders and cobbles are observed in test pits and/or auger cuttings.						

	COHESIVE SOILS					
SMALLEST	PLASTICITY	IDENTITY				
DIAMETER	PLASTICITI	IDENTITI				
None	Non-plastic	SILT				
1/4" (pencil)	Slight	Clayey SILT				
1/8"	Low	SILT & CLAY				
1/16"	Medium	CLAY & SILT				
1/32"	High	Silty CLAY				
1/64"	Very High	CLAY				
Wetted sample diameter before	is rolled in hands to a	smallest possible				

ORGANIC SILT: Typically gray to dark gray, often has strong H2S odor. May contain shells or shell fragments. Light weight.

Fibrous PEAT: Light weight, spongy, mostly visible organic matter, water squeezed readily from sample. Typically near top of layer. Fine grained PEAT: Light weight, spongy, little visible organic matter, water squeezed from sample. Typically below fibrous peat.

DEBRIS: Detailed contents described in parentheses (wood, glass, ash, crushed brick, metal, etc.)

BEDROCK: Underlying rock beneath loose soil, can be weathered (easily crushed) or competent (difficult to crush).

ADDITIONAL CONSTITUENTS

TERM	% OF TOTAL
and	35-50%
some	20-35%
little	10-20%
trace	1-10%

COMMON TERMS

Glacial till: Very dense/hard, heterogeneous mixture of sand, silt, clay, sub-angular gravel. Deposited at base of glaciers, which covered all of New England.

Varved clay: Fine-grained, post-glacial lake sediments characterized by alternating layers (or varves) of silt, sand and clay.

Fill: Material used to raise ground, can be engineered or non-engineered.

COMMON FIELD MEASUREMENTS

Torvane: Undrained shear strength is estimated using an E285 Pocket Torvane (TV). Values in tons/ft2.

Penetrometer: Unconfined compressive strength is estimated using a Pocket Penetrometer (PP), Values in tons/ft2.

RQD: Rock Quality Designation is determined by measuring total length of pieces of core 4" or greater and dividing by the total length of the run, expressed as %. 100-90% excellent; 90-75% good; 75-50% fair; 50-25% poor; 25-0% very poor.

PID: Soil screened for volatile organic compounds (VOCs) using a photoionization detector (PID) referenced to benzene in air. Readings in parts per million by volume.

Page	1	of	1

PROJECT		77 Leverett			CONTRACTOR	Martin Geo Environmental			
JOB NUMBER		2060-02-01 FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig				
LOCATION		Shutebury, MA	SURFACE	ELEV (ft)		FOREMAN	Phil	CASI	NG
START DATE		9/16/2021	DISTURBE	D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE		9/16/2021	UNDISTUR	BED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIEN	NTIST	Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
PODING				FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	NFORMATION
BORING LOCATION Former Garage		LAST (ft)		HAMMER TYPE	None	TYPE	N/A		
LOOATION	LOCATION			TIME (hr)		HAMMER WGT/DROP	N/A	SIZE	N/A

DEPTH (ft)/ SAMPLES PENETR. RESIST. (bl / 6 in) 45/60 S-1 0-1 S-2 1-3 SAMPLES SAMPLE DESCRIPTION (MODIFIED BURMISTER) SAMPLE DESCRIPTION (MODIFIED BURMISTER) DE SAMPLE DE	PROFILE	REMARKS/ WELL CONSTRUCTION
SAMPLES RESIST. (bl / 6 in) (in) NO. TEST (MODIFIED BURMISTER) 45/60 S-1 0.1 Top 6" Dark brown, MEDIUM to COARSE SAND, some gravel, moist Next 6" Brown, FINE to MEDIUM SAND, some coarse sand, moist Bottom 33" Gray, FINE SAND, some clayand gravel, moist		
(bl / 6 in) (in) NO. DATA 45/60 S-1 0.1 Top 6" Dark brown, MEDIUM to COARSE SAND, some gravel, moist Next 6" Brown, FINE to MEDIUM SAND, some coarse sand, moist Bottom 33" Gray, FINE SAND, some clayand gravel, moist	.,	CONSTRUCTION
45/60 S-1 0.1 Top 6" Dark brown, MEDIUM to COARSE SAND, some gravel, moist Next 6" Brown, FINE to MEDIUM SAND, some coarse sand, moist Bottom 33" Gray, FINE SAND, some clayand gravel, moist		
Next 6" Brown, FINE to MEDIUM SAND, some coarse sand, moist Bottom 33" Gray, FINE SAND, some clayand gravel, moist		
Bottom 33" Gray, FINE SAND, some clayand gravel, moist		
\ /		
/\ S-3 0.0		
/\ 3-5		
5' / \		
60/60 S-4 Top 20" Brown, MEDIUM to COARSE SAND, wet		
Bottom 40" Gray, FINE SAND, some clay and gravel, wet		
10' /		
End of Exploration at 10'		
15'		
20'		
15'		
<u></u>		
<u>[25'</u>		

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-1</u>

LOG OF BORING <u>B-2</u>

Page	1	of	1

PROJECT		77 Leverett			CONTRACTOR	Martin Geo Environmental			
JOB NUMBER		2060-02-01 FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig				
LOCATION		Shutebury, MA	SURFACE	ELEV (ft)		FOREMAN	Phil	CASI	NG
START DATE		9/16/2021	DISTURBE	D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE		9/16/2021	UNDISTUR	BED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIEN	ITIST	Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
BORING Rear of garage, outside storage of drums and Misc. items		l	FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION	
		irums and	LAST (ft)		HAMMER TYPE	None	TYPE	N/A	
			TIME (hr)		HAMMER WGT/DROP	N/A	SIZE	N/A	

	SAMPLES						DEMARKO/	
DEPTH (ft)/	PENETR.	REC.	TYPE/	FIELD	SAMPLE DESCRIPTION	PROFIL	E	REMARKS/ WELL
SAMPLES	RESIST.		NO.	TEST	(MODIFIED BURMISTER)	DEPTH (ft)	ELEV.	CONSTRUCTION
	(bl / 6 in)	(in)	NO.	DATA				CONSTRUCTION
\ /		40/60	S-1	0.0	Top 3" Dark brown, FINE to MEDIUM SAND, some gravel, moist			
$\Gamma \setminus / \exists$			0-1		Bottom 27" Light brown/gray, FINE SAND, some clay and silt, moist			
$-$ \ $/$					Bottom 33" Gray, FINE SAND, some clay and gravel, moist			
$\vdash \setminus / \dashv$			S-2	0.0				
$ \vee$ \neg			1-3					
$\vdash $ $\downarrow $ \dashv								
- /			S-3	0.0				
\vdash /\ \dashv			3-5	0.0				
-/			0.0					
5' /								
 () 		60/60	S-4	0.1	Light brown, FINE SAND, some clay and silt, wet			
$\vdash \setminus /\dashv$		00/00	5-7	0.1	Light brown, I had ordab, some day and sit, wet			
├ \ / ┤			5-1					
$\vdash \setminus / \dashv$								
$\vdash \setminus \setminus \vdash$]
$\vdash \chi \rightarrow$			S-5	0.1				
├ /\				U.T				
\vdash $/ \setminus \dashv$			8-10					
├								
10'								
10' /		00/00	0.0		L'ALL ENE CAND			
$\vdash \setminus / \dashv$		60/60	S-6	0.3	Light brown, FINE SAND, some clay and silt, wet			
├ \ / ┤			10-12					
$\vdash \setminus / \dashv$								
├ \/								
\vdash \lor \dashv								
$\vdash \land \dashv$			S-7	0.1				
\perp /\ \perp			13-15					
L_/_								
\perp / \ \perp								
15' /								
					End of Exploration at 15'			
20'								
20'								
1 7								
25'								
\vdash \dashv								
\vdash \dashv								
\vdash \dashv								
\vdash \dashv								

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-2</u>

Page	1	of	1

PROJECT	77 Leverett	77 Leverett				Martin Geo Environmental			
JOB NUMBER	2060-02-01	FINAL DE	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig			
LOCATION	Shutebury, MA	SURFACE	SURFACE ELEV (ft) FO		FOREMAN	Phil	CASING		
START DATE	9/16/2021	DISTURBE	DISTURBED SAMPLES		HELPER	Adam	CASE DIAMETER	N/A	
FINISH DATE	9/16/2021	UNDISTUR	UNDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A	
ENGINEER/SCIENT	TIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A	
		FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION		
BORING LOCATION	ormer gasoline UST	er gasoline UST			HAMMER TYPE	None	TYPE	N/A	
LOOATION					HAMMER WGT/DROP	N/A	SIZE	N/A	

	SAMPLES					DEMARKS:	
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILI DEPTH (ft)	REMARKS/ WELL
OAIIII EEO	(bl / 6 in)	(in)	NO.	DATA	(mosii ies sorumoreit)	DEI III (II)	 CONSTRUCTION
	(2.7 0)	40/60	S-1 0-1	1.1	Top 5" Dark brown, COARSE SAND, trace gravel, moist Bottom 35" Light brown/gray, FINE SAND, trace gravel, moist		
$\vdash \lor \exists$			S-2 1-3	0.0			
			S-3 3-5	0.0			
5'		40/60	S-4 5-7	0.1	Top 6" Brown, COARSE SAND and GRAVEL, wet Bottom 34" Light gray, FINE SAND, wet		
			S-5 8-10	0.0			
10'							
10 /					End of Exploration at 10'	ł	
\vdash					End of Exploration at 10		
15'							
15'							
\vdash \dashv							
<u> </u>							
\vdash \dashv							
\vdash \dashv							
20'							
<u></u>							
\vdash \dashv							
\vdash \dashv							
\vdash \dashv							
\vdash \dashv							
\vdash							
\vdash \dashv							
15'							
25'							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-3</u>

Page	1	of	1

PROJECT	77 Leverett	77 Leverett				Martin Geo Environmental			
JOB NUMBER	2060-02-01	FINAL DE	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig			
LOCATION	Shutebury, MA	SURFACE	SURFACE ELEV (ft) FO		FOREMAN	Phil	CASING		
START DATE	9/16/2021	DISTURBE	DISTURBED SAMPLES		HELPER	Adam	CASE DIAMETER	N/A	
FINISH DATE	9/16/2021	UNDISTUR	UNDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A	
ENGINEER/SCIENTIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A		
		FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION		
BORING LOCATION	Proposed new Library	osed new Library			HAMMER TYPE	None	TYPE	N/A	
LOOATION					HAMMER WGT/DROP	N/A	SIZE	N/A	

		SAMPL	.ES				DEMARKS:
DEPTH (ft)/ SAMPLES	PENETR. RESIST. (bl / 6 in)	REC. (in)	TYPE/ NO.	FIELD TEST DATA	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELEV.	REMARKS/ WELL CONSTRUCTION
	(BIT O III)	50/60	S-1 0-1	0.6	Top 10" Dark brown, FINE to MEDIUM SAND, some organic, moist Bottom 40" Light brown, FINE SAND, moist		
$\vdash \lor \exists$			S-2 1-3	0.0			
			S-3 3-5	0.0			
5'		60/60	S-4 5-7	0.1	Top 10" Light brown, MEDIUM to COARSE SAND, moist Bottom 60" Light brown, FINE SAND, some clay, wet		
			S-5 8-10	0.1			
10'		40/60	S-6 10-12	0.1	Top 20" Light brown, MEDIUM to COARSE SAND, wet Bottom 20" Light brown/gray, FINE SAND, some clay and silt, wet		
			S-7 13-15	0.1			
15'						,	
					End of Exploration at 15'		
20'							
H -							
\vdash \exists							
$F = \exists$							
25'							
25'							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-4</u>

Page	1	of	1

PROJECT	77 Leverett	77 Leverett				Martin Geo Environmental			
JOB NUMBER	2060-02-01	FINAL DE	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig			
LOCATION	Shutebury, MA	SURFACE	SURFACE ELEV (ft) FO		FOREMAN	Phil	CASING		
START DATE	9/16/2021	DISTURBE	DISTURBED SAMPLES		HELPER	Adam	CASE DIAMETER	N/A	
FINISH DATE	9/16/2021	UNDISTUR	UNDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A	
ENGINEER/SCIENTIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A		
		FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION		
BORING LOCATION	Proposed new Library	osed new Library			HAMMER TYPE	None	TYPE	N/A	
LOOATION					HAMMER WGT/DROP	N/A	SIZE	N/A	

		SAMPL	_ES				DEMARKS:
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELEV.	REMARKS/ WELL
SAMPLES	(bl / 6 in)	(in)	NO.	DATA	(MODII ILD BORMISTER)	DEPTH (II) ELEV.	CONSTRUCTION
$\vdash \setminus $		45/60	S-1	4.7	Top 7" Brown, ORGANICS, moist		
$\vdash \setminus / \dashv$			0-1		Next 5" Brown, MEDIUM SAND, moist Bottom 33" Brown/Light gray, FINE to COARSE SAND, moist		
			S-2	0.3	Bottom of Brown, Eight gray, Three to our title of the finance		
$\vdash \lor \dashv$			1-3				
$\vdash \land \dashv$			S-3	0.5			
			3-5				
5' /							
5 ()		60/60	S-4	0.0	Top 20" Brown/Light gray, FINE to COARSE SAND, wet		
			5-7		Bottom 40" Light gray, FINE SAND, some clay and silt, wet		
$\vdash \setminus / \dashv$							
$\vdash \lor \dashv$							
			S-5	0.0			
$\vdash / \setminus \dashv$			8-10				
$\vdash \vdash / \mid \vdash \mid$							
10'							
$\vdash \setminus /\dashv$		30/60	S-6 10-12	0.0	Light gray, FINE SAND, some clay and silt, wet		
$\vdash \setminus / \dashv$			10-12				
$\square \setminus / \exists$							
$\vdash X \dashv$			S-7	0.0			
			13-15	0.0			
├							
15'							
					End of Exploration at 15'		
\vdash \dashv							
\vdash \dashv							
\vdash \dashv							
20'							
\vdash \dashv							
\vdash \dashv							
\vdash \dashv							
\vdash							
25'							
\vdash							
20'							
\vdash \dashv							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-5</u>

Page	1	of	1

PROJECT		77 Leverett				CONTRACTOR	Martin Geo Environmental		
JOB NUMBER		2060-02-01	FINAL DE	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig		
LOCATION Shutebury, MA SURFACE		SURFACE	SURFACE ELEV (ft)		FOREMAN	Phil CASING		NG	
START DATE		9/16/2021 DISTURBED		D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE		9/16/2021 UNDISTURE		IDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIEN	NTIST	Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
BODINO				FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION
BORING LOCATION	Propo	posed new leach field		LAST (ft)		HAMMER TYPE	None	TYPE	N/A
LOCATION			TIME (hr)		HAMMER WGT/DROP	N/A	SIZE	N/A	

		SAMPL	_ES				BEMARKS:
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION	PROFILE	REMARKS/ WELL
SAMPLES	(bl / 6 in)	(in)	NO.	DATA	(MODIFIED BURMISTER)	DEPTH (ft) ELEV.	CONSTRUCTION
- $/-$		45/60	S-1	0.0	Top 10" Brown, ORGANICS, moist		
$\vdash \setminus / \dashv$			0-1		Next 8" Brown, FINE to COARSE SAND, little silt, moist Bottom 27" Gray, MEDIUM to COARSE SAND, some clay and silt, wet		
			S-2	0.0			
$\vdash \lor \dashv$			1-3				
			S-3	0.0			
\Box / \ \Box			3-5				
5' /							
		60/60	S-4	0.0	Top 10" Gray/brown, FINE to MEDIUM SAND, wet		
├ -\ /⊣			5-7		Bottom 50" Gray, FINE to MEDIUM SAND, some silt and clay, wet		
$\vdash \lor \dashv$			0.5	0.0			
$\vdash \land \dashv$			S-5 8-10	0.0			
10'							
		60/60	S-6	0.0	Gray, FINE to MEDIUM SAND, some silt and clay, wet		
├ -\ /-			10-12				
$\vdash \setminus / \dashv$							
$\vdash \land \dashv$			S-7 13-15	0.0			
15'							
					End of Exploration at 15'		
<u> </u>							
\vdash \dashv							
<u> </u>							
20'							
\vdash \dashv							
\vdash \dashv							
\vdash							
20'							
\vdash \dashv							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-6</u>

Page	1	of	1

PROJECT	77 Leverett	77 Leverett				Martin Geo Environmental		
JOB NUMBER	2060-02-01	FINAL DE	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig		
LOCATION	Shutebury, MA	SURFACE	SURFACE ELEV (ft)		FOREMAN	Phil	CASING	
START DATE	9/16/2021	DISTURBE	DISTURBED SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE	9/16/2021	UNDISTUR	UNDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIEN	TIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
DODINO			FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION
BORING LOCATION Form	ormer trash dump	er trash dump			HAMMER TYPE	None	TYPE	N/A
LOOKHON					HAMMER WGT/DROP	N/A	SIZE	N/A

		SAMPL	.ES				DEMARKS:
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION	PROFILE	REMARKS/ WELL
SAMPLES	(bl / 6 in)	(in)	NO.	DATA	(MODIFIED BURMISTER)	DEPTH (ft) ELEV.	CONSTRUCTION
- $/-$		40/60	S-1	6.8	Top 3" Brown, ORGANICS, moist		
$\vdash \setminus /\dashv$			0-1		Next 4" Brown, FINE to MEDIUM SAND, moist Bottom 33" Light brown/gray, FINE to COARSE SAND, wet		
$\vdash \setminus / \exists$			S-2	0.4			
$\vdash \lor \dashv$			1-3				
			S-3	0.1			
├ / \⊣			3-5				
5' / \							
		60/60	S-4	0.1	Top 15" Light brown/gray, FINE to COARSE SAND, wet		
├ -\ /⊣			5-7		Bottom 45" Light brown/gray, FINE to COARSE SAND, some clay and silt, wet		
$\vdash \lor \dashv$			0.5	0.4			
$\vdash \land \dashv$			S-5 8-10	0.1			
\Box / \ \Box							
10'							
		60/60	S-6	0.1	Top 20" Light Brown/gray, FINE to MEDIUM SAND, wet		
├ -\ /-			10-12		Bottom 40" Light brown/gray, FINE to COARSE SAND, some clay and silt, wet		
$\vdash \setminus / \dashv$							
$\vdash \land \dashv$			S-7 13-15	0.1			
15'							
					End of Exploration at 15'		
├							
\vdash \dashv							
\vdash							
20'							
\vdash \dashv							
\vdash \neg							
\vdash							
20'							
\vdash \dashv							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-7</u>

Page	1	of	1

PROJECT	77 Leverett	77 Leverett				Martin Geo Environmental		
JOB NUMBER	2060-02-01	2060-02-01 FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig			
LOCATION	Shutebury, MA SURFACE ELE		ACE ELEV (ft) FOREMAN Phil		Phil	CASING		
START DATE	9/16/2021	DISTURBE	D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE	9/16/2021	UNDISTUR	BED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIENT	TIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
DODING		er trash dump			SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION
BORING LOCATION Forme	ormer trash dump				HAMMER TYPE	None	TYPE	N/A
LOCATION					HAMMER WGT/DROP	N/A	SIZE	N/A

		SAMPI	LES			I	DE114 DVQ:
DEPTH (ft)/ SAMPLES	PENETR. RESIST.	REC.	TYPE/	FIELD TEST	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELEV.	REMARKS/ WELL
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(bl / 6 in)	(in)	NO.	DATA		(1)	CONSTRUCTION
$\vdash \setminus / \vdash$		45/60	S-1 0-1		Top 15" Dark brown, MEDIUM SAND, some organics, moist Next 5" Brown, MEDIUM to COARSE SAND, moist		
$\vdash \setminus / =$			S-2	0.7	Bottom 25" Light gray, FINE SAND, some silt and clay, moist		
			1-3	0.7			
$\vdash \land \vdash$			S-3	0.4			
			3-5				
5' /							
$\vdash \setminus \vdash$		55/60	S-4 5-7	0.0	Light gray, FINE SAND, some silt and clay, moist, wet		
├ \/=			3-1				
$\vdash \lor \vdash$							
$\vdash \land =$			S-5 8-10	0.0			
			6-10				
10'							
		50/60	S-6	0.0	Light gray, FINE SAND, some silt and clay, wet		
├ \ /=			10-12				
$\vdash \lor =$							
L			S-7	0.0			
$\vdash / \setminus \vdash$			13-15				
15'							
/					End of Exploration at 15'	İ	
<u> </u>							
\vdash \vdash							
20'							
20'							
<u> </u>							
L =							
$\vdash =$							
25'							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING B-8

Page	1	of	1

PROJECT	77 Leverett				CONTRACTOR	Martin Geo Environmental		
JOB NUMBER	2060-02-01	FINAL DE	PTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig		
LOCATION	Shutebury, MA	ury, MA SURFACE E			FOREMAN	Phil CASING		NG
START DATE	9/16/2021	DISTURBE	D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A
FINISH DATE	9/16/2021	UNDISTUF	RBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A
ENGINEER/SCIENT	NEER/SCIENTIST Erica Escobar		WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A
DODULO					SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION
BORING LOCATION Form	Former transformer pad	er transformer pad			HAMMER TYPE	None	TYPE	N/A
					HAMMER WGT/DROP	N/A	SIZE	N/A

		SAMPI	_ES				DE114 D/C/
DEPTH (ft)/ SAMPLES	PENETR. RESIST. (bl / 6 in)	REC. (in)	TYPE/ NO.	FIELD TEST DATA	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELEV.	REMARKS/ WELL CONSTRUCTION
=\ /=	(2.7 5)	30/60	S-1 0-1	20.0	Top 3" Brown, MEDIUM to COARSE SAND, some gravel, trace organics, moist Bottom 27" Brown, FINE SAND, some clay and silt, moist		
$\vdash \lor \exists$			S-2 1-3	0.5			
			S-3 3-5	0.2			
5'		35/60	S-4 5-7	0.2	Brown, FINE SAND, some clay and silt		
			S-5 8-10	780			
10'		40/60	S-6 10-12	616	Brown, FINE SAND, some clay and silt, wet		
			S-7 13-15	247			
15'		60/60	S-8 15-17	2.4	Brown, FINE SAND, some clay and silt, wet		
			S-9 18-20	2.0			
20'							
					End of Exploration at 20'		
25'							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-9</u>

Page	1	of	1

PROJECT		77 Leverett				CONTRACTOR	Martin Geo Environmental				
JOB NUMBER		2060-02-01	FINAL DE	PTH (ft)		DRILLING EQUIPMENT	B-48 Track Mounted Rig	B-48 Track Mounted Rig			
LOCATION		Shutebury, MA	ebury, MA SURFACE		SURFACE ELEV (ft)			FOREMAN	Phil CASING		NG
START DATE		9/16/2021	DISTURBE	D SAMPLES		HELPER	Adam	CASE DIAMETER	N/A		
FINISH DATE		9/16/2021 UNDISTU		UNDISTURBED SAMPLES		BIT TYPE	Direct Push	HAMMER WGT	N/A		
ENGINEER/SCIE	ENGINEER/SCIENTIST Erica Escobar			WATER LE	VEL	ROD TYPE	None	HAMMER DROP	N/A		
DODINO				FIRST (ft)		SAMPLER	5' Dual Tube Liner	ROCK CORING	INFORMATION		
BORING LOCATION	Area	rea where car was abandoned		LAST (ft)		HAMMER TYPE	None	TYPE	N/A		
LOOATION				TIME (hr)		HAMMER WGT/DROP	N/A	SIZE	N/A		

		SAMPL	ES				REMARKS/
DEPTH (ft)/ SAMPLES	PENETR. RESIST. (bl / 6 in)	REC. (in)	TYPE/ NO.	FIELD TEST DATA	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELEV.	WELL CONSTRUCTION
	(con cons)	40/60	S-1 0-1	7.8	Top 10" ORGANICS Next 6" Brown/orange, FINE to MEDIUM SAND, some silt, moist Bottom 24" Light brown, FINE to MEDIUM SAND, some silt, wet		
			S-2 1-3	9.3			
5'			S-3 3-5	0.3			
5 /		35/60	S-4 5-7	0.5	Light brown, FINE to MEDIUM SAND, some silt, trace boulders, wet		
			S-5 8-10	0.2			
10'		50/60	S-6 10-12	0.1	Top 10" Light brown/gray, MEDIUM to COARSE SAND, wet Bottom 40" Brown, FINE to MEDIUM SAND, some silt and clay, wet		
15'			S-7 13-15	0.2			
15' /					End of Exploration at 15'	•	
\vdash \dashv							
20'							
20'							
\vdash \dashv							
\vdash \dashv							
25'							
\vdash \dashv							

Remarks:	PROJECT NO. 2060-02-01
	LOG OF BORING <u>B-10</u>

ĀÄ!"#\$%&!'#&&'()*+',-./0&*1-23 45 67689(:5; <7Ā=>8>?@<**6**;A),B<7Ā=>8>?8ĀĀ8

September 23, 2021

Mark O'Malley OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103

Project Location: Shutesbury, MA

Client Job Number:

Project Number: 2060-02-01

Laboratory Work Order Number: 21I0921

Enclosed are results of analyses for samples received by the laboratory on September 17, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	8
21I0921-01	8
21I0921-02	13
21I0921-03	16
21I0921-04	21
21I0921-05	24
21I0921-06	29
21I0921-07	32
21I0921-08	35
21I0921-09	38
21I0921-10	40
21I0921-11	45
Sample Preparation Information	50
QC Data	52
Volatile Organic Compounds by GC/MS	52
B290528	52
B290543	56
Polychlorinated Biphenyls By GC/ECD	61
B290486	61
Petroleum Hydrocarbons Analyses - EPH	63
B290504	63
Petroleum Hydrocarbons Analyses - VPH	66
B290675	66

Table of Contents (continued)

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	68
B290709	68
Dual Column RPD Report	69
Flag/Qualifier Summary	73
Certifications	74
Chain of Custody/Sample Receipt	79

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103 ATTN: Mark O'Malley

REPORT DATE: 9/23/2021

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2060-02-01

ANALYTICAL SUMMARY

21I0921 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Shutesbury, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
B-1 (5-7)	21I0921-01	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
				SW-846 8260C-D	
B-2 (1-3)	21I0921-02	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
B-3 (5-7)	21I0921-03	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
				SW-846 8260C-D	
B-4 (3-5)	21I0921-04	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
B-5 (5-7)	21I0921-05	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
				SW-846 8260C-D	
B-6 (3-5)	21I0921-06	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
B-7 (0-1)	21I0921-07	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
B-8 (1-3)	21I0921-08	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
B-9 (0-1)	2110921-09	Soil		SM 2540G	
				SW-846 8082A	
B-9 (8-10)	21I0921-10	Soil		MADEP-VPH-Feb	
				2018 Rev 2.1	
				SM 2540G	
				SW-846 8082A	
				SW-846 8260C-D	
B-10 (1-3)	21I0921-11	Soil		MADEP EPH rev	2.1
				SM 2540G	
				SW-846 8082A	
				SW-846 8260C-D	

ĀÄ!"#\$%&!#&&'()*+',-./0&*1-23 45 67689(:5; <7Ā=>8>?@<\$A),B<7Ā=>8>?8ĀĀ8

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

ĀÄ!"#\$%&!'#&&'()*+',-./0&*1-23 45 67689 (:5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

MADEP-VPH-Feb 2018 Rev 2.1

Qualifications:

O-01

Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount. Analyte & Samples(s) Qualified:

21I0921-10[B-9 (8-10)]

S-15

Surrogate recovery outside of control limits due to suspected sample matrix interference. Chromatogram(s) is attached.

Analyte & Samples(s) Qualified:

21I0921-10[B-9 (8-10)]

SW-846 8082A

Qualifications:

O-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

 $2110921-01[B-1\ (5-7)], 2110921-02[B-2\ (1-3)], 2110921-03[B-3\ (5-7)], 2110921-04[B-4\ (3-5)], 2110921-05[B-5\ (5-7)], 2110921-06[B-6\ (3-5)], 2110921-07[B-7\ (0-1)], 2110$ 21I0921-08[B-8 (1-3)], 21I0921-09[B-9 (0-1)], 21I0921-10[B-9 (8-10)], 21I0921-11[B-10 (1-3)]

SW-846 8260C-D

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Chloroethane

B290528-BS1

RL-05

Elevated reporting limit due to high concentration of target compounds. MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

21I0921-10[B-9 (8-10)]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Dichlorodifluoromethane (Freon 12

 $2110921 - 01[B - 1 \ (5 - 7)], 2110921 - 03[B - 3 \ (5 - 7)], 2110921 - 05[B - 5 \ (5 - 7)], 2110921 - 11[B - 10 \ (1 - 3)], B290543 - BLK1, B290543 - BSD1, B290540 - BSD1,$

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result.
Analyte & Samples(s) Qualified:

1,4-Dioxane

S063414-CCV1, S063445-CCV1

Tetrahydrofuran

S063414-CCV1

ĀÄ!"#\$%&!'#&&'()*+',-./0&*1-23

<7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8 45 67689 (:5;

V-20

Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound. Analyte & Samples(s) Qualified:

Bromoform

B290528-BS1, B290528-BSD1, B290543-BS1, B290543-BSD1, S063414-CCV1, S063445-CCV1

Chloroethane

B290528-BS1, B290528-BSD1, S063445-CCV1

Dichlorodifluoromethane (Freon 12

B290528-BS1, B290528-BSD1, S063445-CCV1

Hexachlorobutadiene

B290543-BS1, B290543-BSD1, S063414-CCV1

V-34

Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

Analyte & Samples(s) Qualified:

Bromomethane

21I0921-10[B-9 (8-10)], B290528-BLK1, B290528-BS1, B290528-BSD1, S063445-CCV1

MADEP-VPH-Feb 2018 Rev 2.1

No significant modifications were made to the method. All VPH samples were received properly in methanol with a soil/methanol ratio of 1:1 +/- 25% completely covered by methanol in the proper containers specified on the chain-of-custody form unless specified in this narrative.

Analytical column used for VPH analysis is Restek, Rtx-502.2, 105meter, 0.53mmID, 3um df. Trap used for VPH analysis is Carbopack B/CarboSieveS-III.

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing. I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the

Technical Representative

best of my knowledge and belief, accurate and complete.

Lua Webblington

ĀÄ !"#\$%& !'#&&' ()*+' ,-./0&*1-23

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-1 (5-7)

Sample ID: 2110921-01

Sample Matrix: Soil

Sampled: 9/16/2021 08:30

Volatile Organic Compounds by GC/MS

Volatile Organic Compounds by GC/MS												
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst			
Acetone	ND	0.057	mg/Kg dry	1	-	SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
tert-Amyl Methyl Ether (TAME)	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Benzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Bromobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Bromochloromethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Bromodichloromethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Bromoform	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Bromomethane	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
2-Butanone (MEK)	ND	0.023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
n-Butylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
sec-Butylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
tert-Butylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
tert-Butyl Ethyl Ether (TBEE)	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Carbon Disulfide	ND	0.0034	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Carbon Tetrachloride	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Chlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Chlorodibromomethane	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Chloroethane	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Chloroform	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Chloromethane	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
2-Chlorotoluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
4-Chlorotoluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,2-Dibromoethane (EDB)	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Dibromomethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,2-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,3-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,4-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Dichlorodifluoromethane (Freon 12)	ND	0.0057	mg/Kg dry	1	V-05	SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,1-Dichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,2-Dichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,1-Dichloroethylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
cis-1,2-Dichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
trans-1,2-Dichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,2-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,3-Dichloropropane	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
2,2-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,1-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
cis-1,3-Dichloropropene	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
trans-1,3-Dichloropropene	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Diethyl Ether	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Diisopropyl Ether (DIPE)	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
1,4-Dioxane	ND	0.057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
Ethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF			
-				•			· · · · · · · [Page 8 d				

Page 8 of 83

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-1 (5-7)

Sampled: 9/16/2021 08:30

Sample ID: 21I0921-01
Sample Matrix: Soil

Volatile	Organic	Compounds	by GC/MS

			8						
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
2-Hexanone (MBK)	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Isopropylbenzene (Cumene)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Methylene Chloride	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Naphthalene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
n-Propylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Styrene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,1,1,2-Tetrachloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,1,2,2-Tetrachloroethane	ND	0.00057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Tetrachloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Tetrahydrofuran	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Toluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,2,3-Trichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,2,4-Trichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,1,1-Trichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,1,2-Trichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Trichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,2,3-Trichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,2,4-Trimethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
1,3,5-Trimethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Vinyl Chloride	ND	0.0057	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
m+p Xylene	ND	0.0023	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
o-Xylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:02	MFF
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		96.2	70-130					9/20/21 10:02	
Toluene-d8		98.4	70-130					9/20/21 10:02	
4-Bromofluorobenzene		94.6	70-130					9/20/21 10:02	

Work Order: 21I0921

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA Date Received: 9/17/2021

Shutesbury, MA Sample Description:

Field Sample #: B-1 (5-7) Sample ID: 21I0921-01 Sampled: 9/16/2021 08:30

Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1221 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1232 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1242 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1248 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1254 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1260 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1262 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Aroclor-1268 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 10:52	TG
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		97.9	30-150					9/22/21 10:52	
Decachlorobiphenyl [2]		89.9	30-150					9/22/21 10:52	
Tetrachloro-m-xylene [1]		82.0	30-150					9/22/21 10:52	
Tetrachloro-m-xylene [2]		83.4	30-150					9/22/21 10:52	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-1 (5-7)

Sampled: 9/16/2021 08:30

Sample ID: 21I0921-01
Sample Matrix: Soil

Petroleum	Hydrocarbo	ns Analyses - EPI	1
-----------	------------	-------------------	---

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1	ring/Quur	MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
						MADEP EPH rev 2.1			
Anthracene	ND	0.11	mg/Kg dry	1			9/18/21	9/22/21 14:40	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 14:40	RDD
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Chlorooctadecane (COD)		69.6	40-140					9/22/21 14:40	
o-Terphenyl (OTP)		67.3	40-140					9/22/21 14:40	
2-Bromonaphthalene		80.7	40-140					9/22/21 14:40	
2-Fluorobiphenyl		79.5	40-140					9/22/21 14:40	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Sample Description:

Work Order: 21I0921

Field Sample #: B-1 (5-7) Sample ID: 21I0921-01

Sample Matrix: Soil

Sampled: 9/16/2021 08:30

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		89.4		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

Work Order: 21I0921

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description: Date Received: 9/17/2021

Field Sample #: B-2 (1-3) Sample ID: 21I0921-02 Sample Matrix: Soil

Sampled: 9/16/2021 09:00

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	ECD/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1221 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1232 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1242 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1248 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1254 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1260 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1262 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Aroclor-1268 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:09	TG
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		96.4	30-150					9/22/21 11:09	
Decachlorobiphenyl [2]		88.9	30-150					9/22/21 11:09	
Tetrachloro-m-xylene [1]		81.6	30-150					9/22/21 11:09	
Tetrachloro-m-xylene [2]		83.0	30-150					9/22/21 11:09	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-2 (1-3)

Sampled: 9/16/2021 09:00

Sample ID: 21I0921-02
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses	- EPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:07	RDD
Surrogates		% Recovery	Recovery Limits	<u> </u>	Flag/Qual				
Chlorooctadecane (COD)		59.6	40-140					9/22/21 11:07	
o-Terphenyl (OTP)		56.6	40-140					9/22/21 11:07	
2-Bromonaphthalene		80.0	40-140					9/22/21 11:07	
2-Fluorobiphenyl		81.5	40-140					9/22/21 11:07	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Sample Description:

Work Order: 21I0921

Field Sample #: B-2 (1-3)

Sampled: 9/16/2021 09:00

Sample ID: 21I0921-02 Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		90.7		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

ĀÄ!"#\$%&!'#&&'()*+',-./0&*1-23 45 676

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 **Field Sample #: B-3 (5-7)**

Sampled: 9/16/2021 09:30

Sample ID: 21I0921-03
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

	ъ. т	D.	- ·	Dil d	FI. (0. 1		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone tert-Amyl Methyl Ether (TAME)	ND	0.053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Benzene	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Bromobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Bromochloromethane Bromodichloromethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Bromoform	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Bromomethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
2-Butanone (MEK)	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
n-Butylbenzene	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
sec-Butylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
•	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
tert-Butylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Carbon Disulfide	ND	0.0032	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Carbon Tetrachloride	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Chlorodihamanathama	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Chlorodibromomethane	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Chloroethane	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Chloroform	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Chloromethane	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
2-Chlorotoluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
4-Chlorotoluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2-Dibromoethane (EDB)	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Dibromomethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,3-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,4-Dichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.0053	mg/Kg dry	1	V-05	SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1-Dichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2-Dichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
cis-1,2-Dichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
trans-1,2-Dichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,3-Dichloropropane	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
2,2-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
cis-1,3-Dichloropropene	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
trans-1,3-Dichloropropene	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Diethyl Ether	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Diisopropyl Ether (DIPE)	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,4-Dioxane	ND	0.053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Ethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
								Page 16	of 83

Page 16 of 83

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-3 (5-7)

Sampled: 9/16/2021 09:30

Sample ID: 21I0921-03
Sample Matrix: Soil

Volatile Or	ganic	Compoun	ds l	by C	GC/MS
-------------	-------	---------	------	------	-------

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
2-Hexanone (MBK)	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Isopropylbenzene (Cumene)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Methylene Chloride	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Naphthalene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
n-Propylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Styrene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1,1,2-Tetrachloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1,2,2-Tetrachloroethane	ND	0.00053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Tetrachloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Tetrahydrofuran	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Toluene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2,3-Trichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2,4-Trichlorobenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1,1-Trichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,1,2-Trichloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Trichloroethylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Trichlorofluoromethane (Freon 11)	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2,3-Trichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,2,4-Trimethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
1,3,5-Trimethylbenzene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Vinyl Chloride	ND	0.0053	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
m+p Xylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
o-Xylene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:30	MFF
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
1,2-Dichloroethane-d4		94.3	70-130					9/20/21 10:30	
Toluene-d8		97.2	70-130					9/20/21 10:30	
4-Bromofluorobenzene		97.6	70-130					9/20/21 10:30	

Work Order: 21I0921

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021 Field Sample #: B-3 (5-7)

Sample Description:

Sampled: 9/16/2021 09:30

Sample ID: 21I0921-03 Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1221 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1232 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1242 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1248 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1254 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1260 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1262 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Aroclor-1268 [1]	ND	0.090	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:27	TG
Surrogates		% Recovery	Recovery Limits	S	Flag/Qual				
Decachlorobiphenyl [1]		90.5	30-150					9/22/21 11:27	
Decachlorobiphenyl [2]		83.7	30-150					9/22/21 11:27	
Tetrachloro-m-xylene [1]		75.3	30-150					9/22/21 11:27	
Tetrachloro-m-xylene [2]		77.3	30-150					9/22/21 11:27	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-3 (5-7)

Sampled: 9/16/2021 09:30

Sample ID: 21I0921-03
Sample Matrix: Soil

Petroleum	Hydrocarbons A	Analyses - EPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1	r mg/ Qum	MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Acenaphthene		0.11				MADEP EPH rev 2.1	9/18/21		
•	ND		mg/Kg dry	1				9/22/21 11:26	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:26	RDD
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Chlorooctadecane (COD)		57.5	40-140					9/22/21 11:26	
o-Terphenyl (OTP)		59.0	40-140					9/22/21 11:26	
2-Bromonaphthalene		83.6	40-140					9/22/21 11:26	
2-Fluorobiphenyl		84.8	40-140					9/22/21 11:26	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-3 (5-7)

Sample Description:

Work Order: 21I0921

Sample ID: 2110921-03

Sample Matrix: Soil

Sampled: 9/16/2021 09:30

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		89.2		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Sample Description:

Work Order: 21I0921

Field Sample #: B-4 (3-5)

Sampled: 9/16/2021 10:00

Sample ID: 21I0921-04
Sample Matrix: Soil

Sample Flags: O-32		Po	olychlorinated Bipho	enyls By GC/	ECD .				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1221 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1232 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1242 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1248 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1254 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1260 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1262 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Aroclor-1268 [1]	ND	0.089	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:39	TG
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		84.5	30-150					9/22/21 11:39	
Decachlorobiphenyl [2]		78.6	30-150					9/22/21 11:39	
Tetrachloro-m-xylene [1]		71.6	30-150					9/22/21 11:39	
Tetrachloro-m-xylene [2]		73.1	30-150					9/22/21 11:39	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-4 (3-5)

Sampled: 9/16/2021 10:00

Sample ID: 21I0921-04
Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1	0 -	MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 11:45	RDD
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Chlorooctadecane (COD)		57.4	40-140					9/22/21 11:45	
o-Terphenyl (OTP)		59.5	40-140					9/22/21 11:45	
2-Bromonaphthalene		73.6	40-140					9/22/21 11:45	
2-Fluorobiphenyl		77.1	40-140					9/22/21 11:45	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-4 (3-5)

Sample Description:

Work Order: 21I0921

Field Sample #: B-4 (3-Sample ID: 2110921-04 Sampled: 9/16/2021 10:00

Sample ID: 21I0921-04
Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		89.8		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-5 (5-7)

Sampled: 9/16/2021 10:30

Sample ID: 21I0921-05
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

			Volatile Organic Con	ipounds by G	C/MS				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Acetone	ND	0.10	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
tert-Amyl Methyl Ether (TAME)	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Benzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Bromobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Bromochloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Bromodichloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Bromoform	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Bromomethane	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
2-Butanone (MEK)	ND	0.041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
n-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
sec-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
tert-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
tert-Butyl Ethyl Ether (TBEE)	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Carbon Disulfide	ND	0.0062	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Carbon Tetrachloride	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Chlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Chlorodibromomethane	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Chloroethane	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Chloroform	ND	0.0041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Chloromethane	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
2-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
4-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2-Dibromoethane (EDB)	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Dibromomethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,3-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,4-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Dichlorodifluoromethane (Freon 12)	ND	0.010	mg/Kg dry	1	V-05	SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1-Dichloroethylene	ND	0.0041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
cis-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
trans-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,3-Dichloropropane	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
2,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1-Dichloropropene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
cis-1,3-Dichloropropene	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
trans-1,3-Dichloropropene	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Diethyl Ether	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Diisopropyl Ether (DIPE)	ND ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,4-Dioxane	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Ethylbenzene	ND ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Lang to the control of the control o	ND	0.0021	mg/kg dry	1		5 W-040 0200C-D	9/20/21 [Page 24	

Page 24 of 83

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-5 (5-7)

Sampled: 9/16/2021 10:30

Sample ID: 21I0921-05
Sample Matrix: Soil

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
2-Hexanone (MBK)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Isopropylbenzene (Cumene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Methylene Chloride	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Naphthalene	ND	0.0041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
n-Propylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Styrene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1,1,2-Tetrachloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Tetrachloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Tetrahydrofuran	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Toluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2,3-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2,4-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1,1-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,1,2-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Trichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Trichlorofluoromethane (Freon 11)	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2,3-Trichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,2,4-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
1,3,5-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Vinyl Chloride	ND	0.010	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
m+p Xylene	ND	0.0041	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
o-Xylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 10:59	MFF
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
1,2-Dichloroethane-d4		97.9	70-130					9/20/21 10:59	
Toluene-d8		98.7	70-130					9/20/21 10:59	
4-Bromofluorobenzene		98.0	70-130					9/20/21 10:59	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 Field Sample #: B-5 (5-7)

Sampled: 9/16/2021 10:30

Sample ID: 21I0921-05 Sample Matrix: Soil

Sample Flags: O-32		Po	olychlorinated Bipho	enyls By GC	/ECD				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1221 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1232 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1242 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1248 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1254 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1260 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1262 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Aroclor-1268 [1]	ND	0.091	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 11:52	TG
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
Decachlorobiphenyl [1]		85.1	30-150					9/22/21 11:52	
Decachlorobiphenyl [2]		79.0	30-150					9/22/21 11:52	
Tetrachloro-m-xylene [1]		75.2	30-150					9/22/21 11:52	
Tetrachloro-m-xylene [2]		77.2	30-150					9/22/21 11:52	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-5 (5-7)

Sampled: 9/16/2021 10:30

Sample ID: 21I0921-05
Sample Matrix: Soil

Petroleum	Hydrocarbons Analyse	s - EPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1	1 mg/ 2 mm	MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Acenaphthene		0.11				MADEP EPH rev 2.1	9/18/21		
•	ND		mg/Kg dry	1				9/22/21 12:05	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:05	RDD
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Chlorooctadecane (COD)		60.9	40-140					9/22/21 12:05	
o-Terphenyl (OTP)		60.1	40-140					9/22/21 12:05	
2-Bromonaphthalene		75.8	40-140					9/22/21 12:05	
2-Fluorobiphenyl		78.7	40-140					9/22/21 12:05	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-5 (5-7)

Sample Description:

Work Order: 21I0921

Sample ID: 21I0921-05
Sample Matrix: Soil

Sampled: 9/16/2021 10:30

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		88.3		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 Field Sample #: B-6 (3-5)

Sampled: 9/16/2021 11:00

Sample ID: 21I0921-06 Sample Matrix: Soil

Sample Flags: O-32		Pe	olychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1221 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1232 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1242 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1248 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1254 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1260 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1262 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Aroclor-1268 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:04	TG
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		84.3	30-150					9/22/21 12:04	
Decachlorobiphenyl [2]		78.9	30-150					9/22/21 12:04	
Tetrachloro-m-xylene [1]		74.0	30-150					9/22/21 12:04	
Tetrachloro-m-xylene [2]		75.7	30-150					9/22/21 12:04	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 **Field Sample #: B-6 (3-5)**

Sampled: 9/16/2021 11:00

Sample ID: 21I0921-06
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses	- EPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:24	RDD
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Chlorooctadecane (COD)		53.8	40-140					9/22/21 12:24	
o-Terphenyl (OTP)		55.1	40-140					9/22/21 12:24	
2-Bromonaphthalene		71.0	40-140					9/22/21 12:24	
2-Fluorobiphenyl		71.7	40-140					9/22/21 12:24	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: R-6 (3-5)

Sample Description:

Work Order: 21I0921

Field Sample #: B-6 (3-5)

Sampled: 9/16/2021 11:00

Sample ID: 21I0921-06
Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		90.9		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-7 (0-1)

Sampled: 9/16/2021 11:30

Sample ID: 21I0921-07
Sample Matrix: Soil

Sample Flags: O-32		Po	olychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1221 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1232 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1242 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1248 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1254 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1260 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1262 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Aroclor-1268 [1]	ND	0.095	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:16	TG
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Decachlorobiphenyl [1]		99.2	30-150					9/22/21 12:16	
Decachlorobiphenyl [2]		92.3	30-150					9/22/21 12:16	
Tetrachloro-m-xylene [1]		82.4	30-150					9/22/21 12:16	
Tetrachloro-m-xylene [2]		84.0	30-150					9/22/21 12:16	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-7 (0-1)

Sampled: 9/16/2021 11:30

Sample ID: 21I0921-07
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses - EPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	12	mg/Kg dry	1	g	MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
C19-C36 Aliphatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Unadjusted C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Acenaphthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Acenaphthylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Benzo(a)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Benzo(a)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Benzo(b)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Benzo(g,h,i)perylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Benzo(k)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Chrysene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Dibenz(a,h)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Fluorene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Indeno(1,2,3-cd)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
2-Methylnaphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Naphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Phenanthrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 12:44	RDD
Pyrene						MADEP EPH rev 2.1			
	ND	0.12	mg/Kg dry	1	TI (0 1	MADER EFH IEV 2.1	9/18/21	9/22/21 12:44	RDD
Surrogates		% Recovery	Recovery Limits	8	Flag/Qual			0/22/21 12 14	
Chlorooctadecane (COD)		61.3	40-140					9/22/21 12:44	
o-Terphenyl (OTP)		55.9	40-140					9/22/21 12:44	
2-Bromonaphthalene		69.8	40-140					9/22/21 12:44	
2-Fluorobiphenyl		72.4	40-140					9/22/21 12:44	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-7 (0-1)

Sample Description:

Sampled: 9/16/2021 11:30

Work Order: 21I0921

Sample ID: 2110921-07
Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		83.9		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-8 (1-3)

Sampled: 9/16/2021 12:00

Sample ID: 21I0921-08
Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Biph	enyls By GC	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1221 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1232 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1242 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1248 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1254 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1260 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1262 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Aroclor-1268 [1]	ND	0.092	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:29	TG
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
Decachlorobiphenyl [1]		89.5	30-150					9/22/21 12:29	
Decachlorobiphenyl [2]		83.5	30-150					9/22/21 12:29	
Tetrachloro-m-xylene [1]		74.2	30-150					9/22/21 12:29	
Tetrachloro-m-xylene [2]		75.7	30-150					9/22/21 12:29	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-8 (1-3)

Sampled: 9/16/2021 12:00

Sample ID: 21I0921-08
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses - EPH	

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
C9-C18 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
C19-C36 Aliphatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Unadjusted C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
C11-C22 Aromatics	ND	11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Acenaphthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Acenaphthylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Benzo(a)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Benzo(a)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Benzo(b)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Benzo(g,h,i)perylene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Benzo(k)fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Chrysene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Dibenz(a,h)anthracene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Fluoranthene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Fluorene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Indeno(1,2,3-cd)pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
2-Methylnaphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Naphthalene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Phenanthrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Pyrene	ND	0.11	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:03	RDD
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Chlorooctadecane (COD)		49.5	40-140					9/22/21 13:03	
o-Terphenyl (OTP)		50.6	40-140					9/22/21 13:03	
2-Bromonaphthalene		76.8	40-140					9/22/21 13:03	
2-Fluorobiphenyl		76.7	40-140					9/22/21 13:03	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-8 (1-3)

Sample Description:

Work Order: 21I0921

Sample ID: 21I0921-08
Sample Matrix: Soil

Sampled: 9/16/2021 12:00

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		87.2		% Wt	1		SM 2540G	9/21/21	9/22/21 17:28	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 Field Sample #: B-9 (0-1)

Sampled: 9/16/2021 12:30

Sample ID: 21I0921-09 Sample Matrix: Soil

Sample Flags: O-32		Po	olychlorinated Bipho	enyls By GC	ECD .				
	ъ. т.	D.	***	DII	EL (0. 1		Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Aroclor-1016 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1221 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1232 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1242 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1248 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1254 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1260 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1262 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Aroclor-1268 [1]	ND	0.10	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:42	TG
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual				
Decachlorobiphenyl [1]		89.6	30-150					9/22/21 12:42	
Decachlorobiphenyl [2]		83.2	30-150					9/22/21 12:42	
Tetrachloro-m-xylene [1]		78.7	30-150					9/22/21 12:42	
Tetrachloro-m-xylene [2]		80.1	30-150					9/22/21 12:42	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Sample Description:

Work Order: 21I0921

Field Sample #: B-9 (0-1)

Sampled: 9/16/2021 12:30

Sample ID: 21I0921-09 Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		78.1		% Wt	1		SM 2540G	9/21/21	9/22/21 17:29	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 Field Sample #: B-9 (8-10)

Sampled: 9/16/2021 13:00

Sample ID: 21I0921-10 Sample Matrix: Soil

Volatil	e Organic	Compounds	by	GC/MS
---------	-----------	-----------	----	-------

Sample Flags: RL-05			Volatile Organic Con	npounds by G	GC/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	8.5	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Benzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Bromobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Bromochloromethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Bromodichloromethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Bromoform	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Bromomethane	ND	0.34	mg/Kg dry	4	V-34	SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
2-Butanone (MEK)	ND	3.4	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
n-Butylbenzene	1.2	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
sec-Butylbenzene	0.28	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
tert-Butylbenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Carbon Disulfide	ND	1.7	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Carbon Tetrachloride	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Chlorobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Chlorodibromomethane	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Chloroethane	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Chloroform	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Chloromethane	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
2-Chlorotoluene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
4-Chlorotoluene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.68	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2-Dibromoethane (EDB)	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Dibromomethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2-Dichlorobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,3-Dichlorobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,4-Dichlorobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1-Dichloroethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2-Dichloroethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1-Dichloroethylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
cis-1,2-Dichloroethylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
trans-1,2-Dichloroethylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2-Dichloropropane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,3-Dichloropropane	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
2,2-Dichloropropane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1-Dichloropropene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
cis-1,3-Dichloropropene	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
trans-1,3-Dichloropropene	ND ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Diethyl Ether	ND ND			4					EEH
Diisopropyl Ether (DIPE)		0.34	mg/Kg dry			SW-846 8260C-D	9/20/21	9/20/21 14:51	
1,4-Dioxane	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
	ND	8.5	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Ethylbenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51 Page 40	EEH

Page 40 of 83

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-9 (8-10)

Sampled: 9/16/2021 13:00

Sample ID: 21I0921-10
Sample Matrix: Soil

Sample Flags: RL-05		Vol	latile Organic Com	pounds by G	C/MS				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
2-Hexanone (MBK)	ND	1.7	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Isopropylbenzene (Cumene)	0.25	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
p-Isopropyltoluene (p-Cymene)	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Methyl tert-Butyl Ether (MTBE)	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Methylene Chloride	ND	0.85	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
4-Methyl-2-pentanone (MIBK)	ND	1.7	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Naphthalene	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
n-Propylbenzene	1.6	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Styrene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1,1,2-Tetrachloroethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1,2,2-Tetrachloroethane	ND	0.085	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Tetrachloroethylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Tetrahydrofuran	ND	0.68	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Toluene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2,3-Trichlorobenzene	ND	0.68	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2,4-Trichlorobenzene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1,1-Trichloroethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,1,2-Trichloroethane	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Trichloroethylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Trichlorofluoromethane (Freon 11)	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2,3-Trichloropropane	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,2,4-Trimethylbenzene	2.1	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
1,3,5-Trimethylbenzene	3.2	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Vinyl Chloride	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
m+p Xylene	ND	0.34	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
o-Xylene	ND	0.17	mg/Kg dry	4		SW-846 8260C-D	9/20/21	9/20/21 14:51	EEH
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
1,2-Dichloroethane-d4		100	70-130					9/20/21 14:51	
Toluene-d8		96.7	70-130					9/20/21 14:51	
4-Bromofluorobenzene		101	70-130					9/20/21 14:51	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-9 (8-10) Sampled: 9/16/2021 13:00

Sample ID: 21I0921-10
Sample Matrix: Soil

Sample Flags: O-32		Po	lychlorinated Bipho	enyls By GC/	/ECD				
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1221 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1232 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1242 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1248 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1254 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1260 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1262 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Aroclor-1268 [1]	ND	0.088	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 12:54	TG
Surrogates		% Recovery	Recovery Limits	1	Flag/Qual				
Decachlorobiphenyl [1]		75.9	30-150					9/22/21 12:54	
Decachlorobiphenyl [2]		70.7	30-150					9/22/21 12:54	
Tetrachloro-m-xylene [1]		61.8	30-150					9/22/21 12:54	
Tetrachloro-m-xylene [2]		63.4	30-150					9/22/21 12:54	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-9 (8-10)

Sampled: 9/16/2021 13:00

Sample ID: 21I0921-10
Sample Matrix: Soil

Sample Flags: O-01, S-15		Pet							
Soil/Methanol Preservation Ratio: 1.48							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Unadjusted C5-C8 Aliphatics	100	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C5-C8 Aliphatics	100	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Unadjusted C9-C12 Aliphatics	160	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C9-C12 Aliphatics	89	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C9-C10 Aromatics	66	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Benzene	0.30	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Ethylbenzene	0.18	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Naphthalene	0.54	0.42	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Toluene	ND	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
m+p Xylene	0.28	0.17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
o-Xylene	0.20	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Surrogates		% Recovery	Recovery Limits	3	Flag/Qual				
2,5-Dibromotoluene (FID)		136 *	70-130					9/21/21 19:10	
2,5-Dibromotoluene (PID)		131 *	70-130					9/21/21 19:10	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-9 (8-10)

Sample Description:

Work Order: 21I0921

Sample ID: 2110921-10

Sampled: 9/16/2021 13:00

Sample ID: 2110921-Sample Matrix: Soil

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		90.8		% Wt	1		SM 2540G	9/21/21	9/22/21 17:29	CV

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 **Field Sample #: B-10 (1-3)**

Sampled: 9/16/2021 12:00

Sample ID: 21I0921-11
Sample Matrix: Soil

Volatile Organic Compounds by GC/MS

Pote Deta/Fine											
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst		
Acetone	ND	0.11	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
tert-Amyl Methyl Ether (TAME)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Benzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Bromobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Bromochloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Bromodichloromethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Bromoform	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Bromomethane	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
2-Butanone (MEK)	ND	0.042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
n-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
sec-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
tert-Butylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
tert-Butyl Ethyl Ether (TBEE)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Carbon Disulfide	ND	0.0064	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Carbon Tetrachloride	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Chlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Chlorodibromomethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Chloroethane	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Chloroform	ND	0.0042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Chloromethane	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
2-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
4-Chlorotoluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,2-Dibromo-3-chloropropane (DBCP)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,2-Dibromoethane (EDB)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Dibromomethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,2-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,3-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,4-Dichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Dichlorodifluoromethane (Freon 12)	ND	0.011	mg/Kg dry	1	V-05	SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,1-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,2-Dichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,1-Dichloroethylene	ND	0.0042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
cis-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
trans-1,2-Dichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,3-Dichloropropane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
2,2-Dichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,1-Dichloropropene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
cis-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
trans-1,3-Dichloropropene	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Diethyl Ether	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Diisopropyl Ether (DIPE)	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
1,4-Dioxane	ND	0.11	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
Ethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF		
								Page 45	of 83		

Page 45 of 83

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021 Field Sample #: B-10 (1-3)

Sampled: 9/16/2021 12:00

Sample ID: 21I0921-11 Sample Matrix: Soil

Volatile Organic	Compounds	by	GC/MS	
------------------	-----------	----	-------	--

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Hexachlorobutadiene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
2-Hexanone (MBK)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Isopropylbenzene (Cumene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
p-Isopropyltoluene (p-Cymene)	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Methyl tert-Butyl Ether (MTBE)	ND	0.0042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Methylene Chloride	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
4-Methyl-2-pentanone (MIBK)	ND	0.021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Naphthalene	ND	0.0042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
n-Propylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Styrene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,1,1,2-Tetrachloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,1,2,2-Tetrachloroethane	ND	0.0011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Tetrachloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Tetrahydrofuran	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Toluene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,2,3-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,2,4-Trichlorobenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,1,1-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,1,2-Trichloroethane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Trichloroethylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Trichlorofluoromethane (Freon 11)	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,2,3-Trichloropropane	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,2,4-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
1,3,5-Trimethylbenzene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Vinyl Chloride	ND	0.011	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
m+p Xylene	ND	0.0042	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
o-Xylene	ND	0.0021	mg/Kg dry	1		SW-846 8260C-D	9/20/21	9/20/21 11:27	MFF
Surrogates		% Recovery	Recovery Limit	ts	Flag/Qual				
1,2-Dichloroethane-d4		96.6	70-130					9/20/21 11:27	
Toluene-d8		98.4	70-130					9/20/21 11:27	
4-Bromofluorobenzene		96.6	70-130					9/20/21 11:27	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021 Field Sample #: B-10 (1-3) Sample Description:

Sampled: 9/16/2021 12:00

Work Order: 21I0921

Sample ID: 21I0921-11

Sample Matrix: Soil

Sample Flags: O-32 Polychlorinated Biphenyls By GC/ECD										
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst	
Aroclor-1016 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1221 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1232 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1242 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1248 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1254 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1260 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1262 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Aroclor-1268 [1]	ND	0.096	mg/Kg dry	4		SW-846 8082A	9/17/21	9/22/21 13:07	TG	
Surrogates		% Recovery	Recovery Limits	6	Flag/Qual					
Decachlorobiphenyl [1]		104	30-150					9/22/21 13:07		
Decachlorobiphenyl [2]		96.0	30-150					9/22/21 13:07		
Tetrachloro-m-xylene [1]		90.8	30-150					9/22/21 13:07		
Tetrachloro-m-xylene [2]		92.2	30-150					9/22/21 13:07		

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0921

Date Received: 9/17/2021

Field Sample #: B-10 (1-3)

Sampled: 9/16/2021 12:00

Sample ID: 21I0921-11
Sample Matrix: Soil

Petroleum	Hydrocarbons	Analyses -	FPH

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
C9-C18 Aliphatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
C19-C36 Aliphatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Unadjusted C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
C11-C22 Aromatics	ND	12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Acenaphthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Acenaphthylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Benzo(a)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Benzo(a)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Benzo(b)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Benzo(g,h,i)perylene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Benzo(k)fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Chrysene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Dibenz(a,h)anthracene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Fluoranthene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Fluorene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Indeno(1,2,3-cd)pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
2-Methylnaphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Naphthalene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Phenanthrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Pyrene	ND	0.12	mg/Kg dry	1		MADEP EPH rev 2.1	9/18/21	9/22/21 13:23	RDD
Surrogates		% Recovery	Recovery Limit	s	Flag/Qual				
Chlorooctadecane (COD)		56.9	40-140					9/22/21 13:23	
o-Terphenyl (OTP)		59.1	40-140					9/22/21 13:23	
2-Bromonaphthalene		91.8	40-140					9/22/21 13:23	
2-Fluorobiphenyl		94.7	40-140					9/22/21 13:23	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/17/2021

Field Sample #: B-10 (1-3)

Sample Description:

Sampled: 9/16/2021 12:00

Work Order: 21I0921

Sample ID: 21I0921-11
Sample Matrix: Soil

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

								Date	Date/Time	
	Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
% Solids		83.2		% Wt	1		SM 2540G	9/21/21	9/22/21 17:29	CV

Sample Extraction Data

Prep Method: SW-846 3546 Analytical Method: MADEP EPH rev 2.1

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
21I0921-01 [B-1 (5-7)]	B290504	20.3	2.00	09/18/21
21I0921-02 [B-2 (1-3)]	B290504	20.3	2.00	09/18/21
21I0921-03 [B-3 (5-7)]	B290504	20.0	2.00	09/18/21
21I0921-04 [B-4 (3-5)]	B290504	20.4	2.00	09/18/21
21I0921-05 [B-5 (5-7)]	B290504	20.0	2.00	09/18/21
21I0921-06 [B-6 (3-5)]	B290504	20.1	2.00	09/18/21
21I0921-07 [B-7 (0-1)]	B290504	20.4	2.00	09/18/21
21I0921-08 [B-8 (1-3)]	B290504	20.1	2.00	09/18/21
21I0921-11 [B-10 (1-3)]	B290504	20.2	2.00	09/18/21

Prep Method: MA VPH Analytical Method: MADEP-VPH-Feb 2018 Rev 2.1

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
21I0921-10 [B-9 (8-10)]	B290675	22.2	17.0	09/21/21

Prep Method: % Solids Analytical Method: SM 2540G

Lab Number [Field ID]	Batch	Date
21I0921-01 [B-1 (5-7)]	B290709	09/21/21
21I0921-02 [B-2 (1-3)]	B290709	09/21/21
21I0921-03 [B-3 (5-7)]	B290709	09/21/21
21I0921-04 [B-4 (3-5)]	B290709	09/21/21
21I0921-05 [B-5 (5-7)]	B290709	09/21/21
21I0921-06 [B-6 (3-5)]	B290709	09/21/21
21I0921-07 [B-7 (0-1)]	B290709	09/21/21
21I0921-08 [B-8 (1-3)]	B290709	09/21/21
21I0921-09 [B-9 (0-1)]	B290709	09/21/21
21I0921-10 [B-9 (8-10)]	B290709	09/21/21
21I0921-11 [B-10 (1-3)]	B290709	09/21/21

Prep Method: SW-846 3546 Analytical Method: SW-846 8082A

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date	
21I0921-01 [B-1 (5-7)]	B290486	10.0	10.0	09/17/21	
21I0921-02 [B-2 (1-3)]	B290486	10.0	10.0	09/17/21	
21I0921-03 [B-3 (5-7)]	B290486	10.0	10.0	09/17/21	
21I0921-04 [B-4 (3-5)]	B290486	10.0	10.0	09/17/21	
21I0921-05 [B-5 (5-7)]	B290486	10.0	10.0	09/17/21	
21I0921-06 [B-6 (3-5)]	B290486	10.0	10.0	09/17/21	
21I0921-07 [B-7 (0-1)]	B290486	10.0	10.0	09/17/21	
21I0921-08 [B-8 (1-3)]	B290486	10.0	10.0	09/17/21	
21I0921-09 [B-9 (0-1)]	B290486	10.0	10.0	09/17/21	
21I0921-10 [B-9 (8-10)]	B290486	10.0	10.0	09/17/21	
21I0921-11 [B-10 (1-3)]	B290486	10.0	10.0	09/17/21	

Prep Method: SW-846 5035 Analytical Method: SW-846 8260C-D

Lab Number [Field ID]	Batch	Sample Amount(g)	Methanol Volume(mL)	Methanol Aliquot(mL)	Final Volume(mL)	Date
21I0921-10 [B-9 (8-10)]	B290528	22.2	17.0	0.25	50	09/20/21

Sample Extraction Data

Prep Method: SW-846 5035 Analytical Method: SW-846 8260C-D

Lab Number [Field ID]	Batch	Initial [g]	Final [mL]	Date
21I0921-01 [B-1 (5-7)]	B290543	9.80	10.0	09/20/21
21I0921-03 [B-3 (5-7)]	B290543	10.7	10.0	09/20/21
21I0921-05 [B-5 (5-7)]	B290543	5.52	10.0	09/20/21
21I0921-11 [B-10 (1-3)]	B290543	5.67	10.0	09/20/21

Spike

Source

%REC

RPD

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

nalvto	Deml+	Reporting	Unite	Spike	Source	0/DEC	%REC	ממק	RPD Limit	Nota-
analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch B290528 - SW-846 5035										
lank (B290528-BLK1)				Prepared & A	Analyzed: 09	/20/21				
cetone	ND	2.5	mg/Kg wet							
rt-Amyl Methyl Ether (TAME)	ND	0.025	mg/Kg wet							
enzene	ND	0.050	mg/Kg wet							
romobenzene	ND	0.050	mg/Kg wet							
romochloromethane	ND	0.050	mg/Kg wet							
romodichloromethane	ND	0.050	mg/Kg wet							
romoform	ND	0.050	mg/Kg wet							
romomethane	ND	0.10	mg/Kg wet							V-34
Butanone (MEK)	ND	1.0	mg/Kg wet							
Butylbenzene	ND	0.050	mg/Kg wet							
ec-Butylbenzene	ND	0.050	mg/Kg wet							
rt-Butylbenzene	ND	0.050	mg/Kg wet							
rt-Butyl Ethyl Ether (TBEE)	ND	0.025	mg/Kg wet							
arbon Disulfide	ND	0.50	mg/Kg wet							
arbon Tetrachloride	ND	0.050	mg/Kg wet							
hlorobenzene	ND	0.050	mg/Kg wet							
hlorodibromomethane	ND	0.025	mg/Kg wet							
hloroethane	ND	0.10	mg/Kg wet							
hloroform	ND	0.10	mg/Kg wet							
hloromethane	ND	0.10	mg/Kg wet							
Chlorotoluene	ND	0.050	mg/Kg wet							
Chlorotoluene	ND	0.050	mg/Kg wet							
2-Dibromo-3-chloropropane (DBCP)	ND	0.20	mg/Kg wet							
2-Dibromoethane (EDB)	ND	0.025	mg/Kg wet							
ibromomethane	ND	0.050	mg/Kg wet							
2-Dichlorobenzene	ND	0.050	mg/Kg wet							
3-Dichlorobenzene	ND	0.050	mg/Kg wet							
4-Dichlorobenzene	ND	0.050	mg/Kg wet							
ichlorodifluoromethane (Freon 12)	ND	0.10	mg/Kg wet							
1-Dichloroethane	ND	0.050	mg/Kg wet							
2-Dichloroethane	ND	0.050	mg/Kg wet							
1-Dichloroethylene	ND	0.050	mg/Kg wet							
s-1,2-Dichloroethylene	ND	0.050	mg/Kg wet							
ans-1,2-Dichloroethylene	ND	0.050	mg/Kg wet							
2-Dichloropropane	ND	0.050	mg/Kg wet							
3-Dichloropropane	ND	0.025	mg/Kg wet							
2-Dichloropropane	ND	0.050	mg/Kg wet							
1-Dichloropropene	ND	0.10	mg/Kg wet							
s-1,3-Dichloropropene	ND	0.025	mg/Kg wet							
ans-1,3-Dichloropropene	ND	0.025	mg/Kg wet							
iethyl Ether	ND	0.10	mg/Kg wet							
iisopropyl Ether (DIPE)	ND	0.025	mg/Kg wet							
4-Dioxane	ND	2.5	mg/Kg wet							
hylbenzene	ND	0.050	mg/Kg wet							
exachlorobutadiene	ND	0.050	mg/Kg wet							
Hexanone (MBK)	ND	0.50	mg/Kg wet							
opropylbenzene (Cumene)	ND	0.050	mg/Kg wet							
Isopropyltoluene (p-Cymene)	ND	0.050	mg/Kg wet							
ethyl tert-Butyl Ether (MTBE)	ND	0.050	mg/Kg wet							
lethylene Chloride	ND	0.25	mg/Kg wet							
Methyl-2-pentanone (MIBK)	ND	0.50	mg/Kg wet							
aphthalene	ND	0.10	mg/Kg wet							

Spike

Source

%REC

RPD

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290528 - SW-846 5035										
Blank (B290528-BLK1)				Prepared & A	Analyzed: 09	/20/21				
n-Propylbenzene	ND	0.050	mg/Kg wet							
Styrene	ND	0.050	mg/Kg wet							
1,1,1,2-Tetrachloroethane	ND	0.050	mg/Kg wet							
1,1,2,2-Tetrachloroethane	ND	0.025	mg/Kg wet							
Tetrachloroethylene	ND	0.050	mg/Kg wet							
Tetrahydrofuran	ND	0.20	mg/Kg wet							
Toluene	ND	0.050	mg/Kg wet							
1,2,3-Trichlorobenzene	ND	0.20	mg/Kg wet							
1,2,4-Trichlorobenzene	ND	0.050	mg/Kg wet							
1,1,1-Trichloroethane	ND	0.050	mg/Kg wet							
1,1,2-Trichloroethane	ND	0.050	mg/Kg wet							
Trichloroethylene	ND	0.050	mg/Kg wet							
Trichlorofluoromethane (Freon 11)	ND	0.10	mg/Kg wet							
1,2,3-Trichloropropane	ND	0.10	mg/Kg wet							
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg wet							
1,3,5-Trimethylbenzene	ND	0.050	mg/Kg wet							
Vinyl Chloride	ND	0.10	mg/Kg wet							
m+p Xylene	ND	0.10	mg/Kg wet							
o-Xylene	ND	0.050	mg/Kg wet							
Surrogate: 1,2-Dichloroethane-d4	0.0257		mg/Kg wet	0.0250		103	70-130			
Surrogate: Toluene-d8	0.0242		mg/Kg wet	0.0250		96.8	70-130			
Surrogate: 4-Bromofluorobenzene	0.0237		mg/Kg wet	0.0250		94.8	70-130			
LCS (B290528-BS1)				Prepared & A	Analyzed: 09	/20/21				
Acetone	0.116	0.057	mg/Kg wet	0.113		103	40-160			
tert-Amyl Methyl Ether (TAME)	0.0117	0.00057	mg/Kg wet	0.0113		104	70-130			
Benzene	0.0110	0.0011	mg/Kg wet	0.0113		97.4	70-130			
Bromobenzene	0.0121	0.0011	mg/Kg wet	0.0113		106	70-130			
Bromochloromethane	0.0135	0.0011	mg/Kg wet	0.0113		120	70-130			
Bromodichloromethane	0.0128	0.0011	mg/Kg wet	0.0113		113	70-130			
Bromoform	0.0143	0.0011	mg/Kg wet	0.0113		126	70-130			V-20
Bromomethane	0.0117	0.0023	mg/Kg wet	0.0113		103	40-160			V-34
2-Butanone (MEK)	0.117	0.023	mg/Kg wet	0.113		104	40-160			
n-Butylbenzene	0.0103	0.0011	mg/Kg wet	0.0113		90.6	70-130			
sec-Butylbenzene	0.0104	0.0011	mg/Kg wet	0.0113		91.6	70-130			
tert-Butylbenzene	0.0104	0.0011	mg/Kg wet	0.0113		91.4	70-130			
tert-Butyl Ethyl Ether (TBEE)	0.0124	0.00057	mg/Kg wet	0.0113		109	70-130			
Carbon Disulfide	0.121	0.011	mg/Kg wet	0.113		107	70-130			
Carbon Tetrachloride	0.0122	0.0011	mg/Kg wet	0.0113		108	70-130			
Chlorobenzene	0.0122	0.0011	mg/Kg wet	0.0113		107	70-130			
Chlorodibromomethane	0.0133	0.00057	mg/Kg wet	0.0113		117	70-130			
Chloroethane	0.0154	0.0023	mg/Kg wet	0.0113		136 *	70-130			L-07, V-20
Chloroform	0.0120	0.0023	mg/Kg wet	0.0113		106	70-130			
Chloromethane	0.0113	0.0023	mg/Kg wet	0.0113		99.6	40-160			
2-Chlorotoluene	0.0106	0.0011	mg/Kg wet	0.0113		93.8	70-130			
4-Chlorotoluene	0.0117	0.0011	mg/Kg wet	0.0113		103	70-130			
1,2-Dibromo-3-chloropropane (DBCP)	0.0107	0.0045	mg/Kg wet	0.0113		94.2	70-130			
1,2-Dibromoethane (EDB)	0.0126	0.00057	mg/Kg wet	0.0113		111	70-130			
Dibromomethane	0.0134	0.0011	mg/Kg wet	0.0113		118	70-130			
1,2-Dichlorobenzene	0.0119	0.0011	mg/Kg wet	0.0113		105	70-130			
1,3-Dichlorobenzene	0.0116	0.0011	mg/Kg wet	0.0113		103	70-130			
1,4-Dichlorobenzene	0.0118	0.0011	mg/Kg wet	0.0113		104	70-130			

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290528 - SW-846 5035										
.CS (B290528-BS1)			:	Prepared & A	Analyzed: 09/2	20/21				
Dichlorodifluoromethane (Freon 12)	0.0137	0.0023	mg/Kg wet	0.0113		121	40-160			V-20
,1-Dichloroethane	0.0120	0.0011	mg/Kg wet	0.0113		106	70-130			
,2-Dichloroethane	0.0122	0.0011	mg/Kg wet	0.0113		107	70-130			
,1-Dichloroethylene	0.0120	0.0011	mg/Kg wet	0.0113		106	70-130			
s-1,2-Dichloroethylene	0.0121	0.0011	mg/Kg wet	0.0113		106	70-130			
ans-1,2-Dichloroethylene	0.0105	0.0011	mg/Kg wet	0.0113		93.0	70-130			
2-Dichloropropane	0.0124	0.0011	mg/Kg wet	0.0113		109	70-130			
3-Dichloropropane	0.0125	0.00057	mg/Kg wet	0.0113		110	70-130			
2-Dichloropropane	0.0127	0.0011	mg/Kg wet	0.0113		112	70-130			
1-Dichloropropene	0.0113	0.0023	mg/Kg wet	0.0113		100	70-130			
s-1,3-Dichloropropene	0.0121	0.00057	mg/Kg wet	0.0113		107	70-130			
nns-1,3-Dichloropropene	0.0126	0.00057	mg/Kg wet	0.0113		111	70-130			
ethyl Ether	0.0124	0.0023	mg/Kg wet	0.0113		109	70-130			
isopropyl Ether (DIPE)	0.0121	0.00057	mg/Kg wet	0.0113		106	70-130			
1-Dioxane	0.113	0.057	mg/Kg wet	0.113		99.5	40-160			
hylbenzene	0.0115	0.0011	mg/Kg wet	0.0113		102	70-130			
exachlorobutadiene	0.0113	0.0011	mg/Kg wet	0.0113		99.8	70-130			
Hexanone (MBK)	0.123	0.011	mg/Kg wet	0.113		108	40-160			
propylbenzene (Cumene)	0.0115	0.0011	mg/Kg wet	0.0113		101	70-130			
(sopropyltoluene (p-Cymene)	0.0106	0.0011	mg/Kg wet	0.0113		93.2	70-130			
ethyl tert-Butyl Ether (MTBE)	0.0121	0.0011	mg/Kg wet	0.0113		106	70-130			
ethylene Chloride	0.0121	0.0057	mg/Kg wet	0.0113		120	70-130			
Methyl-2-pentanone (MIBK)	0.125	0.011	mg/Kg wet	0.113		110	40-160			
aphthalene	0.00898	0.0023	mg/Kg wet	0.0113		79.2	70-130			
Propylbenzene	0.0111	0.0011	mg/Kg wet	0.0113		98.2	70-130			
yrene	0.0117	0.0011	mg/Kg wet	0.0113		104	70-130			
1,1,2-Tetrachloroethane	0.0117	0.0011	mg/Kg wet	0.0113		117	70-130			
1,2,2-Tetrachloroethane	0.0133	0.00057	mg/Kg wet	0.0113		114	70-130			
trachloroethylene	0.0129	0.0011	mg/Kg wet	0.0113		110	70-130			
trahydrofuran		0.0045	mg/Kg wet	0.0113		101	70-130			
luene	0.0115	0.0043	mg/Kg wet	0.0113		101	70-130			
2,3-Trichlorobenzene	0.0114	0.0011	mg/Kg wet							
2,4-Trichlorobenzene	0.00989	0.0043	mg/Kg wet	0.0113		87.3	70-130 70-130			
1,1-Trichloroethane	0.0101	0.0011	mg/Kg wet	0.0113		88.8				
1,2-Trichloroethane	0.0119			0.0113		105	70-130			
	0.0126	0.0011	mg/Kg wet	0.0113		111	70-130			
ichloroethylene	0.0118	0.0011	mg/Kg wet	0.0113		104	70-130			
ichlorofluoromethane (Freon 11)	0.0128	0.0023	mg/Kg wet	0.0113		113	70-130			
2,3-Trichloropropane	0.0129	0.0023	mg/Kg wet	0.0113		114	70-130			
2,4-Trimethylbenzene	0.0107	0.0011	mg/Kg wet	0.0113		94.3	70-130			
3,5-Trimethylbenzene	0.0111	0.0011	mg/Kg wet	0.0113		97.9	70-130			
nyl Chloride	0.0106	0.0023	mg/Kg wet	0.0113		93.9	70-130			
+p Xylene	0.0233	0.0023	mg/Kg wet	0.0227		103	70-130			
Xylene	0.0118	0.0011	mg/Kg wet	0.0113		104	70-130			
urrogate: 1,2-Dichloroethane-d4	0.0288		mg/Kg wet	0.0283		102	70-130			
nrrogate: Toluene-d8	0.0274		mg/Kg wet	0.0283		96.7	70-130			
urrogate: 4-Bromofluorobenzene	0.0282		mg/Kg wet	0.0283		99.6	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290528 - SW-846 5035										
LCS Dup (B290528-BSD1)				Prepared & A	Analyzed: 09	0/20/21				
Acetone	0.117	0.057	mg/Kg wet	0.113		103	40-160	0.399	20	
ert-Amyl Methyl Ether (TAME)	0.0113	0.00057	mg/Kg wet	0.0113		100	70-130	3.44	20	
Benzene	0.0107	0.0011	mg/Kg wet	0.0113		94.6	70-130	2.92	20	
Bromobenzene	0.0116	0.0011	mg/Kg wet	0.0113		102	70-130	3.93	20	
Bromochloromethane	0.0129	0.0011	mg/Kg wet	0.0113		114	70-130	4.80	20	
Bromodichloromethane	0.0120	0.0011	mg/Kg wet	0.0113		106	70-130	6.50	20	
Gromoform	0.0140	0.0011	mg/Kg wet	0.0113		123	70-130	1.93	20	V-20
romomethane	0.0121	0.0023	mg/Kg wet	0.0113		107	40-160	3.42	20	V-34
-Butanone (MEK)	0.121	0.023	mg/Kg wet	0.113		107	40-160	3.15	20	
-Butylbenzene	0.00966	0.0011	mg/Kg wet	0.0113		85.2	70-130	6.14	20	
ec-Butylbenzene	0.00997	0.0011	mg/Kg wet	0.0113		88.0	70-130	4.01	20	
ert-Butylbenzene	0.0101	0.0011	mg/Kg wet	0.0113		89.5	70-130	2.10	20	
ert-Butyl Ethyl Ether (TBEE)	0.0118	0.00057	mg/Kg wet	0.0113		104	70-130	4.69	20	
Carbon Disulfide	0.117	0.011	mg/Kg wet	0.113		103	70-130	3.49	20	
Carbon Tetrachloride	0.0121	0.0011	mg/Kg wet	0.0113		106	70-130	1.40	20	
Chlorobenzene	0.0119	0.0011	mg/Kg wet	0.0113		105	70-130	2.36	20	
hlorodibromomethane	0.0127	0.00057	mg/Kg wet	0.0113		112	70-130	4.44	20	
hloroethane	0.0148	0.0023	mg/Kg wet	0.0113		130	70-130	4.28	20	V-20
hloroform	0.0115	0.0023	mg/Kg wet	0.0113		101	70-130	4.35	20	
hloromethane	0.0117	0.0023	mg/Kg wet	0.0113		104	40-160	3.84	20	
-Chlorotoluene	0.0104	0.0011	mg/Kg wet	0.0113		91.9	70-130	2.05	20	
-Chlorotoluene	0.0112	0.0011	mg/Kg wet	0.0113		98.4	70-130	4.37	20	
,2-Dibromo-3-chloropropane (DBCP)	0.0107	0.0045	mg/Kg wet	0.0113		94.3	70-130	0.106	20	
2-Dibromoethane (EDB)	0.0124	0.00057	mg/Kg wet	0.0113		109	70-130	1.72	20	
ibromomethane	0.0130	0.0011	mg/Kg wet	0.0113		114	70-130	3.35	20	
2-Dichlorobenzene	0.0112	0.0011	mg/Kg wet	0.0113		98.9	70-130	6.17	20	
3-Dichlorobenzene	0.0113	0.0011	mg/Kg wet	0.0113		99.4	70-130	3.07	20	
4-Dichlorobenzene	0.0111	0.0011	mg/Kg wet	0.0113		97.9	70-130	6.04	20	
Dichlorodifluoromethane (Freon 12)	0.0133	0.0023	mg/Kg wet	0.0113		118	40-160	2.60	20	V-20
1-Dichloroethane	0.0116	0.0011	mg/Kg wet	0.0113		102	70-130	3.46	20	
2-Dichloroethane	0.0117	0.0011	mg/Kg wet	0.0113		103	70-130	4.09	20	
,1-Dichloroethylene	0.0115	0.0011	mg/Kg wet	0.0113		102	70-130	4.13	20	
is-1,2-Dichloroethylene	0.0118	0.0011	mg/Kg wet	0.0113		104	70-130	2.47	20	
rans-1,2-Dichloroethylene	0.0106	0.0011	mg/Kg wet	0.0113		93.3	70-130	0.322	20	
,2-Dichloropropane	0.0119	0.0011	mg/Kg wet	0.0113		105	70-130	3.54	20	
3-Dichloropropane	0.0123	0.00057	mg/Kg wet	0.0113		109	70-130	1.55	20	
,2-Dichloropropane	0.0120	0.0011	mg/Kg wet	0.0113		106	70-130	5.41	20	
,1-Dichloropropene	0.0111	0.0023	mg/Kg wet	0.0113		97.8	70-130	2.22	20	
is-1,3-Dichloropropene	0.0117	0.00057	mg/Kg wet	0.0113		103	70-130	4.09	20	
rans-1,3-Dichloropropene	0.0122	0.00057	mg/Kg wet	0.0113		108	70-130	3.20	20	
hiethyl Ether	0.0118	0.0023	mg/Kg wet	0.0113		104	70-130	4.69	20	
bisopropyl Ether (DIPE)	0.0118	0.00057	mg/Kg wet	0.0113		104	70-130	1.80	20	
4-Dioxane	0.117	0.057	mg/Kg wet	0.113		103	40-160	3.82	20	
thylbenzene	0.0112	0.0011	mg/Kg wet	0.0113		99.0	70-130	2.89	20	
(exachlorobutadiene	0.0103	0.0011	mg/Kg wet	0.0113		90.7	70-130	9.55	20	
-Hexanone (MBK)	0.122	0.011	mg/Kg wet	0.113		108	40-160	0.287	20	
sopropylbenzene (Cumene)	0.0112	0.0011	mg/Kg wet	0.0113		98.5	70-130	2.70	20	
-Isopropyltoluene (p-Cymene)	0.0100	0.0011	mg/Kg wet	0.0113		88.2	70-130	5.51	20	
Methyl tert-Butyl Ether (MTBE)	0.0118	0.0011	mg/Kg wet	0.0113		104	70-130	2.19	20	
Methylene Chloride	0.0127	0.0057	mg/Kg wet	0.0113		112	70-130	7.16	20	
-Methyl-2-pentanone (MIBK)	0.124	0.011	mg/Kg wet	0.113		109	40-160	1.04	20	
Naphthalene	0.00821	0.0023	mg/Kg wet	0.0113		72.4	70-130	8.97	20	

QUALITY CONTROL

Syrene	Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Popsysheance	eatch B290528 - SW-846 5035										
Second 0.014	.CS Dup (B290528-BSD1)				Prepared & A	Analyzed: 09/2	20/21				
1.1.1.2-Trienthelomethane	-Propylbenzene	0.0107	0.0011	mg/Kg wet	0.0113		94.8	70-130	3.52	20	
1.1.2.3 Termaholoredhame	tyrene	0.0114	0.0011	mg/Kg wet	0.0113		100	70-130	3.04	20	
Ternachlorothylene 0.0118	,1,1,2-Tetrachloroethane	0.0125	0.0011	mg/Kg wet	0.0113		110	70-130	6.24	20	
Terniby/full/micro/chance		0.0127	0.00057	mg/Kg wet	0.0113		112	70-130	1.59	20	
Tables	•	0.0118			0.0113		104	70-130	5.62	20	
1,2,2,1-Trichlorobenzene	•	0.0116								20	
2.44 Trichlorobenzene										20	
L.ITrickloroethane										20	
.1.2 Trichloroethane										20	
Trichloroethylene										20	
nichlorofluoromethane (Freen 11) 0.0129 0.0023 mg/Kg wet 0.0113 114 70-130 0.616 2,2-3-Trindhophropane 0.0126 0.0023 ng/Kg wet 0.0113 111 70-130 2.58 2,2-4-Trindhylbenzene 0.0108 0.0011 ng/Kg wet 0.0113 95.7 70-130 2.27 (might Chloride 0.0104 0.0023 ng/Kg wet 0.0113 92.7 70-130 2.12 (might Chloride 0.0125 0.0023 ng/Kg wet 0.0113 92.7 70-130 3.12 (my Skylene 0.0125 0.0023 ng/Kg wet 0.0113 100 70-130 3.12 (my Skylene 0.0125 0.0023 ng/Kg wet 0.013 100 70-130 3.52 (my Skylene 0.0126 ng/Kg wet 0.0283 100 70-130 3.52 (my Skylene 0.0225 ng/Kg wet 0.0283 100 70-130 3.52 (my Skylene 0.0225 ng/Kg wet 0.0283										20	
2.23-Trichloropropane 0.0126 0.0023 mg/Kg wet 0.0113 111 70-130 2.58 2.47-Trimchylbenzene 0.0102 0.0011 mg/Kg wet 0.0113 90.4 70-130 4.22 2.47-Trimchylbenzene 0.0108 0.0001 mg/Kg wet 0.0113 95.7 70-130 2.27 2.47-Trimchylbenzene 0.0108 0.0001 mg/Kg wet 0.0113 95.7 70-130 2.27 2.47-Trimchylbenzene 0.0225 0.0023 mg/Kg wet 0.0113 92.1 70-130 3.12 2.47-Trimchylbenzene 0.0225 0.0023 mg/Kg wet 0.0113 92.1 70-130 3.12 2.47-Trimchylbenzene 0.0225 0.0023 mg/Kg wet 0.0113 92.1 70-130 3.12 2.47-Trimchylbenzene 0.0214 0.0011 mg/Kg wet 0.0113 92.1 70-130 3.12 2.47-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 101 70-130 2.47-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 101 70-130 2.47-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 101 70-130 2.47-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 97.0 70-130 2.47-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 97.0 70-130 2.48-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 97.0 70-130 2.48-Trimchylbenzene 0.0287 mg/Kg wet 0.0283 97.0 70-130 2.48-Trimchylbenzene 0.0283 97.0 70-130 2.48	-									20 20	
										20	
.3.5-Frimethylbenzene										20	
Timy I Chloride 0,0104 0,0023 mg/Kg wet 0,0113 92,1 70,130 1,94 Arrip Xylene 0,0225 0,0023 mg/Kg wet 0,0113 100 70,130 3,12 Avrigance 0,0114 0,0011 mg/Kg wet 0,0283 101 70,130 3,52 Burrogate: 1,2-Dichloroethane-d4 0,0287 mg/Kg wet 0,0283 101 70,130 1,52 Burrogate: 4-Bromoflourobenzene 0,0284 mg/Kg wet 0,0283 101 70,130 1,52 Bank (B290543 - SW-846 5035 str-barrod & Analyzed: 99/20/21 70,130 70,130 1,50 Benzene ND 0,010 mg/Kg wet 0,0283 100 70,130 70,130 1,50 Bank (B290543 - SW-846 5035 30 70 70,130 70,130 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50 1,50	•									20	
Company Comp	•									20	
Description										20	
Barringate: 1,2-Dichloroethane-d4	• •									20	
Surrogate: Toluene-d8	urrogate: 1.2-Dichloroethane-d4			mg/Kg wet	0.0283		101	70-130			
Aurogate: 4-Bromofluorobenzene 0.0284 mg/Kg wet 0.0283 100 70-130	=			0 0							
Prepared & Analyzed: 09/20/21 Prepared & Analyzed: 09/20/21	=										
Senzene ND 0.0020 mg/Kg wet		ND									
Second Common Research Second Common Resea	ert-Amyl Methyl Ether (TAME)	ND									
Second commethane Seco											
Second S				0 0							
Stromoform ND 0.0020 mg/Kg wet											
Bromomethane ND 0.010 mg/kg wet Butanone (MEK) ND 0.040 mg/kg wet Butlylbenzene ND 0.0020 mg/kg wet ee-Butylbenzene ND 0.0020 mg/kg wet ert-Butyl Ethyl Ether (TBEE) ND 0.0010 mg/kg wet Carbon Disulfide ND 0.0060 mg/kg wet Carbon Tetrachloride ND 0.0020 mg/kg wet Chlorobenzene ND 0.0020 mg/kg wet Chlorodibromomethane ND 0.0010 mg/kg wet Chlorothane ND 0.0040 mg/kg wet Chlorothane ND 0.0040 mg/kg wet Chlorothuene ND 0.0040 mg/kg wet Chlorothuene ND 0.0020											
Angle Angl											
Butylbenzene ND 0.0020 mg/Kg wet ec-Butylbenzene ND 0.0020 mg/Kg wet ert-Butylbenzene ND 0.0020 mg/Kg wet ert-Butyl Ether (TBEE) ND 0.0010 mg/Kg wet Carbon Disulfide ND 0.0060 mg/Kg wet Carbon Tetrachloride ND 0.0020 mg/Kg wet Chlorobenzene ND 0.0020 mg/Kg wet Chlorodibromomethane ND 0.0010 mg/Kg wet Chloroform ND 0.0040 mg/Kg wet Chloroform ND 0.0040 mg/Kg wet Chloromethane ND 0.0040 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet -Chloromoethane (EDB) ND 0.0020 mg/Kg wet Obbromomethane ND 0.0020 mg/Kg wet Obbromomethane ND 0.0020 mg/Kg wet Obbromome											
ND 0.0020 mg/Kg wet											
ND 0.0020 mg/Kg wet	•										
ND 0.0010 mg/Kg wet	•										
Carbon Disulfide ND 0.0060 mg/Kg wet Carbon Tetrachloride ND 0.0020 mg/Kg wet Chlorobenzene ND 0.0020 mg/Kg wet Chlorodibromomethane ND 0.0010 mg/Kg wet Chloroform ND 0.0040 mg/Kg wet Chloromethane ND 0.0010 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet -Chloromoethane (EDB) ND 0.0020 mg/Kg wet Obromomethane ND 0.0020 mg/Kg wet Obromomethane ND 0.0020 mg/Kg wet	•										
Carbon Tetrachloride ND 0.0020 mg/Kg wet Chlorobenzene ND 0.0020 mg/Kg wet Chlorodibromomethane ND 0.0010 mg/Kg wet Chloroform ND 0.0040 mg/Kg wet Chloromethane ND 0.010 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotopropane (DBCP) ND 0.0020 mg/Kg wet ,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet Dibromomethane ND 0.0020 mg/Kg wet											
Chlorobenzene ND 0.0020 mg/Kg wet Chlorodibromomethane ND 0.0010 mg/Kg wet Chloroethane ND 0.010 mg/Kg wet Chloroform ND 0.0040 mg/Kg wet Chloromethane ND 0.010 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet ,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet Dibromoethane (EDB) ND 0.0010 mg/Kg wet Dibromomethane ND 0.0020 mg/Kg wet -,2-Dichlorobenzene ND 0.0020 mg/Kg wet	arbon Tetrachloride										
Chloroethane ND 0.010 mg/Kg wet Chloroform ND 0.040 mg/Kg wet Chloromethane ND 0.010 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet ,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet ,2-Dibromoethane (EDB) ND 0.0010 mg/Kg wet Dibromomethane ND 0.0020 mg/Kg wet ,2-Dichlorobenzene ND 0.0020 mg/Kg wet	Chlorobenzene		0.0020	mg/Kg wet							
Chloroform ND 0.0040 mg/Kg wet Chloromethane ND 0.010 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet Chlorotoluene ND 0.0020 mg/Kg wet ,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet ,2-Dibromoethane (EDB) ND 0.0010 mg/Kg wet Dibromomethane ND 0.0020 mg/Kg wet ,2-Dichlorobenzene ND 0.0020 mg/Kg wet	Chlorodibromomethane		0.0010	mg/Kg wet							
ND 0.010 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0010 mg/Kg wet -Chloromoethane (EDB) ND 0.0020 mg/Kg wet -Chlorotoluene ND 0.0020 mg/Kg wet		ND	0.010	mg/Kg wet							
-Chlorotoluene		ND		mg/Kg wet							
-Chlorotoluene ND 0.0020 mg/Kg wet ,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet ,2-Dibromoethane (EDB) ND 0.0010 mg/Kg wet bibromomethane ND 0.0020 mg/Kg wet ,2-Dichlorobenzene ND 0.0020 mg/Kg wet											
,2-Dibromo-3-chloropropane (DBCP) ND 0.0020 mg/Kg wet ,2-Dibromoethane (EDB) ND 0.0010 mg/Kg wet bibromomethane ND 0.0020 mg/Kg wet ,2-Dichlorobenzene ND 0.0020 mg/Kg wet											
x2-Dibromoethane (EDB) ND 0.0010 mg/Kg wet x3-Dibromoethane ND 0.0020 mg/Kg wet x3-Dichlorobenzene ND 0.0020 mg/Kg wet											
Dibromomethane ND 0.0020 mg/Kg wet ,2-Dichlorobenzene ND 0.0020 mg/Kg wet											
,2-Dichlorobenzene ND 0.0020 mg/Kg wet											
,3-Dichlorobenzene ND 0.0020 mg/Kg wet											

QUALITY CONTROL

Transparence Parameter Transparence Transpa			Reporting		Spike	Source		%REC		RPD	
A-Dichlorobenzores	Analyte	Result		Units			%REC	Limits	RPD	Limit	Notes
A-Bolahorochurace ND	Batch B290543 - SW-846 5035										
A-Bolahorochurace ND	Blank (B290543-BLK1)				Prepared & A	Analyzed: 09	/20/21				
No	1,4-Dichlorobenzene	ND	0.0020		•						
1.1-Dichloromethane	Dichlorodifluoromethane (Freon 12)		0.010								V-05
1.2-Dichloresthylene	1,1-Dichloroethane		0.0020	mg/Kg wet							
1.1-Dichloroprophene ND 0.0040 mg/Kg wet	1,2-Dichloroethane		0.0020	mg/Kg wet							
iiii - 1.2 Dichlorocthylene iiii - 1.2 Dichlorocthylene iii - 1.2 Dichlorocthylene ii - 1.2 Dichlorocthylene ii - 1.2 Dichlorocthylene ii - 1.2 Dichlorocthylene ii - 1.3 Dichlorocthylene ii - 1.3 Dichlorocthylene ii - 1.4 Dichlorocthane iii - 1.4	1,1-Dichloroethylene		0.0040	mg/Kg wet							
2Dischloropropame ND 0.0002 mg/Kg wst 2Dischloropropame ND 0.0003 mg/Kg wst 2Dischloropropame ND 0.0001 mg/Kg wst 2Dischloropropame ND 0.0002 mg/Kg wst 2Dischloropropame	cis-1,2-Dichloroethylene		0.0020	mg/Kg wet							
AD-bickhoropropane	trans-1,2-Dichloroethylene	ND	0.0020	mg/Kg wet							
3-Dichloropropame ND	1,2-Dichloropropane		0.0020	mg/Kg wet							
1.2.Dichloropropame ND 0.0020 mg/Kg wet	1,3-Dichloropropane		0.0010	mg/Kg wet							
1.1-Dichloropropene ND 0.0020 mg/Kg wet	2,2-Dichloropropane		0.0020	mg/Kg wet							
isis-13-bibhoropropene	1,1-Dichloropropene		0.0020	mg/Kg wet							
Part	cis-1,3-Dichloropropene		0.0010	mg/Kg wet							
Disopropyl Ether (DIPE) ND 0.0010 mg/kg wet	trans-1,3-Dichloropropene		0.0010	mg/Kg wet							
A-Dioxane	Diethyl Ether	ND	0.010	mg/Kg wet							
Ethylbenzene ND 0.0020 mg/Kg wet electachlorobutadiene (p-Cymene) ND 0.0020 mg/Kg wet electachlorobutadiene ND 0.0020 mg/Kg wet electachlorobut	Diisopropyl Ether (DIPE)	ND	0.0010	mg/Kg wet							
Letexachlorobutadiene ND 0.0020 mg/Kg wet	1,4-Dioxane	ND	0.10	mg/Kg wet							
Part	Ethylbenzene	ND	0.0020	mg/Kg wet							
ND 0.0020 mg/Kg wet	Hexachlorobutadiene	ND	0.0020	mg/Kg wet							
ND 0.0020 ng/Kg wet ND 0.0040 ng	2-Hexanone (MBK)	ND	0.020	mg/Kg wet							
Methyl terr-Butyl Ether (MTBE) ND 0.0040 mg/Kg wet Methylene Chloride ND 0.010 mg/Kg wet Methylene Chloride ND 0.010 mg/Kg wet Wethylene Chloride ND 0.020 mg/Kg wet Wethylene Chloride ND 0.0200 mg/Kg wet Wethylene ND	Isopropylbenzene (Cumene)	ND	0.0020	mg/Kg wet							
Methylene Chloride	p-Isopropyltoluene (p-Cymene)	ND	0.0020	mg/Kg wet							
Publish Publ	Methyl tert-Butyl Ether (MTBE)	ND	0.0040	mg/Kg wet							
ND 0.0040 mg/Kg wet styrene ND 0.0020 mg/Kg wet styrene ND	Methylene Chloride	ND	0.010	mg/Kg wet							
ND 0.0020 mg/Kg wet Styrene Styren	4-Methyl-2-pentanone (MIBK)	ND	0.020	mg/Kg wet							
ND 0.0020 mg/Kg wet 1,1,1,2-Tetrachloroethane ND 0.0020 mg/Kg wet 1,1,2,2-Tetrachloroethane ND 0.0010 mg/Kg wet 1,1,2,2-Tetrachloroethane ND 0.0010 mg/Kg wet 1,1,2,2-Tetrachloroethane ND 0.0010 mg/Kg wet 1,1,2,2-Tetrachloroethylene ND 0.0020 mg/Kg wet 1,2,3-Trichloroethane ND 0.0020 mg/Kg wet 1,2,3-Trichloroethane ND 0.0020 mg/Kg wet 1,1,1-Trichloroethane ND 0.0020 mg/Kg wet 1,1,1-Trichloroethane ND 0.0020 mg/Kg wet 1,1,1-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,2,3-Trichloroethane ND 0.0020 mg/Kg wet 1,2,3-Trichloropthylene ND 0.0020 mg/Kg wet 1,2,3-Trichloropthylene ND 0.0020 mg/Kg wet 1,2,3-Trichloropthane ND	Naphthalene	ND	0.0040	mg/Kg wet							
1,1,2-Tetrachloroethane	n-Propylbenzene	ND	0.0020	mg/Kg wet							
1,1,2,2-Tetrachloroethane	Styrene	ND	0.0020	mg/Kg wet							
Tetrachloroethylene	1,1,1,2-Tetrachloroethane	ND	0.0020	mg/Kg wet							
Tetrahydrofuran ND 0.010 mg/Kg wet	1,1,2,2-Tetrachloroethane	ND	0.0010	mg/Kg wet							
Toluene ND 0.0020 mg/Kg wet 1,2,3-Trichlorobenzene ND 0.0020 mg/Kg wet 1,1,1-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane (Freon 11) ND 0.0020 mg/Kg wet 1,2,3-Trichloropropane ND 0.0020 mg/Kg wet 1,2,4-Trimethylbenzene ND 0.0020 mg/Kg wet 1,3,5-Trimethylbenzene ND 0.0020 mg/	Tetrachloroethylene	ND	0.0020	mg/Kg wet							
1,2,3-Trichlorobenzene ND 0.0020 mg/Kg wet 1,2,4-Trichlorobenzene ND 0.0020 mg/Kg wet 1,1,1-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,1,2-Trichloroethane ND 0.0020 mg/Kg wet 1,2,3-Trichloroptopane ND 0.0020 mg/Kg wet 1,2,3-Trichloroptopane ND 0.0020 mg/Kg wet 1,2,3-Trichloroptopane ND 0.0020 mg/Kg wet 1,2,3-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,3-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,4-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,4-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,4-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,5-Trimethylbenzene ND 0.0020 mg/Kg wet 1,2,6-Trichloroptoptoptoptoptoptoptoptoptoptoptoptopto	Tetrahydrofuran	ND	0.010	mg/Kg wet							
1,1,1-Trichloroethane	Toluene	ND	0.0020	mg/Kg wet							
1,1,1-Trichloroethane	1,2,3-Trichlorobenzene	ND	0.0020	mg/Kg wet							
1,1,2-Trichloroethane	1,2,4-Trichlorobenzene	ND	0.0020	mg/Kg wet							
ND 0.0020 mg/Kg wet Cfrichlorofluoromethane (Freon 11) ND 0.010 mg/Kg wet Cfrichlorofluoromethane (Freon 11) ND 0.010 mg/Kg wet Cfrichloropropane ND 0.0020 mg/Kg wet Cfrichloropropane ND 0.0040 mg/Kg wet Cfrichloropropane Cfrichloropr	1,1,1-Trichloroethane	ND									
Crichlorofluoromethane (Freon 11)	1,1,2-Trichloroethane	ND									
1,2,3-Trichloropropane	Trichloroethylene	ND									
1,2,4-Trimethylbenzene	Trichlorofluoromethane (Freon 11)	ND									
1,3,5-Trimethylbenzene	1,2,3-Trichloropropane	ND									
Vinyl Chloride ND 0.010 mg/Kg wet m+p Xylene ND 0.0040 mg/Kg wet xylene ND 0.0020 mg/Kg wet xylene ND 0.0020 mg/Kg wet xylene ND 0.0477 mg/Kg wet 0.0500 95.4 70-130 xylene 0.0483 mg/Kg wet 0.0500 96.5 70-130	1,2,4-Trimethylbenzene	ND									
m+p Xylene ND 0.0040 mg/Kg wet N-Xylene ND 0.0020 mg/Kg wet Surrogate: 1,2-Dichloroethane-d4 0.0477 mg/Kg wet 0.0500 95.4 70-130 Surrogate: Toluene-d8 0.0483 mg/Kg wet 0.0500 96.5 70-130	1,3,5-Trimethylbenzene	ND									
D-Xylene ND 0.0020 mg/Kg wet Surrogate: 1,2-Dichloroethane-d4 0.0477 mg/Kg wet 0.0500 95.4 70-130 mg/Kg wet 0.0500 96.5 70-130	Vinyl Chloride	ND									
Surrogate: 1,2-Dichloroethane-d4 0.0477 mg/Kg wet 0.0500 95.4 70-130 Surrogate: Toluene-d8 0.0483 mg/Kg wet 0.0500 96.5 70-130	m+p Xylene	ND									
Surrogate: Toluene-d8 0.0483 mg/Kg wet 0.0500 96.5 70-130	o-Xylene	ND	0.0020	mg/Kg wet							
	Surrogate: 1,2-Dichloroethane-d4	0.0477		mg/Kg wet	0.0500		95.4	70-130			
Surrogate: 4-Bromofluorobenzene 0.0504 mg/Kg wet 0.0500 101 70-130	Surrogate: Toluene-d8	0.0483		mg/Kg wet	0.0500		96.5	70-130			
	Surrogate: 4-Bromofluorobenzene	0.0504		mg/Kg wet	0.0500		101	70-130			

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Volatile Organic Compounds by GC/MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290543 - SW-846 5035										
CS (B290543-BS1)				Prepared & A	Analyzed: 09	/20/21				
cetone	0.191	0.10	mg/Kg wet	0.200		95.5	40-160			
ert-Amyl Methyl Ether (TAME)	0.0172	0.0010	mg/Kg wet	0.0200		85.8	70-130			
enzene	0.0197	0.0020	mg/Kg wet	0.0200		98.7	70-130			
romobenzene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130			
romochloromethane	0.0215	0.0020	mg/Kg wet	0.0200		108	70-130			
romodichloromethane	0.0203	0.0020	mg/Kg wet	0.0200		101	70-130			
romoform	0.0244	0.0020	mg/Kg wet	0.0200		122	70-130			V-20
romomethane	0.0184	0.010	mg/Kg wet	0.0200		92.1	40-160			
Butanone (MEK)	0.176	0.040	mg/Kg wet	0.200		88.0	40-160			
Butylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
c-Butylbenzene	0.0209	0.0020	mg/Kg wet	0.0200		104	70-130			
rt-Butylbenzene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130			
rt-Butyl Ethyl Ether (TBEE)	0.0171	0.0010	mg/Kg wet	0.0200		85.3	70-130			
arbon Disulfide	0.208	0.0060	mg/Kg wet	0.200		104	70-130			
arbon Tetrachloride	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130			
hlorobenzene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130			
hlorodibromomethane	0.0217	0.0010	mg/Kg wet	0.0200		108	70-130			
hloroethane	0.0195	0.010	mg/Kg wet	0.0200		97.3	70-130			
hloroform	0.0206	0.0040	mg/Kg wet	0.0200		103	70-130			
hloromethane	0.0175	0.010	mg/Kg wet	0.0200		87.6	40-160			
Chlorotoluene	0.0219	0.0020	mg/Kg wet	0.0200		110	70-130			
Chlorotoluene	0.0219	0.0020	mg/Kg wet	0.0200		110	70-130			
2-Dibromo-3-chloropropane (DBCP)	0.0187	0.0020	mg/Kg wet	0.0200		93.4	70-130			
2-Dibromoethane (EDB)	0.0224	0.0010	mg/Kg wet	0.0200		112	70-130			
ibromomethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130			
2-Dichlorobenzene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130			
3-Dichlorobenzene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130			
4-Dichlorobenzene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130			***
ichlorodifluoromethane (Freon 12)	0.0144	0.010	mg/Kg wet	0.0200		72.2	40-160			V-05
1-Dichloroethane	0.0196	0.0020	mg/Kg wet	0.0200		98.2	70-130			
2-Dichloroethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130			
1-Dichloroethylene s-1,2-Dichloroethylene	0.0196	0.0040 0.0020	mg/Kg wet mg/Kg wet	0.0200		98.0	70-130			
ans-1,2-Dichloroethylene	0.0190	0.0020	mg/Kg wet	0.0200 0.0200		94.9 99.0	70-130 70-130			
2-Dichloropropane	0.0198	0.0020	mg/Kg wet	0.0200		99.6	70-130			
3-Dichloropropane	0.0199 0.0200	0.0020	mg/Kg wet	0.0200		100	70-130			
2-Dichloropropane	0.0200	0.0010	mg/Kg wet	0.0200		94.6	70-130			
1-Dichloropropene	0.0189	0.0020	mg/Kg wet	0.0200		99.2	70-130			
s-1,3-Dichloropropene	0.0198	0.0010	mg/Kg wet	0.0200		102	70-130			
ans-1,3-Dichloropropene	0.0204	0.0010	mg/Kg wet	0.0200		100	70-130			
iethyl Ether	0.0200	0.010	mg/Kg wet	0.0200		101	70-130			
iisopropyl Ether (DIPE)	0.0169	0.0010	mg/Kg wet	0.0200		84.3	70-130			
4-Dioxane	0.209	0.10	mg/Kg wet	0.200		105	40-160			
hylbenzene	0.0196	0.0020	mg/Kg wet	0.0200		97.9	70-130			
exachlorobutadiene	0.0226	0.0020	mg/Kg wet	0.0200		113	70-130			V-20
Hexanone (MBK)	0.169	0.020	mg/Kg wet	0.200		84.3	40-160			
opropylbenzene (Cumene)	0.0217	0.0020	mg/Kg wet	0.0200		109	70-130			
Isopropyltoluene (p-Cymene)	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130			
lethyl tert-Butyl Ether (MTBE)	0.0179	0.0040	mg/Kg wet	0.0200		89.5	70-130			
ethylene Chloride	0.0180	0.010	mg/Kg wet	0.0200		89.9	70-130			
Methyl-2-pentanone (MIBK)	0.175	0.020	mg/Kg wet	0.200		87.5	40-160			
aphthalene	0.0150	0.0040	mg/Kg wet	0.0200		75.0	70-130			

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B290543 - SW-846 5035											_
LCS (B290543-BS1)				Prepared & A	Analyzed: 09/2	20/21					
n-Propylbenzene	0.0210	0.0020	mg/Kg wet	0.0200		105	70-130				
Styrene	0.0207	0.0020	mg/Kg wet	0.0200		104	70-130				
1,1,1,2-Tetrachloroethane	0.0225	0.0020	mg/Kg wet	0.0200		113	70-130				
1,1,2,2-Tetrachloroethane	0.0227	0.0010	mg/Kg wet	0.0200		113	70-130				
Tetrachloroethylene	0.0218	0.0020	mg/Kg wet	0.0200		109	70-130				
Tetrahydrofuran	0.0188	0.010	mg/Kg wet	0.0200		94.2	70-130				
Toluene	0.0196	0.0020	mg/Kg wet	0.0200		97.8	70-130				
1,2,3-Trichlorobenzene	0.0178	0.0020	mg/Kg wet	0.0200		88.8	70-130				
1,2,4-Trichlorobenzene	0.0182	0.0020	mg/Kg wet	0.0200		91.1	70-130				
1,1,1-Trichloroethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130				
1,1,2-Trichloroethane	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130				
Trichloroethylene	0.0203	0.0020	mg/Kg wet	0.0200		102	70-130				
Trichlorofluoromethane (Freon 11)	0.0208	0.010	mg/Kg wet	0.0200		104	70-130				
1,2,3-Trichloropropane	0.0208	0.0020	mg/Kg wet	0.0200		111	70-130				
1,2,4-Trimethylbenzene	0.0223	0.0020	mg/Kg wet	0.0200		102	70-130				
1,3,5-Trimethylbenzene	0.0204	0.0020	mg/Kg wet	0.0200		104	70-130				
Vinyl Chloride	0.0208	0.010	mg/Kg wet	0.0200		91.1	70-130				
m+p Xylene	0.0182	0.0040	mg/Kg wet	0.0200		98.0	70-130				
o-Xylene	0.0392	0.0040	mg/Kg wet	0.0200		99.3	70-130				
		0.0020									
Surrogate: 1,2-Dichloroethane-d4	0.0463		mg/Kg wet	0.0500		92.6	70-130				
Surrogate: Toluene-d8	0.0484		mg/Kg wet	0.0500		96.8	70-130				
Surrogate: 4-Bromofluorobenzene	0.0484		mg/Kg wet	0.0500		96.8	70-130				
LCS Dup (B290543-BSD1)				Prepared & A	Analyzed: 09/2	20/21					
Acetone	0.192	0.10	mg/Kg wet	0.200		96.0	40-160	0.491	20		
tert-Amyl Methyl Ether (TAME)	0.0170	0.0010	mg/Kg wet	0.0200		85.2	70-130	0.702	20		
Benzene	0.0192	0.0020	mg/Kg wet	0.0200		96.2	70-130	2.57	20		
Bromobenzene	0.0201	0.0020	mg/Kg wet	0.0200		101	70-130	1.09	20		
Bromochloromethane	0.0213	0.0020	mg/Kg wet	0.0200		106	70-130	1.12	20		
Bromodichloromethane	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	0.197	20		
Bromoform	0.0241	0.0020	mg/Kg wet	0.0200		120	70-130	1.07	20	V-20	
Bromomethane	0.0196	0.010	mg/Kg wet	0.0200		98.2	40-160	6.41	20		
2-Butanone (MEK)	0.178	0.040	mg/Kg wet	0.200		89.1	40-160	1.27	20		
n-Butylbenzene	0.0197	0.0020	mg/Kg wet	0.0200		98.7	70-130	3.29	20		
sec-Butylbenzene	0.0202	0.0020	mg/Kg wet	0.0200		101	70-130	3.21	20		
tert-Butylbenzene	0.0199	0.0020	mg/Kg wet	0.0200		99.6	70-130	1.10	20		
tert-Butyl Ethyl Ether (TBEE)	0.0170	0.0010	mg/Kg wet	0.0200		85.2	70-130	0.117	20		
Carbon Disulfide	0.200	0.0060	mg/Kg wet	0.200		100	70-130	3.92	20		
Carbon Tetrachloride	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	4.59	20		
Chlorobenzene	0.0208	0.0020	mg/Kg wet	0.0200		104	70-130	4.42	20		
Chlorodibromomethane	0.0213	0.0010	mg/Kg wet	0.0200		107	70-130	1.67	20		
Chloroethane	0.0196	0.010	mg/Kg wet	0.0200		97.9	70-130	0.615	20		
Chloroform	0.0202	0.0040	mg/Kg wet	0.0200		101	70-130	1.86	20		
Chloromethane	0.0172	0.010	mg/Kg wet	0.0200		86.2	40-160	1.61	20		
2-Chlorotoluene	0.0205	0.0020	mg/Kg wet	0.0200		102	70-130	6.69	20		
4-Chlorotoluene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	7.09	20		
1,2-Dibromo-3-chloropropane (DBCP)	0.0217	0.0020	mg/Kg wet	0.0200		108	70-130	14.9	20		
1,2-Dibromoethane (EDB)	0.0217	0.0010	mg/Kg wet	0.0200		111	70-130	1.35	20		
Dibromomethane	0.0211	0.0020	mg/Kg wet	0.0200		110	70-130	7.97	20		
	0.0217		0 .0	0.0200			, 0 150		-0		
	0.0211	0.0020	mg/Kg wet	0.0200		106	70-130	1 72	20		
1,2-Dichlorobenzene	0.0211 0.0209	0.0020 0.0020	mg/Kg wet mg/Kg wet	0.0200 0.0200		106 105	70-130 70-130	1.72 1.99	20 20		

QUALITY CONTROL

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes	
Batch B290543 - SW-846 5035											
LCS Dup (B290543-BSD1)				Prepared & A	Analyzed: 09	/20/21					
Dichlorodifluoromethane (Freon 12)	0.0143	0.010	mg/Kg wet	0.0200		71.3	40-160	1.25	20	V-05	-
1,1-Dichloroethane	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	2.68	20		
1,2-Dichloroethane	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	0.795	20		
1,1-Dichloroethylene	0.0187	0.0040	mg/Kg wet	0.0200		93.6	70-130	4.59	20		
cis-1,2-Dichloroethylene	0.0188	0.0020	mg/Kg wet	0.0200		93.9	70-130	1.06	20		
trans-1,2-Dichloroethylene	0.0195	0.0020	mg/Kg wet	0.0200		97.3	70-130	1.73	20		
1,2-Dichloropropane	0.0198	0.0020	mg/Kg wet	0.0200		99.2	70-130	0.402	20		
1,3-Dichloropropane	0.0203	0.0010	mg/Kg wet	0.0200		101	70-130	1.09	20		
2,2-Dichloropropane	0.0185	0.0020	mg/Kg wet	0.0200		92.5	70-130	2.24	20		
1,1-Dichloropropene	0.0191	0.0020	mg/Kg wet	0.0200		95.4	70-130	3.91	20		
cis-1,3-Dichloropropene	0.0207	0.0010	mg/Kg wet	0.0200		103	70-130	1.36	20		
trans-1,3-Dichloropropene	0.0205	0.0010	mg/Kg wet	0.0200		102	70-130	2.27	20		
Diethyl Ether	0.0209	0.010	mg/Kg wet	0.0200		104	70-130	3.12	20		
Diisopropyl Ether (DIPE)	0.0170	0.0010	mg/Kg wet	0.0200		84.9	70-130	0.709	20		
1,4-Dioxane	0.204	0.10	mg/Kg wet	0.200		102	40-160	2.55	20		
Ethylbenzene	0.0190	0.0020	mg/Kg wet	0.0200		95.1	70-130	2.90	20		
Hexachlorobutadiene	0.0231	0.0020	mg/Kg wet	0.0200		116	70-130	2.27	20	V-20	
2-Hexanone (MBK)	0.174	0.020	mg/Kg wet	0.200		86.8	40-160	2.91	20	V-20	
Isopropylbenzene (Cumene)	0.174	0.0020	mg/Kg wet	0.0200		108	70-130	0.461	20		1
p-Isopropyltoluene (p-Cymene)	0.0216	0.0020	mg/Kg wet	0.0200		100	70-130	1.38	20		
Methyl tert-Butyl Ether (MTBE)	0.0201	0.0040	mg/Kg wet	0.0200		90.1	70-130	0.668	20		
Methylene Chloride		0.010	mg/Kg wet	0.0200		87.7	70-130	2.48	20		
4-Methyl-2-pentanone (MIBK)	0.0175	0.020	mg/Kg wet	0.200		86.9	40-160	0.780	20		-
Naphthalene	0.174	0.0040	mg/Kg wet	0.200							
n-Propylbenzene	0.0179	0.0040	mg/Kg wet	0.0200		89.3 100	70-130 70-130	17.4	20 20		
Styrene	0.0200	0.0020	mg/Kg wet	0.0200		100	70-130	4.58	20		
1,1,1,2-Tetrachloroethane	0.0201	0.0020	mg/Kg wet	0.0200			70-130	2.84			
1,1,2,2-Tetrachloroethane	0.0220	0.0020				110		2.33	20		
	0.0225		mg/Kg wet	0.0200		112	70-130	0.975	20		
Tetrachoroethylene	0.0214	0.0020	mg/Kg wet	0.0200		107	70-130	1.67	20		
Tetrahydrofuran	0.0220	0.010	mg/Kg wet	0.0200		110	70-130	15.3	20		
Toluene	0.0190	0.0020	mg/Kg wet	0.0200		95.1	70-130	2.80	20		
1,2,3-Trichlorobenzene	0.0187	0.0020	mg/Kg wet	0.0200		93.3	70-130	4.94	20		
1,2,4-Trichlorobenzene	0.0191	0.0020	mg/Kg wet	0.0200		95.6	70-130	4.82	20		
1,1,1-Trichloroethane	0.0193	0.0020	mg/Kg wet	0.0200		96.4	70-130	4.46	20		
1,1,2-Trichloroethane	0.0198	0.0020	mg/Kg wet	0.0200		98.9	70-130	5.12	20		
Trichloroethylene	0.0204	0.0020	mg/Kg wet	0.0200		102	70-130	0.295	20		
Trichlorofluoromethane (Freon 11)	0.0203	0.010	mg/Kg wet	0.0200		102	70-130	2.14	20		
1,2,3-Trichloropropane	0.0228	0.0020	mg/Kg wet	0.0200		114	70-130	2.48	20		
1,2,4-Trimethylbenzene	0.0195	0.0020	mg/Kg wet	0.0200		97.4	70-130	4.42	20		
1,3,5-Trimethylbenzene	0.0206	0.0020	mg/Kg wet	0.0200		103	70-130	1.16	20		
Vinyl Chloride	0.0173	0.010	mg/Kg wet	0.0200		86.4	70-130	5.30	20		
m+p Xylene	0.0372	0.0040	mg/Kg wet	0.0400		93.1	70-130	5.13	20		
o-Xylene	0.0192	0.0020	mg/Kg wet	0.0200		96.0	70-130	3.38	20		
Surrogate: 1,2-Dichloroethane-d4	0.0461	<u> </u>	mg/Kg wet	0.0500	<u> </u>	92.3	70-130		<u> </u>	<u> </u>	
Surrogate: Toluene-d8	0.0492		mg/Kg wet	0.0500		98.4	70-130				
Surrogate: 4-Bromofluorobenzene	0.0494		mg/Kg wet	0.0500		98.8	70-130				

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290486 - SW-846 3546										
Blank (B290486-BLK1)				Prepared: 09)/17/21 Anal	yzed: 09/20/2	21			
Aroclor-1016	ND	0.020	mg/Kg wet							
Aroclor-1016 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1221	ND	0.020	mg/Kg wet							
Aroclor-1221 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1232	ND	0.020	mg/Kg wet							
Aroclor-1232 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1242	ND	0.020	mg/Kg wet							
Aroclor-1242 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1248	ND	0.020	mg/Kg wet							
Aroclor-1248 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1254	ND	0.020	mg/Kg wet							
Aroclor-1254 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1260	ND	0.020	mg/Kg wet							
Aroclor-1260 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1262	ND	0.020	mg/Kg wet							
Aroclor-1262 [2C]	ND	0.020	mg/Kg wet							
Aroclor-1268	ND	0.020	mg/Kg wet							
Aroclor-1268 [2C]	ND	0.020	mg/Kg wet							
Surrogate: Decachlorobiphenyl	0.199		mg/Kg wet	0.200		99.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.179		mg/Kg wet	0.200		89.6	30-150			
Surrogate: Tetrachloro-m-xylene	0.192		mg/Kg wet	0.200		95.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.189		mg/Kg wet	0.200		94.7	30-150			
LCS (B290486-BS1)				Prepared: 09	7/17/21 Anal	yzed: 09/20/2	21			
Aroclor-1016	0.16	0.020	mg/Kg wet	0.200		80.1	40-140			
Aroclor-1016 [2C]	0.16	0.020	mg/Kg wet	0.200		77.7	40-140			
Aroclor-1260	0.15	0.020	mg/Kg wet	0.200		75.9	40-140			
Aroclor-1260 [2C]	0.14	0.020	mg/Kg wet	0.200		69.1	40-140			
Surrogate: Decachlorobiphenyl	0.181		mg/Kg wet	0.200		90.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.163		mg/Kg wet	0.200		81.4	30-150			
Surrogate: Tetrachloro-m-xylene	0.172		mg/Kg wet	0.200		85.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.169		mg/Kg wet	0.200		84.6	30-150			
LCS Dup (B290486-BSD1)				Prepared: 09	0/17/21 Anal	yzed: 09/20/2	21			
Aroclor-1016	0.18	0.020	mg/Kg wet	0.200		87.9	40-140	9.25	30	
Aroclor-1016 [2C]	0.17	0.020	mg/Kg wet	0.200		85.1	40-140	9.05	30	
Aroclor-1260	0.17	0.020	mg/Kg wet	0.200		83.5	40-140	9.57	30	
Aroclor-1260 [2C]	0.15	0.020	mg/Kg wet	0.200		75.7	40-140	9.11	30	
Surrogate: Decachlorobiphenyl	0.197		mg/Kg wet	0.200		98.7	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.177		mg/Kg wet	0.200		88.5	30-150			
Surrogate: Tetrachloro-m-xylene	0.188		mg/Kg wet	0.200		94.1	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.185		mg/Kg wet	0.200		92.6	30-150			

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290486 - SW-846 3546										
Matrix Spike (B290486-MS1)	Sour	ce: 21I0921-	01	Prepared: 09	9/17/21 Analy:	zed: 09/22/2	21			
Aroclor-1016	0.14	0.089	mg/Kg dry	0.224	ND	63.9	40-140			
Aroclor-1016 [2C]	0.14	0.089	mg/Kg dry	0.224	ND	62.4	40-140			
Aroclor-1260	0.14	0.089	mg/Kg dry	0.224	ND	61.0	40-140			
Aroclor-1260 [2C]	0.13	0.089	mg/Kg dry	0.224	ND	57.5	40-140			
Surrogate: Decachlorobiphenyl	0.146		mg/Kg dry	0.224		65.1	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.136		mg/Kg dry	0.224		60.9	30-150			
Surrogate: Tetrachloro-m-xylene	0.123		mg/Kg dry	0.224		54.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.124		mg/Kg dry	0.224		55.6	30-150			
Matrix Spike Dup (B290486-MSD1)	Sour	ce: 21I0921-	01	Prepared: 09	9/17/21 Analy	zed: 09/22/2	21			
Aroclor-1016	0.16	0.089	mg/Kg dry	0.224	ND	73.5	40-140	14.0	30	
Aroclor-1016 [2C]	0.16	0.089	mg/Kg dry	0.224	ND	73.1	40-140	15.8	30	
Aroclor-1260	0.16	0.089	mg/Kg dry	0.224	ND	72.0	40-140	16.6	30	
Aroclor-1260 [2C]	0.15	0.089	mg/Kg dry	0.224	ND	67.9	40-140	16.6	30	
Surrogate: Decachlorobiphenyl	0.175		mg/Kg dry	0.224		78.3	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.163		mg/Kg dry	0.224		72.9	30-150			
Surrogate: Tetrachloro-m-xylene	0.147		mg/Kg dry	0.224		65.8	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	0.149		mg/Kg dry	0.224		66.6	30-150			

RPD

%REC

ĀÄ!"#\$%&!#&&'()*+',-./0&*1-23 45 67689(:5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Spike

Source

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	%REC Limits	RPD	Limit	Notes
Satch B290504 - SW-846 3546										
lank (B290504-BLK1)				Prepared: 09	/18/21 Analy	yzed: 09/21/2	:1			
C9-C18 Aliphatics	ND	10	mg/Kg wet							
19-C36 Aliphatics	ND	10	mg/Kg wet							
Inadjusted C11-C22 Aromatics	ND	10	mg/Kg wet							
11-C22 Aromatics	ND	10	mg/Kg wet							
cenaphthene	ND	0.10	mg/Kg wet							
cenaphthylene	ND	0.10	mg/Kg wet							
nthracene	ND	0.10	mg/Kg wet							
enzo(a)anthracene	ND	0.10	mg/Kg wet							
enzo(a)pyrene	ND	0.10	mg/Kg wet							
enzo(b)fluoranthene	ND	0.10	mg/Kg wet							
enzo(g,h,i)perylene	ND	0.10	mg/Kg wet							
enzo(k)fluoranthene	ND	0.10	mg/Kg wet							
hrysene	ND	0.10	mg/Kg wet							
ibenz(a,h)anthracene	ND	0.10	mg/Kg wet							
uoranthene	ND	0.10	mg/Kg wet							
luorene	ND	0.10	mg/Kg wet							
ideno(1,2,3-cd)pyrene	ND	0.10	mg/Kg wet							
Methylnaphthalene	ND	0.10	mg/Kg wet							
aphthalene	ND	0.10	mg/Kg wet							
nenanthrene	ND	0.10	mg/Kg wet							
yrene	ND	0.10	mg/Kg wet							
aphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet							
urrogate: Chlorooctadecane (COD)	3.20		mg/Kg wet	5.00		63.9	40-140			
arrogate: o-Terphenyl (OTP)	3.31		mg/Kg wet	5.00		66.1	40-140			
arrogate: 2-Bromonaphthalene	4.47		mg/Kg wet	5.00		89.4	40-140			
urrogate: 2-Fluorobiphenyl	4.60		mg/Kg wet	5.00		92.0	40-140			
arreguer 2 Tracreespheny	7.00			2.00	//10/01 4 1					
CC (D200504 DC1)				Droporod: 00						
	20.6	10	ma/K a wet	Prepared: 09	/18/21 Analy					
9-C18 Aliphatics	20.6	10	mg/Kg wet	30.0	//18/21 Analy	68.5	40-140			
9-C18 Aliphatics 19-C36 Aliphatics	34.1	10	mg/Kg wet	30.0 40.0	//18/21 Analy	68.5 85.2	40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics	34.1 74.3	10 10	mg/Kg wet	30.0 40.0 85.0	/18/21 Analy	68.5 85.2 87.4	40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene	34.1 74.3 3.66	10 10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00	/18/21 Analy	68.5 85.2 87.4 73.1	40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene	34.1 74.3 3.66 3.45	10 10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00	/18/21 Anaiy	68.5 85.2 87.4 73.1 69.0	40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene	34.1 74.3 3.66 3.45 3.94	10 10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8	40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene	34.1 74.3 3.66 3.45 3.94 4.38	10 0.10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6	40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(a)pyrene	34.1 74.3 3.66 3.45 3.94 4.38 4.37	10 0.10 0.10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13	10 0.10 0.10 0.10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10	mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics inadjusted C11-C22 Aromatics cenaphthene cenaphthylene inthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene hrysene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	mg/Kg wet mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene hrysene libenz(a,h)anthracene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(b)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene uroanthene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(b)fluoranthene enzo(b,h,i)perylene enzo(k)fluoranthene hrysene ibenz(a,h)anthracene uoranthene uorene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(b)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene uoranthene uoranthene uoranthene uorene deno(1,2,3-cd)pyrene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01	10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(b)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene duoranthene duoranthene duoranthene duoranthene duorene deno(1,2,3-cd)pyrene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01 3.42	10 10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8 80.3 68.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 19-C36 Aliphatics nadjusted C11-C22 Aromatics cenaphthene cenaphthylene nthracene enzo(a)anthracene enzo(b)fluoranthene enzo(b)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene enzo(k)fluoranthene hrysene ibenz(a,h)anthracene duoranthene luorene deno(1,2,3-cd)pyrene eMethylnaphthalene aphthalene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01	10 10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8 80.3 68.4 66.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 119-C36 Aliphatics (nadjusted C11-C22 Aromatics (cenaphthene (cenaphthylene inthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene thrysene bibenz(a,h)anthracene luoranthene luorene indeno(1,2,3-cd)pyrene -Methylnaphthalene faphthalene faphthalene fenanthrene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01 3.42	10 10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8 80.3 68.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
CS (B290504-BS1) 19-C18 Aliphatics 119-C36 Aliphatics 129-C36 Aliphat	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01 3.42 3.32	10 10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	mg/Kg wet	30.0 40.0 85.0 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8 80.3 68.4 66.4	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			
9-C18 Aliphatics 119-C36 Aliphatics (nadjusted C11-C22 Aromatics (cenaphthene (cenaphthylene inthracene enzo(a)anthracene enzo(a)pyrene enzo(b)fluoranthene enzo(g,h,i)perylene enzo(k)fluoranthene thrysene bibenz(a,h)anthracene luoranthene luorene indeno(1,2,3-cd)pyrene -Methylnaphthalene faphthalene faphthalene fenanthrene	34.1 74.3 3.66 3.45 3.94 4.38 4.37 4.13 4.02 3.97 3.98 4.27 3.88 3.74 4.01 3.42 3.32 3.98	10 10 0.10 0.10 0.10 0.10 0.10 0.10 0.1	mg/Kg wet	30.0 40.0 85.0 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	/18/21 Analy	68.5 85.2 87.4 73.1 69.0 78.8 87.6 87.4 82.6 80.5 79.3 79.6 85.4 77.7 74.8 80.3 68.4 66.4 79.7	40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140 40-140			

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - EPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290504 - SW-846 3546										
LCS (B290504-BS1)				Prepared: 09	0/18/21 Analy	zed: 09/21/	21			
Surrogate: o-Terphenyl (OTP)	3.42		mg/Kg wet	5.00		68.4	40-140			
Surrogate: 2-Bromonaphthalene	4.67		mg/Kg wet	5.00		93.4	40-140			
Surrogate: 2-Fluorobiphenyl	4.67		mg/Kg wet	5.00		93.3	40-140			
LCS Dup (B290504-BSD1)				Prepared: 09)/18/21 Analy	zed: 09/21/	21			
C9-C18 Aliphatics	17.8	10	mg/Kg wet	30.0		59.4	40-140	14.2	25	
C19-C36 Aliphatics	28.2	10	mg/Kg wet	40.0		70.5	40-140	18.8	25	
Unadjusted C11-C22 Aromatics	65.5	10	mg/Kg wet	85.0		77.1	40-140	12.5	25	
Acenaphthene	3.32	0.10	mg/Kg wet	5.00		66.5	40-140	9.51	25	
Acenaphthylene	3.18	0.10	mg/Kg wet	5.00		63.5	40-140	8.25	25	
Anthracene	3.45	0.10	mg/Kg wet	5.00		69.1	40-140	13.2	25	
Benzo(a)anthracene	3.82	0.10	mg/Kg wet	5.00		76.4	40-140	13.7	25	
Benzo(a)pyrene	3.78	0.10	mg/Kg wet	5.00		75.6	40-140	14.5	25	
Benzo(b)fluoranthene	3.58	0.10	mg/Kg wet	5.00		71.5	40-140	14.4	25	
Benzo(g,h,i)perylene	3.44	0.10	mg/Kg wet	5.00		68.7	40-140	15.7	25	
Benzo(k)fluoranthene	3.44	0.10	mg/Kg wet	5.00		68.9	40-140	14.1	25	
Chrysene	3.47	0.10	mg/Kg wet	5.00		69.4	40-140	13.6	25	
Dibenz(a,h)anthracene	3.66	0.10	mg/Kg wet	5.00		73.2	40-140	15.3	25	
Fluoranthene	3.40	0.10	mg/Kg wet	5.00		68.0	40-140	13.3	25	
Fluorene	3.31	0.10	mg/Kg wet	5.00		66.2	40-140	12.2	25	
Indeno(1,2,3-cd)pyrene	3.44	0.10	mg/Kg wet	5.00		68.8	40-140	15.4	25	
2-Methylnaphthalene	3.28	0.10	mg/Kg wet	5.00		65.5	40-140	4.32	25	
Naphthalene	3.25	0.10	mg/Kg wet	5.00		65.0	40-140	2.15	25	
Phenanthrene	3.49	0.10	mg/Kg wet	5.00		69.8	40-140	13.2	25	
Pyrene	3.50	0.10	mg/Kg wet	5.00		69.9	40-140	13.2	25	
Naphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00		07.7	0-5	13.2	23	
2-Methylnaphthalene-aliphatic fraction	ND	0.10	mg/Kg wet	5.00			0-5			
Surrogate: Chlorooctadecane (COD)	2.84		mg/Kg wet	5.00		56.8	40-140			
Surrogate: o-Terphenyl (OTP)	2.95		mg/Kg wet	5.00		59.1	40-140			
Surrogate: 2-Bromonaphthalene	4.38		mg/Kg wet	5.00		87.7	40-140			
Surrogate: 2-Fluorobiphenyl	4.57		mg/Kg wet	5.00		91.3	40-140			
Matrix Spike (B290504-MS1)	Som	rce: 2110921-	01	Prepared: 09)/18/21 Analy	zed: 09/22/	21			
C9-C18 Aliphatics	24.2	rce: 2110921- 11	mg/Kg dry	33.4		72.6	40-140			
C19-C36 Aliphatics	37.6	11	mg/Kg dry	44.5	ND		40-140			
Unadjusted C11-C22 Aromatics	75.6	11	mg/Kg dry	94.6	ND	80.0	40-140			
Acenaphthene	3.91	0.11	mg/Kg dry	5.56	ND		40-140			
Acenaphthylene	3.74	0.11	mg/Kg dry	5.56	ND	67.2	40-140			
Anthracene	4.00	0.11	mg/Kg dry	5.56	ND	71.8	40-140			
Benzo(a)anthracene	4.37	0.11	mg/Kg dry	5.56	ND ND	78.6	40-140			
Benzo(a)pyrene	4.41	0.11	mg/Kg dry	5.56	ND ND	79.2	40-140			
Benzo(b)fluoranthene	4.41	0.11	mg/Kg dry	5.56	ND ND		40-140			
Benzo(g,h,i)perylene	4.16	0.11	mg/Kg dry	5.56	ND ND	73.1	40-140			
Benzo(k)fluoranthene	3.96	0.11	mg/Kg dry	5.56	ND	71.3	40-140			
Chrysene	3.98	0.11	mg/Kg dry	5.56	ND ND	71.5	40-140			
Dibenz(a,h)anthracene	3.98 4.27	0.11	mg/Kg dry	5.56	ND ND	76.8	40-140			
Fluoranthene	3.91	0.11	mg/Kg dry	5.56	ND ND	70.3	40-140			
Fluorene	3.89	0.11	mg/Kg dry	5.56	ND ND	69.9	40-140			
indeno(1,2,3-cd)pyrene	4.02	0.11	mg/Kg dry	5.56	ND ND		40-140			
2-Methylnaphthalene		0.11	mg/Kg dry	5.56	ND ND	69.8	40-140			
Naphthalene	3.88	0.11	mg/Kg dry				40-140			
Phenanthrene	3.91	0.11	mg/Kg dry	5.56	ND					
nonantinone	4.06	0.11	mg/rxg ury	5.56	ND	73.0	40-140			

Surrogate: 2-Fluorobiphenyl

ĀÄ!"#\$%&!#&&'()*+',-./0&*1-23 45 67689(:5; <7Ā=>8>?@<\$A),B<7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - EPH - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290504 - SW-846 3546										
Matrix Spike (B290504-MS1)	Sourc	e: 21I0921	-01	Prepared: 09	0/18/21 Analyz	zed: 09/22/2	21			
Pyrene	4.02	0.11	mg/Kg dry	5.56	ND	72.2	40-140			
Surrogate: Chlorooctadecane (COD)	3.74		mg/Kg dry	5.56		67.3	40-140			
Surrogate: o-Terphenyl (OTP)	3.39		mg/Kg dry	5.56		61.0	40-140			
Surrogate: 2-Bromonaphthalene	4.99		mg/Kg dry	5.56		89.7	40-140			
Surrogate: 2-Fluorobiphenyl	5.09		mg/Kg dry	5.56		91.4	40-140			
Aatrix Spike Dup (B290504-MSD1)	Sourc	e: 21I0921	-01	Prepared: 09	0/18/21 Analyz	zed: 09/22/2	21			
C9-C18 Aliphatics	23.9	11	mg/Kg dry	33.4	ND	71.5	40-140	1.48	50	·
C19-C36 Aliphatics	39.2	11	mg/Kg dry	44.5	ND	88.1	40-140	4.14	50	
Unadjusted C11-C22 Aromatics	85.0	11	mg/Kg dry	94.6	ND	89.9	40-140	11.7	50	
Acenaphthene	4.14	0.11	mg/Kg dry	5.56	ND	74.5	40-140	5.69	50	
Acenaphthylene	3.92	0.11	mg/Kg dry	5.56	ND	70.5	40-140	4.77	50	
Anthracene	4.40	0.11	mg/Kg dry	5.56	ND	79.1	40-140	9.64	50	
Benzo(a)anthracene	4.89	0.11	mg/Kg dry	5.56	ND	87.9	40-140	11.1	50	
Benzo(a)pyrene	4.82	0.11	mg/Kg dry	5.56	ND	86.7	40-140	9.08	50	
Benzo(b)fluoranthene	4.59	0.11	mg/Kg dry	5.56	ND	82.5	40-140	9.97	50	
Benzo(g,h,i)perylene	4.42	0.11	mg/Kg dry	5.56	ND	79.5	40-140	8.48	50	
Benzo(k)fluoranthene	4.35	0.11	mg/Kg dry	5.56	ND	78.1	40-140	9.19	50	
Chrysene	4.39	0.11	mg/Kg dry	5.56	ND	78.8	40-140	9.77	50	
Dibenz(a,h)anthracene	4.61	0.11	mg/Kg dry	5.56	ND	82.9	40-140	7.61	50	
Fluoranthene	4.40	0.11	mg/Kg dry	5.56	ND	79.0	40-140	11.7	50	
Fluorene	4.21	0.11	mg/Kg dry	5.56	ND	75.7	40-140	7.93	50	
Indeno(1,2,3-cd)pyrene	4.40	0.11	mg/Kg dry	5.56	ND	79.1	40-140	9.06	50	
2-Methylnaphthalene	3.90	0.11	mg/Kg dry	5.56	ND	70.0	40-140	0.266	50	
Naphthalene	3.80	0.11	mg/Kg dry	5.56	ND	68.2	40-140	2.94	50	
Phenanthrene	4.50	0.11	mg/Kg dry	5.56	ND	80.9	40-140	10.2	50	
Pyrene	4.52	0.11	mg/Kg dry	5.56	ND	81.3	40-140	11.9	50	
Surrogate: Chlorooctadecane (COD)	3.89		mg/Kg dry	5.56		70.0	40-140			
Surrogate: o-Terphenyl (OTP)	3.66		mg/Kg dry	5.56		65.9	40-140			
Surrogate: 2-Bromonaphthalene	4.94		mg/Kg dry	5.56		88.8	40-140			

5.56

mg/Kg dry

93.2

40-140

5.19

RPD

%REC

ĀÄ!"#\$%&!#&&'()*+',-./0&*1-23 45 67689(:5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Spike

Source

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290675 - MA VPH										
Blank (B290675-BLK1)				Prepared & A	Analyzed: 09	/21/21				
Unadjusted C5-C8 Aliphatics	ND	10	mg/Kg wet							<u> </u>
C5-C8 Aliphatics	ND	10	mg/Kg wet							
Unadjusted C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C12 Aliphatics	ND	10	mg/Kg wet							
C9-C10 Aromatics	ND	10	mg/Kg wet							
Benzene	ND	0.050	mg/Kg wet							
Butylcyclohexane	ND	0.050	mg/Kg wet							
Decane	ND	0.050	mg/Kg wet							
Ethylbenzene	ND	0.050	mg/Kg wet							
Methyl tert-Butyl Ether (MTBE)	ND	0.050	mg/Kg wet							
2-Methylpentane	ND	0.050	mg/Kg wet							
Naphthalene	ND	0.25	mg/Kg wet							
Nonane	ND	0.050	mg/Kg wet							
Pentane	ND	0.050	mg/Kg wet							
Toluene	ND	0.050	mg/Kg wet							
1,2,4-Trimethylbenzene	ND	0.050	mg/Kg wet							
2,2,4-Trimethylpentane	ND	0.050	mg/Kg wet							
m+p Xylene	ND	0.10	mg/Kg wet							
o-Xylene	ND	0.050	mg/Kg wet							
Surrogate: 2,5-Dibromotoluene (FID)	37.7		μg/L	40.0		94.2	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	38.4		$\mu g/L$	40.0		96.0	70-130			
LCS (B290675-BS1)				Prepared & A	Analyzed: 09	/21/21				
Benzene	0.0468	0.0010	mg/Kg wet	0.0500		93.6	70-130			
Butylcyclohexane	0.0600	0.0010	mg/Kg wet	0.0500		120	70-130			
Decane	0.0447	0.0010	mg/Kg wet	0.0500		89.3	70-130			
Ethylbenzene	0.0466	0.0010	mg/Kg wet	0.0500		93.2	70-130			
Methyl tert-Butyl Ether (MTBE)	0.0462	0.0010	mg/Kg wet	0.0500		92.5	70-130			
2-Methylpentane	0.0439	0.0010	mg/Kg wet	0.0500		87.9	70-130			
Naphthalene	0.0536	0.0050	mg/Kg wet	0.0500		107	70-130			
Nonane	0.0600	0.0010	mg/Kg wet	0.0500		120	30-130			
Pentane	0.0464	0.0010	mg/Kg wet	0.0500		92.7	70-130			
Toluene	0.0463	0.0010	mg/Kg wet	0.0500		92.5	70-130			
1,2,4-Trimethylbenzene	0.0431	0.0010	mg/Kg wet	0.0500		86.3	70-130			
2,2,4-Trimethylpentane	0.0403	0.0010	mg/Kg wet	0.0500		80.7	70-130			
m+p Xylene	0.0922	0.0020	mg/Kg wet	0.100		92.2	70-130			
o-Xylene	0.0468	0.0010	mg/Kg wet	0.0500		93.6	70-130			
Surrogate: 2,5-Dibromotoluene (FID)	37.6		μg/L	40.0		93.9	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	40.3		μg/L	40.0		101	70-130			
LCS Dup (B290675-BSD1)				Prepared & A	Analyzed: 09	/21/21				
Benzene	0.0456	0.0010	mg/Kg wet	0.0500	-	91.1	70-130	2.73	25	
Butylcyclohexane	0.0588	0.0010	mg/Kg wet	0.0500		118	70-130	2.17	25	
Decane	0.0430	0.0010	mg/Kg wet	0.0500		86.1	70-130	3.70	25	
Ethylbenzene	0.0452	0.0010	mg/Kg wet	0.0500		90.5	70-130	3.03	25	
Methyl tert-Butyl Ether (MTBE)	0.0467	0.0010	mg/Kg wet	0.0500		93.3	70-130	0.922	25	
2-Methylpentane	0.0410	0.0010	mg/Kg wet	0.0500		81.9	70-130	7.02	25	
Naphthalene	0.0543	0.0050	mg/Kg wet	0.0500		109	70-130	1.40	25	
Nonane	0.0586	0.0010	mg/Kg wet	0.0500		117	30-130	2.37	25	
			mg/Kg wet	0.0500		85.3	70-130	8.34	25	
Pentane	0.0426	0.0010	mg/Kg wet							
Pentane Toluene	0.0426 0.0450	0.0010 0.0010	mg/Kg wet	0.0500		90.1	70-130	2.72	25	

QUALITY CONTROL

Petroleum Hydrocarbons Analyses - VPH - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290675 - MA VPH										
LCS Dup (B290675-BSD1)				Prepared & A	Analyzed: 09	/21/21				
2,2,4-Trimethylpentane	0.0371	0.0010	mg/Kg wet	0.0500		74.2	70-130	8.38	25	
m+p Xylene	0.0898	0.0020	mg/Kg wet	0.100		89.8	70-130	2.68	25	
o-Xylene	0.0459	0.0010	mg/Kg wet	0.0500		91.9	70-130	1.81	25	
Surrogate: 2,5-Dibromotoluene (FID)	41.8		μg/L	40.0		104	70-130			
Surrogate: 2,5-Dibromotoluene (PID)	41.7		$\mu g/L$	40.0		104	70-130			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B2	90709 -	%	Solids
----------	---------	---	--------

Duplicate (B290709-DUP4)	Source: 2110921-11	l	Prepared: 09/21/21 Analyzed: 09/22/21		
% Solids	82.0	% Wt	83.2	1.39	5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS		
LC2		

Lab Sample ID:	B290486-BS1		Date(s) Analyzed:	09/20/2021	09/20/2021	
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID: (mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7.00.2.1.2	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.16	
	2	0.000	0.000	0.000	0.16	0.0
Aroclor-1260	1	0.000	0.000	0.000	0.15	
	2	0.000	0.000	0.000	0.14	6.9

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

Lab Sample ID:	B290486-BSD1		Date(s) Analyzed:	09/20/2021	09/20	/2021
Instrument ID (1):	ECD5	_	Instrument ID (2):	ECD5		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7,10,12112	002	111	FROM	TO	OONOLIVITUUTION	70111 D
Aroclor-1016	1	0.000	0.000	0.000	0.18	
	2	0.000	0.000	0.000	0.17	5.7
Aroclor-1260	1	0.000	0.000	0.000	0.17	
	2	0.000	0.000	0.000	0.15	12.5

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike

Lab Sample ID:	B290486-MS1		Date(s) Analyzed:	09/22/2021	09/22	2/2021
Instrument ID (1):	ECD5		Instrument ID (2):	ECD5		
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7,10,12172	OOL		FROM	TO	OONOLIVITUUTION	701111 15
Aroclor-1016	1	0.000	0.000	0.000	0.14	
	2	0.000	0.000	0.000	0.14	0.0
Aroclor-1260	1	0.000	0.000	0.000	0.14	
	2	0.000	0.000	0.000	0.13	7.4

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

Matrix Spike Dup

Lab Sample ID:	B290486-MSD1		Date(s) Analyzed:	09/22/2021	09/22/	2021
Instrument ID (1):	ECD5		Instrument ID (2):	ECD5		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm

ANALYTE	COL	RT	RT WINDOW		CONCENTRATION	%RPD
7,10,12172	OOL	111	FROM	TO	OONOLIVITUUTION	701111 15
Aroclor-1016	1	0.000	0.000	0.000	0.16	
	2	0.000	0.000	0.000	0.16	0.0
Aroclor-1260	1	0.000	0.000	0.000	0.16	
	2	0.000	0.000	0.000	0.15	6.5

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
L-07	Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.
O-01	Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount.
O-32	A dilution was performed as part of the standard analytical procedure.
RL-05	Elevated reporting limit due to high concentration of target compounds. MA CAM reporting limit not met.
S-15	Surrogate recovery outside of control limits due to suspected sample matrix interference. Chromatogram(s) is attached.
V-05	Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.
V-16	Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported result.
V-20	Continuing calibration verification (CCV) did not meet method specifications and was biased on the high side. Data validation is not affected since sample result was "not detected" for this compound.
V-34	Initial calibration verification (ICV) did not meet method specifications and was biased on the low side for this compound. Reported result is estimated.

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
MADEP EPH rev 2.1 in Soil	
C9-C18 Aliphatics	CT,NC,ME,NH-P
C19-C36 Aliphatics	CT,NC,ME,NH-P
Unadjusted C11-C22 Aromatics	CT,NC,ME,NH-P
C11-C22 Aromatics	CT,NC,ME,NH-P
Acenaphthene	CT,NC,ME,NH-P
Acenaphthylene	CT,NC,ME,NH-P
Anthracene	CT,NC,ME,NH-P
Benzo(a)anthracene	CT,NC,ME,NH-P
Benzo(a)pyrene	CT,NC,ME,NH-P
Benzo(b)fluoranthene	CT,NC,ME,NH-P
Benzo(g,h,i)perylene	CT,NC,ME,NH-P
Benzo(k)fluoranthene	CT,NC,ME,NH-P
Chrysene	CT,NC,ME,NH-P
Dibenz(a,h)anthracene	CT,NC,ME,NH-P
Fluoranthene	CT,NC,ME,NH-P
Fluorene	CT,NC,ME
Indeno(1,2,3-cd)pyrene	CT,NC,ME,NH-P
2-Methylnaphthalene	CT,NC
Naphthalene	CT,NC,ME,NH-P
Phenanthrene	CT,NC,ME,NH-P
Pyrene	CT,NC,ME,NH-P
MADEP-VPH-Feb 2018 Rev 2.1 in Soil	
Unadjusted C5-C8 Aliphatics	CT,NC,ME,NH-P
C5-C8 Aliphatics	CT,NC,ME,NH-P
Unadjusted C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C12 Aliphatics	CT,NC,ME,NH-P
C9-C10 Aromatics	CT,NC,ME,NH-P
Benzene	CT,NC,ME,NH-P
Ethylbenzene	CT,NC,ME,NH-P
Methyl tert-Butyl Ether (MTBE)	CT,NC,ME,NH-P
Naphthalene	CT,NC,ME,NH-P
Toluene	CT,NC,ME,NH-P
m+p Xylene	CT,NC,ME,NH-P
o-Xylene	CT,NC,ME,NH-P
SW-846 8082A in Soil	
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA

CERTIFICATIONS

Certified Analyses included in this Report

sec-Butylbenzene

Certified Analyses included in this Report Analyte	Certifications	
SW-846 8082A in Soil		
	CTAHLANANG ME VA DA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1262	NH,NY,NC,ME,VA,PA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA	
Aroclor-1268	NH,NY,NC,ME,VA,PA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA	
SW-846 8082A in Water		
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA	
Aroclor-1262	NH,NY,NC,ME,VA,PA	
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA	
Aroclor-1268	NH,NY,NC,ME,VA,PA	
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA	
SW-846 8260C-D in Soil		
Acetone	CT,NH,NY,ME	
Acetone	CT,NH,NY,ME	
Benzene	CT,NH,NY,ME	
Benzene	CT,NH,NY,ME	
Bromobenzene	NH,NY,ME	
Bromobenzene	NH,NY,ME	
Bromochloromethane	NH,NY,ME	
Bromochloromethane	NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME	
Bromodichloromethane	CT,NH,NY,ME	
Bromoform	CT,NH,NY,ME	
Bromoform	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
Bromomethane	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
2-Butanone (MEK)	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
n-Butylbenzene	CT,NH,NY,ME	
D (II		

CT,NH,NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 8260C-D in Soil	
sec-Butylbenzene	CT,NH,NY,ME
tert-Butylbenzene	CT,NH,NY,ME
tert-Butylbenzene	CT,NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Disulfide	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Carbon Tetrachloride	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorobenzene	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chlorodibromomethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroethane	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloroform	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
Chloromethane	CT,NH,NY,ME
2-Chlorotoluene	CT,NH,NY,ME
2-Chlorotoluene	CT,NH,NY,ME
4-Chlorotoluene	CT,NH,NY,ME
4-Chlorotoluene	CT,NH,NY,ME
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromo-3-chloropropane (DBCP)	NY
1,2-Dibromoethane (EDB)	NY
1,2-Dibromoethane (EDB)	NY
Dibromomethane	NH,NY,ME
Dibromomethane	NH,NY,ME
1,2-Dichlorobenzene	CT,NH,NY,ME
1,2-Dichlorobenzene	CT,NH,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,3-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
1,4-Dichlorobenzene	CT,NH,NY,ME
Dichlorodifluoromethane (Freon 12)	NY,ME
Dichlorodifluoromethane (Freon 12)	NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,2-Dichloroethane	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
1,1-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	CT,NH,NY,ME
cis-1,2-Dichloroethylene	CT,NH,NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
trans-1,2-Dichloroethylene	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME
1,2-Dichloropropane	CT,NH,NY,ME

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260C-D in Soil		
1,3-Dichloropropane	NH,NY,ME	
1,3-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
2,2-Dichloropropane	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
1,1-Dichloropropene	NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
cis-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
trans-1,3-Dichloropropene	CT,NH,NY,ME	
1,4-Dioxane	NY	
Ethylbenzene	CT,NH,NY,ME	
Ethylbenzene	CT,NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
Hexachlorobutadiene	NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
2-Hexanone (MBK)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
Isopropylbenzene (Cumene)	CT,NH,NY,ME	
p-Isopropyltoluene (p-Cymene)	NH,NY	
p-Isopropyltoluene (p-Cymene)	NH,NY	
Methyl tert-Butyl Ether (MTBE)	NY	
Methyl tert-Butyl Ether (MTBE)	NH,NY	
Methylene Chloride	CT,NH,NY,ME	
Methylene Chloride	CT,NH,NY,ME	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
4-Methyl-2-pentanone (MIBK)	CT,NH,NY	
Naphthalene	NH,NY,ME	
Naphthalene	NH,NY,ME	
n-Propylbenzene	NH,NY	
n-Propylbenzene	NH,NY	
Styrene	CT,NH,NY,ME	
Styrene	CT,NH,NY,ME	
1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
1,1,2,2-Tetrachloroethane	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Tetrachloroethylene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
Toluene	CT,NH,NY,ME	
1,2,3-Trichlorobenzene	ME	
1,2,3-Trichlorobenzene	NY	
1,2,4-Trichlorobenzene	NH,NY,ME	
1,2,4-Trichlorobenzene	NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
1,1,1-Trichloroethane	CT,NH,NY,ME	
	, , , ,	Page 77

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications	
SW-846 8260C-D in Soil		
1,1,2-Trichloroethane	CT,NH,NY,ME	
1,1,2-Trichloroethane	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichloroethylene	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
Trichlorofluoromethane (Freon 11)	CT,NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,3-Trichloropropane	NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,2,4-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
1,3,5-Trimethylbenzene	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
Vinyl Chloride	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
m+p Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	
o-Xylene	CT,NH,NY,ME	

 $Con-Test, a\ Pace\ Environmental\ Laboratory, operates\ under\ the\ following\ certifications\ and\ accreditations:$

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publile Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

215091 http://www.pacelabs.com

Doc # 381 Rev 5_07/13/2021

Table of Contents Glassware in freezer? Y / Prepackaged Cooler? Y / C responsible for missing samples Chain of Custody is a legal document that must be complete and accurate and is used to determine wh Analytical values your partnership on each project and will try to assist with missing information, but w Glasswaren the fridge? analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pa Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers 2 Preservation Codes: *Pace Analytical is not X = Sodium Hydroxide fotal Number Of S = Soil SL = Sludge SOL = Solid O = Other (please 8 = Sodium Bisulfate Courier Use Only 0 = Other (please define) 5 = Sulfuric Acid GLASS II Preservation Code N = Mitric Acid BACTERIA M = Methanol PLASTIC VIALS ENCORF Thiosuffate define) A = Air H=HCL possible sample concentration within the Conc H · High; M - Medium; L - Low; C · Clean; U -Please use the following codes to indicate NELAC and AiHa-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. ANALYSIS REQUESTED Unknown Other R R Q R Q 2 Q 2 E CT RCP Required MA MCP Required MCP Certification Form Required WRTA MA State DW Required RCP Certification Form Requi HOB 2 2 2 2 SX 2 East Longmeadow, MA 01028 BACTERIA ENCORE X 39 Spruce Street Field Filtered Field Filtered Lab to Filter PCB ONL Lab to Filter Matrix Conc.Code VIALS GLASS PLASTIC. School MWRA MBTA NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD S (1) 5 00 0 0 Email To: Omalua Coto Cour or Fax to #: eescoppeopolonoron Due Date 5 du Municipality Brownfield # CIISMd 10-Day Q EXCEL 3-Day 4-Day S (1) CLP Like Data Pkg Required: COMP/GRAB Ò 9 PFAS 10-Day (std) PDF Government Ending Date/Time 0880 6430 1000 1200 1030 0000 100 130 Federal ormat: Other: Client Comments: 1-Day 2-Day 30 7-Day City Project Entity Beginning Date/Time Access COC's and Support Requests 3 4.67.73 9 17 11 Client Sample ID / Description Phone: 413-525-2332 Date Time: Fax: 413-525-6405 Date/Time: Date/Time: Date/Time: 3-5 1 3-5 8-8(1-3 5-7 10 THE TOTAL G. Malley BC 850 34 516 8-3 7 E. ESCORY Pace Analytical Cropless Project Number: 20100-Project Manager: Mod 2 Hes U 0 3 Pace Quote Name/Number: -Invoice Recipient: C+C Relinquished by: (signature) Relinquished by: (signature) r: (signature) linquished by: (signature) (signature) Received by: (signature) 56 Work Order# 5 by: (signal Project Location: Pace Comments: 5 SON Received by Sampled By: elinquishe Address: Phone: Page 79 of 83

21IO921

Table of Contents Glassware in freezer? Y / Q Prepackaged Cooler? Y / N responsible for missing samples from prepacked coolers Glassware in the fridge? Analytical values your partnership on each project and will try to assist with missing information, but w Chain of Custody is a legal document that must be complete and accurate and is used to determine wh analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pa Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. The ' Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking:Water "Pace Analytical is not ² Preservation Codes: I = Iced Foral Number Of X = Sodium Hydroxide A = Air S = Soil SL = Sludge SOL = Soid O = Other (please B = Sodium Bisulfate Courier Use Only 0 = Other (please define) GLASS IL S = Sulfuric Acid Page 2012 ² Preservation Code BACTERIA N = Nitric Acid PLASTIC ENCORE M = Methanol YIALS T = Sodium Thiosulfate H = HCL define) possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U -Please use the following codes to indicate NELAC and Altha-LAP, LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above: ANALYSIS REQUESTED Unknown Other Doc # 381 Rev 5_0771372021 FW H 2 222 भिव3 मव3 मव्य CT RCP Required M M MCP Certification Form Required MA MCP Required RCP Certification Form Required MA State DW Required 39 Spruce Street East Longmeadow, MA 01028 "Matrix Cone Code VIALS GLASS PLASTIC BACTERIA ENCORE Field Filtered Field Filtered PCB ONLY Lab to Fitter Lab to Filter School MWRA MBTA Email To: Orally Cob-CAUCON NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD _ /\$) 0 0 0 0 Fax To #: RESK obcure oto -environ Due Date 5-4m 0 http://www.pacelabs.com Municipality 21 J Brownfield # GISMd 10-Day 3-Day 4-Day EXCEL Q 0 CLP Like Data Pkg Required: COMP/GRAB D 9 PFAS 10-Day (std) PDF Late/Time 1300 Government 1230 1200 Federal ormat: 1-Day 2-Day Ofher: Client Comments: 7-Day PAU-City Project Entity Date/Tipe 9/ Access COC's and Support Requests Date/Time: Date/Time: Date/Time: Glient Sample ID / Description Phone: 413-525-2332 9/18/21 01-8 Fax: 413-525-6405 Date/Time: Date/Time; Project Manager: MOCK O' Malley R-101 on coverat Project Location: Shut Shury Project Number: 20(00 -- 03-10) B-9 5-0 eceived by: (signature) Sear 1445 293 Badge Sampled By: E. ESCO Dave Face Analytical * TO FLES Involce Recipient: OTO iemy Marrie 3 Pace Quote Name/Number: elinguished by: (signature) Retinquished by: (signature) Relinguished by: (signatur (eceived by: (fignature) Received by: (signature) Work Order# 3 Received by: (sign Comments: Relinquished by 20 Address: Page 80 of 83

I Have Not Confirmed Sample Container
Numbers With Lab Staff Before Relinquishing
Over Samples_____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection Criteria Listing - Using Acceptance Policy) Any False Statement will be brought to the attention of the Client - State True or False

	d By	11K	110000000000000000000000000000000000000	Date	9/17/11	Т.	ime	1419	
How were the	e samples	In Cooler	T	No Cooler	On Ice	•	ī	No Ice	
receive	ed?	Direct from Samp	olina		Ambier	ot		Melted Ice	
Lancie Const		Direct Hom Carry	By Gun #	7	Actual T	W	74	Monou noo	***************************************
Were sampl							60		
Temperatur			By Blank #		Actual To	-		100	
	Custody Se		MA	the same of the sa	e Samples Tamper			_117	-
	COC Relin				Chain Agree With	Samples	5?		
		eaking/loose caps	on any sam	******	<u></u>	V 140			
Is COC in ink			-	The second secon	ples received within	No. of the second of the second	1 TO STATE OF THE PARTY OF THE		
Did COC in		Client		Analysis _	The second section of the second section is a second section.	npler Na		T	
pertinent Info		Project	T	ID's	Collecti	on Date	s/Times		
		out and legible?	T						
Are there Lab	to Filters?		F		Who was notified'	?			
Are there Rus	shes?		$_F$	4.	Who was notified	?			
Are there Sho	ort Holds?		F		Who was notified	?			
s there enoug	gh Volume	?	1	J					
s there Head	space whe	re applicable?	F	N	IS/MSD? F				
Proper Media	150		1	ls	s splitting samples	required	?	F	
Were trip blar	ks receive	d?	F		on coc? F				
VVCIC LIID DIAI	INO I COCIVO								
			M	Acid		E	Base		
Do all sample			1114	Acid		1	Base		#
Do all sample /ials		proper pH?	// /	Acid	1 #	E	Base 16 oz	Amb.	#
Do all sample /ials Jnp-		proper pH? Containers:	1 /14 *		lastic #	E	16 oz	Amb.	*
Do all sample //als Jnp- HCL-		proper pH? Containers: 1 Liter Amb.	// }	1 Liter P	lastic	E	16 oz 8oz Am	DATE WATER CONTRACTOR OF THE PARTY OF THE PA	#
Oo all sample //ais /np- HCL- Meoh-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb.	// }	1 Liter P 500 mL F	lastic Plastic	E	16 oz 8oz Am	b/Clear b/Clear	11
Oo all sample //als Jnp- HCL- Meoh- Bisulfate- DI-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	// }	1 Liter P 500 mL F 250 mL F	lastic Plastic Plastic cteria	E	16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear	# //
Oo all sample //ais Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	s have the	containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	// }	1 Liter P 500 mL F 250 mL F Col./Bac	lastic Plastic Plastic cteria astic	Frozo	16 oz 8oz Am 4oz Am 2oz Am Enc	Б/Оear b/Clear b/Clear	11
Oo all sample Vals Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	// }	1 Liter P 500 mL F 250 mL F Col./Bac Other Pl	lastic Plastic Plastic cteria astic Bag		16 oz 8oz Am 4oz Am 2oz Am Enc	Б/Оear b/Clear b/Clear	# //
Oo all sample //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate-	s have the	containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	// 1	1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic	lastic Plastic Plastic cteria astic Bag ck		16 oz 8oz Am 4oz Am 2oz Am Enc	Б/Оear b/Clear b/Clear	11
Oo all sample //ais Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //ais	s have the	containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	// }	1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc	lastic Plastic Plastic cteria astic Bag ck		16 oz 8oz Am 4oz Am 2oz Am Enc	Б/Оear b/Clear b/Clear	#
Joe all sample Jais Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Jnp-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused Me	lastic Plastic Plastic cteria astic Bag ck edia #		16 oz 8oz Am 4oz Am 2oz Am Enc	ib/Clear ib/Clear ib/Clear core	#
Oo all sample //als Jnp- HCL- Meoh- Bisulfate- OI- Thiosulfate- Sulfuric- //als Jnp- HCL-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers:		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused M	lastic Plastic Plastic cteria astic Bag ck edia #		16 oz 8oz Am 4oz Am 2oz Am Enden:	ib/Clear ib/Clear ib/Clear core	#
Oo all sample //als Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //als Jnp- HCL- Meoh-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused M 1 Liter P 500 mL F 250 mL F	lastic Plastic Plastic Steria		16 oz 8oz Am 4oz Am 2oz Am Enc en: 16 oz 8oz Am 4oz Am	Amb.	# // // // // // // // // // // // // //
Oo all sample //ais Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- //ais Jnp- HCL- Meoh- Bisulfate-	s have the	proper pH? Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused Me 1 Liter P 500 mL F 250 mL F Flashp	lastic Plastic Plastic Steria		16 oz 8oz Am 4oz Am 2oz Am Encen: 16 oz 8oz Am 4oz Am	Amb. b/Clear core	#
Do all sample Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- DI- DI- DI- DI- DI- DI- DI- DI- DI	s have the	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused Me 1 Liter P 500 mL F 250 mL F Flashp Other G	lastic Plastic Plastic Plastic Steria		16 oz 8oz Am 4oz Am 2oz Am Enc en: 16 oz 8oz Am 4oz Am	Amb. b/Clear core	#
Do all sample Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- DI- Thiosulfate-	s have the	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused Mi 1 Liter P 500 mL F 250 mL F Flashp Other G Plastic	lastic Plastic Plastic Steria astic Bag ck edia # lastic Plastic Olastic Plastic Plastic Plastic Plastic Plastic Bag Bag Bag		16 oz 8oz Am 4oz Am 2oz Am End en: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear core	*
Do all sample Vials Unp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- DI- DI- DI- DI- DI- DI- DI- DI- DI- DI	s have the	Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		1 Liter P 500 mL F 250 mL F Col./Bac Other Pl Plastic Ziploc Unused Me 1 Liter P 500 mL F 250 mL F Flashp Other G	lastic Plastic Plastic Steria astic Bag ck edia # lastic Plastic Olastic Plastic Plastic Plastic Plastic Plastic Bag Bag Bag	Froze	16 oz 8oz Am 4oz Am 2oz Am End en: 16 oz 8oz Am 4oz Am 2oz Am	Amb. b/Clear core	**

Data Path : C:\msdchem\1\data\092021\

Data File: H21V268060.D

Signal(s): Signal #1: FID1B.ch Signal #2: OIMFID2A.ch

: 21 Sep 2021 07:10 pm

Operator

Sample : 21i0921-10 @ 100x meoh Inst : VPHGC3

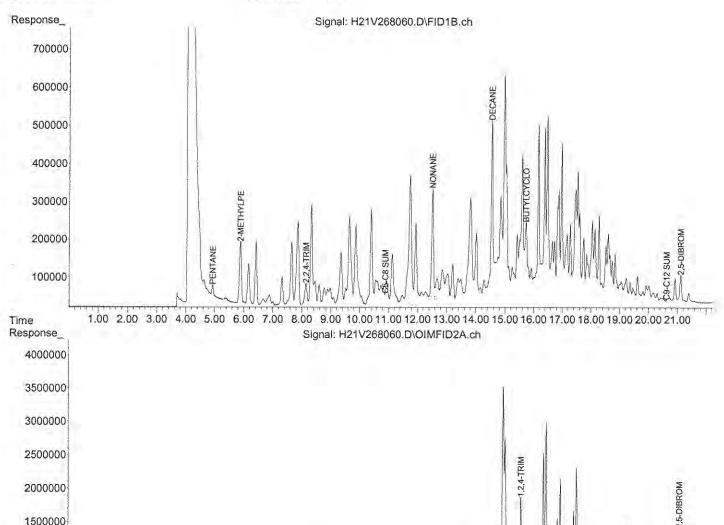
Misc

ALS Vial : 19 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Sep 22 09:03:12 2021

Quant Method : C:\msdchem\1\methods\VN20421.M

Quant Title : VPHNEW


QLast Update : Mon Sep 20 15:42:15 2021

Response via : Initial Calibration

Integrator: ChemStation

Volume Inj. Signal #1 Phase : Signal #1 Info :

Signal #2 Phase: Signal #2 Info :

-BENZENE#2

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 19.00 20.00 21.00

1500000

1000000

500000

Time

		ĀÄ!'	" #Ā\$" #À%&'()*+&'#Ā	.,)/#0,1.2/#\$,2)*	3+&)*. %#4 . <i>2</i> 5		
6&7.	2&).2(#8&5,9	-MJK					
"2.>,	+)#6.+&)*.%9	0; 89					
;-*<#4	1.25#12.@*/,<	<#+,2)*3*+&)*.%<#	3.2#)-,#3.".A*%B#/&)& #<)#9& Ø.2&).2(#D&	.51',#E #8F57,2G <hi< td=""><td></td><td></td></hi<>		
JKE	ELMJK:LK#)-2	PF#JKELMJK:K					
Ā&)2	*+,<9##	D.*'					
CA	AM Protocol	(check all that b	pelow)				
	_#PQ\$## EE₽∰GRH		T Ē&# "#P"T##<br H\$ÀĀ#EP # #GRH	NLNJ#"\$Z### \$ÄĀ#P#Ä#GRH	MLKX#)&'# \$(&%*/,Y" Ä\$# \$ÄĀ#PE Ä #G#H	ONOL# ",2+-'.2&) \$ÀĀ#PEI),# EE#Z#G#H
_	L#DPQ\$# EE#Z##G#H		Ā&< " #P"T##<br #\$AĀ#EP#\$#G#H	NLNK#",<)*+*/,<# \$ÄĀ#P#Z#G#H	WKMO#T,V#\$2### \$ÄĀ#PE#Z#G#H	Ā&<< !" \$ÄĀ#ER	
	_#Ā,)&'<## !EE Ä## G#H		Ā&<< !" #!"T## H \$ÄĀ#EP#Z#GRH	NKSK#T,27*+*/,<# \$ÀĀ#P#\$#G#H	NUUL#!V1'.<*@,<# \$ÀĀ#PEE Ä# G#H	;Q :KS#P(\$ÀĀ#ER;	
	Ai	ffirmative response	to Questions A throu	ghF is required for "Pr	esumptive Certainty"	status	
A], 2, #&"#-85 1', <#2, +, *@/ #%##. % *)*. %#+. %<*<), %#A*)- #) <, #,<+2*7,/#.%#)-,#\$-&*%:.3:\$F<)./(=# 12.1,2'(#12,<,2@,/#G*%+'F/*%B#),51,2&)F2,H#*%#)-,#3*,'/#.2#%2/(=#&%/#12,1&2,/Y&%&'(^,/#A*)-*%# 5,)/#'/*%B#)*5,<_							□8.\
В], 2, #) - , #&%&'(12.).+.'G <h#3.< td=""><td></td><td>#&<<. +*&), / # \$#2, aF*2, 5</td><td>, %<#<1,+*3*+,/#*%#)-,#<</td><td>,',+),/#\$ÄĀ#</td><td>☑[, <</td><td>□8.\</td></h#3.<>		#&<<. +*&), / # \$#2, aF*2, 5	, %<#<1,+*3*+,/#*%#)-,#<	,',+),/#\$ÄĀ#	☑[, <	□8.\
С			%% #&%&'()*+&'#2, <1. %<, #&+)*3*,/#1,23.25&%+,#<)&%	+)*.%<#<1,+*3*,/#*%#)-,#< b#8/2/%:+.%3.25&%+,<	s,',+),/#\$ÀĀ#	☑[, <	□8.\
D	.,<#)-,#'&7.2&)).2(#2,1.2)#+.51'(#A*)-i	#&"#)-,#2,1.2)*%B#2,aF*,			☑[, <	□8.\
Еа		.,	,	/#A*) F)#<*B%*3*+&% &#B%#3*+&%)#5./*3*+&)*.</td><td>'</td><td>☑[, <</td><td>□8.\</td></tr><tr><td>Εb</td><td>Ä"T#&%/#, Q:K</td><td>S#Ā,)/<#.%'(9#] &<#</td><td>[‡])-,#+.51',),#&%&'(),#'*<)#</td><td>2,1.2,/#3.2#,&+-#5,)/_</td><td></td><td>□[, <</td><td>□8.\</td></tr><tr><td>F</td><td></td><td></td><td></td><td>2/2 #% %+. %3 25 &%+, <#/ , 9 #,};#`,<)*.%<#À#)-2.FB-#!H</td><td>^a)*3*, / #&% #</td><td>☑[, <</td><td>□8.\</td></tr><tr><td></td><td></td><td></td><td></td><td>d for "Presumptive Ce</td><td>rtainty" status</td><td></td><td></td></tr><tr><td>G</td><td>12.).+.'G<H_</td><td></td><td></td><td>1,+*3*,/#*%#)-,#<,',+),/#\$¤ status may not necess</td><td></td><td></td><td>☑8.\</td></tr><tr><td></td><td></td><td></td><td></td><td>R 40. 1056 (2)(k) and W</td><td>•</td><td>-</td><td></td></tr><tr><td>Н</td><td>], 2,#&"# \$#1,</td><td>23 5 &%+, #)&% &2 <#</td><td>1, +*3, / #%+, #\$ ÀĀ#12).</td><td>+. 'GH#&+-*,@,/_</td><td></td><td>□[, <</td><td>☑_{8.\}</td></tr><tr><td>I</td><td>], 2 #2 <F')<#2</td><td>1. 2), / #8 2#-, # 5 1',)</td><td>), #&%&'(), #*<)#<1, +*3, / #%</td><td>#)-,#<,',+),/#\$ÄĀ#12.).+.'C</td><td>G<H_</td><td>☑[, <</td><td>□8.\</td></tr><tr><td>\<i>All</i></td><td>Negative respo</td><td>onses must be addre</td><td>ssed in an attached Er</td><td>nvironmental Laboratory</td><td>case narrative.</td><td></td><td></td></tr><tr><td>thos</td><td>se responsible</td><td>e for obtaining the in and belief, accurate</td><td>nformation, the mater e and complete.</td><td>perjury that, based up ial contained in this an</td><td></td><td>-</td><td></td></tr><tr><td>D*E</td><td>8%&)F2,9</td><td>hisa W</td><td>orthungton_</td><td>".<*)*.%9</td><td>;, +- %+&'#0 , 12 <, %)</td><td>&)*@</td><td></td></tr><tr><td>"2*</td><td>%),/#8&5,9</td><td>6*<&#c#] .2)-*%B</td><td>3).%</td><td>&),9 <u>L</u>M</td><td>MYJUYJK</td><td></td><td> </td></tr></tbody></table>			

September 20, 2021

Mark O'Malley OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103

Project Location: Shutesbury, MA

Client Job Number:

Project Number: 2060-02-01

Laboratory Work Order Number: 21I0388

Enclosed are results of analyses for samples received by the laboratory on September 9, 2021. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica L. Hoffman Project Manager

Table of Contents

Sample Summary	4
Case Narrative	5
Sample Results	6
21I0388-01	6
Sample Preparation Information	13
QC Data	15
Semivolatile Organic Compounds by - LC/MS-MS	15
B289995	15
Polychlorinated Biphenyls By GC/ECD	16
B289992	16
Metals Analyses (Total)	17
B290037	17
Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)	18
B289909	18
B289935	18
B289936	18
B289941	18
B289943	18
B290007	19
Drinking Water Organics EPA 500 Series Methods	20
B290133	20
Tentatively Identified Compounds - EPA 500 Series Methods	23
B290133	23
Dual Column RPD Report	24
Flag/Qualifier Summary	26

Table of Contents (continued)

Certifications	27
Chain of Custody/Sample Receipt	30

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

OTO Associates 293 Bridge St. Suite 500 Springfield, MA 01103 ATTN: Mark O'Malley

REPORT DATE: 9/20/2021

PURCHASE ORDER NUMBER:

PROJECT NUMBER: 2060-02-01

ANALYTICAL SUMMARY

21I0388 WORK ORDER NUMBER:

The results of analyses performed on the following samples submitted to CON-TEST, a Pace Analytical Laboratory, are found in this report.

PROJECT LOCATION: Shutesbury, MA

FIELD SAMPLE #	LAB ID:	MATRIX	SAMPLE DESCRIPTION	TEST	SUB LAB
MW-2D	21I0388-01	Ground Water		EPA 180.1	
				EPA 300.0	
				EPA 524.2	
				EPA 537.1	
				SM 9223B -	
				COLILERT	
				SM21-23 2120B	
				SM21-23 4500 H E	3
				SW-846 6010	
				SW-846 6010D	
				SW-846 8082A	

CASE NARRATIVE SUMMARY

All reported results are within defined laboratory quality control objectives unless listed below or otherwise qualified in this report.

SM 9223B - COLILERT

Qualifications:

H-03

Sample received after recommended holding time was exceeded.

Analyte & Samples(s) Qualified:

Coliform, Total

21I0388-01[MW-2D]

E. Coli

21I0388-01[MW-2D]

SM21-23 4500 H B

Qualifications:

H-05

Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.

exceeded.
Analyte & Samples(s) Qualified:

pН

21I0388-01[MW-2D]

The results of analyses reported only relate to samples submitted to Con-Test, a Pace Analytical Laboratory, for testing.

I certify that the analyses listed above, unless specifically listed as subcontracted, if any, were performed under my direction according to the approved methodologies listed in this document, and that based upon my inquiry of those individuals immediately responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete.

Lisa A. Worthington
Technical Representative

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 21I0388-01
Sample Matrix: Ground Water

Semivolatile Organic Compounds by - LC/MS-MS									
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorodecanoic acid (PFDA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
N-EtFOSAA	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
N-MeFOSAA	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
Hexafluoropropylene oxide dimer acid (HFPO-DA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
11Cl-PF3OUdS (F53B Minor)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
9Cl-PF3ONS (F53B Major)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH
4,8-dioxa-3H-perfluorononanoic acid (ADONA)	ND	2.0	ng/L	1		EPA 537.1	9/13/21	9/17/21 12:20	BLH

Surrogates	% Recovery	Recovery Limits	Flag/Qual	
13C-PFHxA	76.0	70-130		9/17/21 12:20
M3HFPO-DA	85.6	70-130		9/17/21 12:20
13C-PFDA	105	70-130		9/17/21 12:20
d5-NEtFOSAA	102	70-130		9/17/21 12:20

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 21I0388-01
Sample Matrix: Ground Water

Polychlorinated	Biphenyls B	v GC/ECD

Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Aroclor-1016 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1221 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1232 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1242 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1248 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1254 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1260 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1262 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Aroclor-1268 [1]	ND	0.20	μg/L	1		SW-846 8082A	9/10/21	9/17/21 12:01	TG
Surrogates		% Recovery	Recovery Limits	s	Flag/Qual				
Decachlorobiphenyl [1]		81.5	30-150					9/17/21 12:01	
Decachlorobiphenyl [2]		79.4	30-150					9/17/21 12:01	
Tetrachloro-m-xylene [1]		72.8	30-150					9/17/21 12:01	
Tetrachloro-m-xylene [2]		69.0	30-150					9/17/21 12:01	

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 21I0388-01
Sample Matrix: Ground Water

Metals Analyses (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Iron	6.3	0.050	mg/L	1		SW-846 6010D	9/11/21	9/12/21 22:12	QNW
Manganese	0.11	0.010	mg/L	1		SW-846 6010D	9/11/21	9/12/21 22:12	QNW
Sodium	5.6	2.0	mg/L	1		SW-846 6010D	9/11/21	9/12/21 22:12	QNW
Hardness	20	1.4	mg/L	1		SW-846 6010	9/11/21	9/12/21 22:12	ONW

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 21I0388-01
Sample Matrix: Ground Water

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total)

							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Apparent Color	75	25	Color Units	5		SM21-23 2120B	9/9/21	9/9/21 9:34	LL
Chloride	1.2	1.0	mg/L	1		EPA 300.0	9/10/21	9/10/21 0:20	CB2
Coliform, Total	3.1	1.0	MPN/100 mL	1	H-03	SM 9223B - COLILERT	9/9/21	9/9/21 16:45	CB2
Nitrate as N	ND	0.10	mg/L	1		EPA 300.0	9/10/21	9/10/21 0:20	CB2
Nitrite as N	ND	0.100	mg/L	1		EPA 300.0	9/10/21	9/10/21 0:20	CB2
pH @20.1°C	6.9		pH Units	1	H-05	SM21-23 4500 H B	9/9/21	9/9/21 20:15	CB2
Turbidity	39	5.0	NTU	10		EPA 180.1	9/9/21	9/9/21 19:30	CB2
E. Coli	ND	1.0	MPN/100 mL	1	H-03	SM 9223B - COLILERT	9/9/21	9/9/21 16:45	CB2

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 21I0388-01
Sample Matrix: Ground Water

Drinking Water Organics EPA 500 Series Methods

Analyte	Results	RL	cing Water Organics Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analyst
Acetone	ND	10	μg/L	1	Flag/Quai	EPA 524.2	9/14/21	9/14/21 10:35	EEH
tert-Amyl Methyl Ether (TAME)	ND	0.50	μg/L μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Benzene	ND	0.50	μg/L μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Bromobenzene	ND	0.50		1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Bromochloromethane	ND ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Bromodichloromethane	ND ND	0.50	μg/L	1		EPA 524.2 EPA 524.2	9/14/21	9/14/21 10:35	EEH
Bromoform	ND ND		μg/L						
Bromomethane	ND ND	0.50 0.50	μg/L	1		EPA 524.2 EPA 524.2	9/14/21 9/14/21	9/14/21 10:35 9/14/21 10:35	EEH
2-Butanone (MEK)	ND ND	5.0	μg/L	1		EPA 524.2	9/14/21		EEH
tert-Butyl Alcohol (TBA)			μg/L					9/14/21 10:35	EEH
	ND	5.0	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
n-Butylbenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
sec-Butylbenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
tert-Butylbenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Carbon Disulfide	ND	5.0	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Carbon Tetrachloride	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Chlorobenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Chloroethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Chloroform	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Chloromethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
2-Chlorotoluene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
4-Chlorotoluene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Dibromochloromethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2-Dibromo-3-chloropropane (DBCP)	ND	2.0	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2-Dibromoethane (EDB)	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Dibromomethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2-Dichlorobenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,3-Dichlorobenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,4-Dichlorobenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Dichlorodifluoromethane (Freon 12)	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1-Dichloroethane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2-Dichloroethane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1-Dichloroethylene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
cis-1,2-Dichloroethylene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
trans-1,2-Dichloroethylene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2-Dichloropropane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,3-Dichloropropane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
2,2-Dichloropropane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1-Dichloropropene	ND	0.50	μg/L μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
cis-1,3-Dichloropropene	ND	0.50	μg/L μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
trans-1,3-Dichloropropene	ND ND	0.50	μg/L μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,3-Dichloropropene (total)		1.0		1		EPA 524.2 EPA 524.2			EEH
Diethyl Ether	ND		μg/L				9/14/21	9/14/21 10:35	
•	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35 Page 10	EEH

Page 10 of 32

45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Sample Description:

Work Order: 21I0388

Date Received: 9/9/2021

Field Sample #: MW-2D

Sampled: 9/8/2021 18:45

Sample ID: 2110388-01
Sample Matrix: Ground Wate

Sample Matrix: Ground Water									
		Drink	king Water Organics	EPA 500 Serie	es Methods				
							Date	Date/Time	
Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Prepared	Analyzed	Analyst
Ethylbenzene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Hexachlorobutadiene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
2-Hexanone (MBK)	ND	5.0	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Isopropylbenzene (Cumene)	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
p-Isopropyltoluene (p-Cymene)	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Methyl tert-Butyl Ether (MTBE)	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Methylene Chloride	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
4-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Naphthalene	ND	1.0	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
n-Propylbenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Styrene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1,1,2-Tetrachloroethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1,2,2-Tetrachloroethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Tetrachloroethylene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Tetrahydrofuran	ND	2.0	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Toluene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2,3-Trichlorobenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2,4-Trichlorobenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1,1-Trichloroethane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1,2-Trichloroethane	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Trichloroethylene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Trichlorofluoromethane (Freon 11)	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2,3-Trichloropropane	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon 113)	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,2,4-Trimethylbenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
1,3,5-Trimethylbenzene	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Vinyl Chloride	ND	0.50	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
m&p-Xylene	ND	1.0	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
o-Xylene	ND	0.50	μg/L	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH
Xylenes (total)	ND	1.5	$\mu g/L$	1		EPA 524.2	9/14/21	9/14/21 10:35	EEH

Aylelies (total)	ND	1.5	μg/L	1	EPA 324.2	9/14/21	9/14/21 10:33	EEH
Surrogates		% Recovery	Recovery Limits	Flag/Qual	l			
4-Bromofluorobenzene		93.9	80-120				9/14/21 10:35	
1,2-Dichlorobenzene-d4		98.9	80-120				9/14/21 10:35	

ĀÄ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 Sample Description: 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

Project Location: Shutesbury, MA

Date Received: 9/9/2021

Work Order: 21I0388

Sampled: 9/8/2021 18:45

Field Sample #: MW-2D Sample ID: 2110388-01 Sample Matrix: Ground Water

Tentatively Identified Compounds - EPA 500 Series Methods

									Date	Date/Time	
Analyte	Results	Units	Response	RT	DF	CAS#	Q#	Method	Prepared	Analyzed	Analyst
No TICs Found	0.0	ug/L			1			EPA 524.2	9/14/21	9/14/21 10:35	EEH

Sample Extraction Data

	EPA	180.	
--	-----	------	--

Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B289941	25.0	25.0	09/09/21	
Prep Method: EPA 300.0	Analytical Method: EPA 300.0					
	Analytical Method. El A 500.0					
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B289936	10.0	10.0	09/10/21	
Prep Method: EPA 300.0	Analytical Method: EPA 300.0					
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B290007	10.0	10.0	09/10/21	
Prep Method: EPA 524.2	Analytical Method: EPA 524.2					
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B290133	5	5.00	09/14/21	
Prep Method: EPA 537.1	Analytical Method: EPA 537.1					
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B289995	253	1.00	09/13/21	
SM 9223B - COLILERT						
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B289935	100	100	09/09/21	
SM21-23 2120B						
Lab Number [Field ID]		Batch	Initial [mL]	Final [mL]	Date	
21I0388-01 [MW-2D]		B289909	50.0	50.0	09/09/21	
SM21-23 4500 H B						
Lab Number [Field ID]		Batch	Initial [mL]		Date	
21I0388-01 [MW-2D]		B289943	50.0		09/09/21	
Prep Method: SW-846 3005	5A Analytical Method: SW-846	6010				
Lab Number [Field ID]		Batch	Initial [mL]		Date	
21I0388-01 [MW-2D]		B290037	50.0		09/11/21	

Sample Extraction Data

Prep Method: SW-846 3005A Analytical Method: SW-846 6010D

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21I0388-01 [MW-2D]	B290037	50.0	50.0	09/11/21

Prep Method: SW-846 3510C Analytical Method: SW-846 8082A

Lab Number [Field ID]	Batch	Initial [mL]	Final [mL]	Date
21I0388-01 [MW-2D]	B289992	1020	10.0	09/10/21

ĀÀ!"#\$%&!'#&&'()*+',-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Semivolatile Organic Compounds by - LC/MS-MS - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B289995 - EPA 537.1										
Blank (B289995-BLK1)				Prepared: 09	0/13/21 Analy	yzed: 09/16/2	21			
Perfluorobutanesulfonic acid (PFBS)	ND	2.0	ng/L							
Perfluorohexanoic acid (PFHxA)	ND	2.0	ng/L							
erfluorohexanesulfonic acid (PFHxS)	ND	2.0	ng/L							
erfluoroheptanoic acid (PFHpA)	ND	2.0	ng/L							
Perfluorooctanoic acid (PFOA)	ND	2.0	ng/L							
Perfluorooctanesulfonic acid (PFOS)	ND	2.0	ng/L							
Perfluorononanoic acid (PFNA)	ND	2.0	ng/L							
erfluorodecanoic acid (PFDA)	ND	2.0	ng/L							
I-EtFOSAA	ND	2.0	ng/L							
erfluoroundecanoic acid (PFUnA)	ND	2.0	ng/L							
I-MeFOSAA	ND	2.0	ng/L							
Perfluorododecanoic acid (PFDoA)	ND	2.0	ng/L							
Perfluorotridecanoic acid (PFTrDA)	ND	2.0	ng/L							
Perfluorotetradecanoic acid (PFTA)	ND	2.0	ng/L							
Mexafluoropropylene oxide dimer acid	ND	2.0	ng/L							
HFPO-DA)										
1Cl-PF3OUdS (F53B Minor)	ND	2.0	ng/L							
Cl-PF3ONS (F53B Major)	ND	2.0	ng/L							
,8-dioxa-3H-perfluorononanoic acid ADONA)	ND	2.0	ng/L							
urrogate: 13C-PFHxA	40.1		ng/L	40.4		99.2	70-130			
urrogate: M3HFPO-DA	44.1		ng/L	40.4		109	70-130			
urrogate: 13C-PFDA	42.7		ng/L	40.4		106	70-130			
urrogate: d5-NEtFOSAA	161		ng/L	162		99.6	70-130			
LCS (B289995-BS1)				Prepared: 09	9/13/21 Analy	yzed: 09/16/2	21			
erfluorobutanesulfonic acid (PFBS)	8.01	2.0	ng/L	8.83		90.8	70-130			
erfluorohexanoic acid (PFHxA)	9.06	2.0	ng/L	9.95		91.0	70-130			
erfluorohexanesulfonic acid (PFHxS)	7.38	2.0	ng/L	9.10		81.1	70-130			
'erfluoroheptanoic acid (PFHpA)	8.45	2.0	ng/L	9.95		84.9	70-130			
erfluorooctanoic acid (PFOA)	9.46	2.0	ng/L	9.95		95.0	70-130			
erfluorooctanesulfonic acid (PFOS)	8.10	2.0	ng/L	9.24		87.7	70-130			
erfluorononanoic acid (PFNA)	9.30	2.0	ng/L	9.95		93.4	70-130			
Perfluorodecanoic acid (PFDA)	9.67	2.0	ng/L	9.95		97.1	70-130			
I-EtFOSAA	9.18	2.0	ng/L	9.95		92.2	70-130			
Perfluoroundecanoic acid (PFUnA)	9.71	2.0	ng/L	9.95		97.6	70-130			
I-MeFOSAA	9.11	2.0	ng/L	9.95		91.6	70-130			
Perfluorododecanoic acid (PFDoA)	8.74	2.0	ng/L	9.95		87.8	70-130			
erfluorotridecanoic acid (PFTrDA)	9.19	2.0	ng/L	9.95		92.4	70-130			
Perfluorotetradecanoic acid (PFTA)	8.83	2.0	ng/L	9.95		88.7	70-130			
lexafluoropropylene oxide dimer acid HFPO-DA)	11.9	2.0	ng/L	9.95		120	70-130			
1Cl-PF3OUdS (F53B Minor)	8.88	2.0	ng/L	9.38		94.7	70-130			
Cl-PF3ONS (F53B Major)	9.26	2.0	ng/L	9.29		99.7	70-130			
,8-dioxa-3H-perfluorononanoic acid		2.0	ng/L	9.40		89.1	70-130			
ADONA)	8.38	2.0								
Surrogate: 13C-PFHxA	39.8		ng/L	39.8		100	70-130			
urrogate: M3HFPO-DA	44.1		ng/L	39.8		111	70-130			
Surrogate: 13C-PFDA	40.8		ng/L	39.8		102	70-130			

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

QUALITY CONTROL

Polychlorinated Biphenyls By GC/ECD - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B289992 - SW-846 3510C										
Blank (B289992-BLK1)				Prepared: 09	/10/21 Anal	yzed: 09/11/2	21			
Aroclor-1016	ND	0.20	$\mu g/L$							
Aroclor-1016 [2C]	ND	0.20	μg/L							
Aroclor-1221	ND	0.20	μg/L							
Aroclor-1221 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1232	ND	0.20	μg/L							
Aroclor-1232 [2C]	ND	0.20	μg/L							
Aroclor-1242	ND	0.20	μg/L							
Aroclor-1242 [2C]	ND	0.20	$\mu g/L$							
Aroclor-1248	ND	0.20	μg/L							
Aroclor-1248 [2C]	ND	0.20	μg/L							
Aroclor-1254	ND	0.20	μg/L							
Aroclor-1254 [2C]	ND	0.20	μg/L							
Aroclor-1260	ND	0.20	μg/L							
Aroclor-1260 [2C]	ND	0.20	μg/L							
Aroclor-1262	ND	0.20	μg/L							
Aroclor-1262 [2C]	ND	0.20	μg/L							
Aroclor-1268	ND	0.20	μg/L							
Aroclor-1268 [2C]	ND	0.20	μg/L							
Surrogate: Decachlorobiphenyl	0.735		$\mu g/L$	2.00		36.7	30-150			
Surrogate: Decachlorobiphenyl [2C]	0.631		$\mu g/L$	2.00		31.5	30-150			
Surrogate: Tetrachloro-m-xylene	1.36		μg/L	2.00		67.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.37		$\mu g/L$	2.00		68.4	30-150			
LCS (B289992-BS1)				Prepared: 09	/10/21 Anal	yzed: 09/12/2	21			
Aroclor-1016	0.45	0.20	μg/L	0.500		89.3	40-140			
Aroclor-1016 [2C]	0.40	0.20	$\mu g/L$	0.500		80.8	40-140			
Aroclor-1260	0.41	0.20	$\mu g/L$	0.500		81.3	40-140			
Aroclor-1260 [2C]	0.37	0.20	μg/L	0.500		74.0	40-140			
Surrogate: Decachlorobiphenyl	1.52		μg/L	2.00		75.9	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.37		$\mu g/L$	2.00		68.7	30-150			
Surrogate: Tetrachloro-m-xylene	1.53		$\mu g/L$	2.00		76.7	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.42		$\mu g/L$	2.00		71.0	30-150			
LCS Dup (B289992-BSD1)				Prepared: 09	/10/21 Anal	yzed: 09/12/2	21			
Aroclor-1016	0.45	0.20	μg/L	0.500		89.3	40-140	0.0425	20	
Aroclor-1016 [2C]	0.41	0.20	$\mu g/L$	0.500		81.3	40-140	0.624	20	
Aroclor-1260	0.41	0.20	$\mu g/L$	0.500		81.2	40-140	0.140	20	
Aroclor-1260 [2C]	0.36	0.20	$\mu g/L$	0.500		72.1	40-140	2.68	20	
Surrogate: Decachlorobiphenyl	1.31		μg/L	2.00		65.4	30-150			
Surrogate: Decachlorobiphenyl [2C]	1.19		μg/L	2.00		59.5	30-150			
Surrogate: Tetrachloro-m-xylene	1.52		μg/L	2.00		75.9	30-150			
Surrogate: Tetrachloro-m-xylene [2C]	1.42		μg/L	2.00		70.9	30-150			

QUALITY CONTROL

Metals Analyses (Total) - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290037 - SW-846 3005A										
Blank (B290037-BLK1)				Prepared: 09	/11/21 Anal	yzed: 09/12/2	21			
Iron	ND	0.050	mg/L							
Manganese	ND	0.010	mg/L							
Sodium	ND	2.0	mg/L							
Hardness	ND	1.4	mg/L							
LCS (B290037-BS1)				Prepared: 09	/11/21 Anal	yzed: 09/12/2	21			
Iron	4.28	0.050	mg/L	4.00		107	80-120			
Manganese	0.532	0.010	mg/L	0.500		106	80-120			
Sodium	4.53	2.0	mg/L	4.00		113	80-120			
Hardness	28	1.4	mg/L	26.4		106	80-120			
LCS Dup (B290037-BSD1)				Prepared: 09	/11/21 Anal	yzed: 09/12/2	21			
Iron	4.31	0.050	mg/L	4.00		108	80-120	0.755	20	
Manganese	0.537	0.010	mg/L	0.500		107	80-120	1.02	20	
Sodium	4.52	2.0	mg/L	4.00		113	80-120	0.254	20	
Hardness	28	1.4	mg/L	26.4		106	80-120	0.762	20	

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B289909 - SM21-23 2120B										
LCS (B289909-BS1)				Prepared &	Analyzed: 09	/09/21				
Apparent Color	15.0		Color Units	15.0		100	76-114			
Batch B289935 - SM 9223B - COLILERT										
Blank (B289935-BLK1)				Prepared &	Analyzed: 09	/09/21				
Coliform, Total	ND	1.0	MPN/100 mI	_						
E. Coli	ND	1.0	MPN/100 mI	_						
Batch B289936 - EPA 300.0										
Blank (B289936-BLK1)				Prepared &	Analyzed: 09	/09/21				
Nitrate as N	ND	0.10	mg/L							
Nitrite as N	ND	0.100	mg/L							
LCS (B289936-BS1)				Prepared &	Analyzed: 09	/09/21				
Nitrate as N	1.0	0.10	mg/L	1.00		104	90-110			
Nitrite as N	1.06	0.100	mg/L	1.00		106	90-110			
LCS Dup (B289936-BSD1)				Prepared &	Analyzed: 09	/09/21				
Nitrate as N	1.0	0.10	mg/L	1.00		104	90-110	0.385	20	
Nitrite as N	1.06	0.100	mg/L	1.00		106	90-110	0.0660	20	
Batch B289941 - EPA 180.1										
Blank (B289941-BLK1)				Prepared &	Analyzed: 09	/09/21				
Turbidity	ND	0.50	NTU							
LCS (B289941-BS1)				Prepared &	Analyzed: 09	/09/21				
Turbidity	4.1		NTU	4.00		102	90-110			
LCS Dup (B289941-BSD1)				Prepared &	Analyzed: 09	/09/21				
Turbidity	4.1		NTU	4.00		102	90-110	0.736	5	
Batch B289943 - SM21-23 4500 H B										
LCS (B289943-BS1)				Prepared &	Analyzed: 09	/09/21				
рН	5.99		pH Units	6.00		99.9	90-110			

QUALITY CONTROL

Conventional Chemistry Parameters by EPA/APHA/SW-846 Methods (Total) - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B290007 - EPA 300.0										
Blank (B290007-BLK1)				Prepared &	Analyzed: 09	/09/21				
Chloride	ND	1.0	mg/L							
LCS (B290007-BS1)				Prepared &	Analyzed: 09	/09/21				
Chloride	10	1.0	mg/L	10.0		105	90-110			
LCS Dup (B290007-BSD1)		Prepared & Analyzed: 09/09/21								
Chloride	11	1.0	mg/L	10.0		105	90-110	0.0638	20	

QUALITY CONTROL

Drinking Water Organics EPA 500 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
										-

Batch B290133 - EPA 524.2				
Blank (B290133-BLK1)				Prepared & Analyzed: 09/14/21
Acetone	ND	10	μg/L	
tert-Amyl Methyl Ether (TAME)	ND	0.50	$\mu g/L$	
Benzene	ND	0.50	$\mu g/L$	
Bromobenzene	ND	0.50	$\mu g/L$	
Bromochloromethane	ND	0.50	$\mu g/L$	
Bromodichloromethane	ND	0.50	$\mu g/L$	
Bromoform	ND	0.50	$\mu g/L$	
Bromomethane	ND	0.50	$\mu g/L$	
2-Butanone (MEK)	ND	5.0	$\mu g/L$	
tert-Butyl Alcohol (TBA)	ND	5.0	$\mu g/L$	
n-Butylbenzene	ND	0.50	μg/L	
sec-Butylbenzene	ND	0.50	μg/L	
tert-Butylbenzene	ND	0.50	$\mu g/L$	
tert-Butyl Ethyl Ether (TBEE)	ND	0.50	μg/L	
Carbon Disulfide	ND	5.0	μg/L	
Carbon Tetrachloride	ND	0.50	μg/L	
Chlorobenzene	ND	0.50	μg/L	
Chloroethane	ND	0.50	μg/L	
Chloroform	ND	0.50	μg/L	
Chloromethane	ND	0.50	μg/L	
2-Chlorotoluene	ND	0.50	μg/L	
4-Chlorotoluene	ND	0.50	μg/L	
Dibromochloromethane	ND	0.50	μg/L	
1,2-Dibromo-3-chloropropane (DBCP)	ND ND	2.0	μg/L	
1,2-Dibromoethane (EDB)	ND ND	0.50	μg/L	
Dibromomethane (LBB)	ND ND	0.50	μg/L	
1,2-Dichlorobenzene		0.50	μg/L μg/L	
1,3-Dichlorobenzene	ND ND	0.50	μg/L μg/L	
1,4-Dichlorobenzene	ND ND	0.50	μg/L	
Dichlorodifluoromethane (Freon 12)	ND ND	0.50	μg/L	
1,1-Dichloroethane		0.50	μg/L	
1,2-Dichloroethane	ND	0.50	μg/L μg/L	
1,1-Dichloroethylene	ND	0.50	μg/L μg/L	
cis-1,2-Dichloroethylene	ND	0.50	μg/L μg/L	
trans-1,2-Dichloroethylene	ND	0.50	μg/L μg/L	
1,2-Dichloropropane	ND	0.50	μg/L μg/L	
1,3-Dichloropropane	ND	0.50	μg/L μg/L	
2,2-Dichloropropane	ND	0.50		
	ND		μg/L	
1,1-Dichloropropene	ND	0.50	μg/L	
cis-1,3-Dichloropropene	ND	0.50	μg/L	
trans-1,3-Dichloropropene	ND	0.50	μg/L	
Diethyl Ether	ND	0.50	μg/L	
Diisopropyl Ether (DIPE)	ND	0.50	μg/L	
Ethylbenzene	ND	0.50	μg/L	
Hexachlorobutadiene	ND	0.50	μg/L	
2-Hexanone (MBK)	ND	5.0	μg/L	
Isopropylbenzene (Cumene)	ND	0.50	μg/L	
p-Isopropyltoluene (p-Cymene)	ND	0.50	μg/L	
Methyl tert-Butyl Ether (MTBE)	ND	0.50	μg/L	
Methylene Chloride	ND	0.50	μg/L	
4-Methyl-2-pentanone (MIBK)	ND	5.0	μg/L	
Naphthalene	ND	1.0	$\mu g/L$	

Spike

Source

%REC

RPD

QUALITY CONTROL

Drinking Water Organics EPA 500 Series Methods - Quality Control

Reporting

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
atch B290133 - EPA 524.2										
lank (B290133-BLK1)				Prepared &	Analyzed: 09	/14/21				
-Propylbenzene	ND	0.50	μg/L							
tyrene	ND	0.50	μg/L							
1,1,2-Tetrachloroethane	ND	0.50	μg/L							
1,2,2-Tetrachloroethane	ND	0.50	μg/L							
etrachloroethylene	ND	0.50	μg/L							
etrahydrofuran	ND	2.0	μg/L							
bluene	ND	0.50	μg/L							
2,3-Trichlorobenzene	ND	0.50	μg/L							
2,4-Trichlorobenzene	ND	0.50	$\mu g/L$							
1,1-Trichloroethane	ND	0.50	$\mu g/L$							
1,2-Trichloroethane	ND	0.50	$\mu g/L$							
ichloroethylene	ND	0.50	$\mu g/L$							
ichlorofluoromethane (Freon 11)	ND	0.50	$\mu g/L$							
2,3-Trichloropropane	ND	0.50	$\mu g/L$							
1,2-Trichloro-1,2,2-trifluoroethane (Freon	ND	0.50	$\mu g/L$							
3)		0.50	/~							
2,4-Trimethylbenzene	ND	0.50	μg/L							
3,5-Trimethylbenzene	ND	0.50	μg/L							
inyl Chloride	ND	0.50	μg/L							
&p-Xylene	ND	1.0	μg/L							
Xylene	ND	0.50	μg/L							
urrogate: 4-Bromofluorobenzene	23.9		μg/L	25.0		95.4	80-120			
rrogate: 1,2-Dichlorobenzene-d4	25.2		$\mu g/L$	25.0		101	80-120			
CS (B290133-BS1)				Prepared &	Analyzed: 09	/14/21				
cetone	100	10	$\mu g/L$	100		104	70-130			
rt-Amyl Methyl Ether (TAME)	11	0.50	$\mu g/L$	10.0		107	70-130			
enzene	10	0.50	$\mu g/L$	10.0		101	70-130			
romobenzene	10	0.50	$\mu g/L$	10.0		100	70-130			
romochloromethane	11	0.50	$\mu g/L$	10.0		109	70-130			
romodichloromethane	11	0.50	$\mu g/L$	10.0		108	70-130			
romoform	12	0.50	$\mu g/L$	10.0		117	70-130			
romomethane	11	0.50	μg/L	10.0		105	70-130			
	1.1									
Butanone (MEK)	110	5.0	$\mu g/L$	100		109	70-130			
Butanone (MEK) rt-Butyl Alcohol (TBA)			μg/L μg/L							
rt-Butyl Alcohol (TBA)	110	5.0		100		109	70-130			
rt-Butyl Alcohol (TBA) Butylbenzene	110 89	5.0 5.0	$\mu g/L$	100 100		109 89.0	70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene	110 89 9.5	5.0 5.0 0.50	μg/L μg/L	100 100 10.0		109 89.0 95.2	70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene	110 89 9.5 9.6	5.0 5.0 0.50 0.50	μg/L μg/L μg/L	100 100 10.0 10.0		109 89.0 95.2 95.8	70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE)	110 89 9.5 9.6 9.6	5.0 5.0 0.50 0.50 0.50	μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9	70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide	110 89 9.5 9.6 9.6 13	5.0 5.0 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9	70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride	110 89 9.5 9.6 9.6 13 110	5.0 5.0 0.50 0.50 0.50 0.50 5.0	μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9 130	70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride nlorobenzene	110 89 9.5 9.6 9.6 13 110 11	5.0 5.0 0.50 0.50 0.50 0.50 5.0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9 130 107 106	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorobenzene aloroethane	110 89 9.5 9.6 9.6 13 110 11	5.0 5.0 0.50 0.50 0.50 0.50 5.0 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
nt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene nt-Butylbenzene nt-Butylbenzene nt-Butyl Ethyl Ether (TBEE) nurbon Disulfide nurbon Tetrachloride nlorobenzene nloroethane nloroform	110 89 9.5 9.6 9.6 13 110 11 10 12	5.0 5.0 0.50 0.50 0.50 0.50 5.0 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100 118	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene alloroform alloromethane	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
nt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride allorobenzene alloroform alloromethane Chlorotoluene	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorobenzene aloroform aloromethane Chlorotoluene Chlorotoluene	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8 9.6	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3 96.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
nt-Butyl Alcohol (TBA) Butylbenzene ct-Butylbenzene rt-Butyl Ethyl Ether (TBEE) urbon Disulfide urbon Tetrachloride nlorobenzene nloroform nloromethane Chlorotoluene Chlorotoluene bromochloromethane	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8 9.6 11	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 1		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3 96.1	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene c-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride alorobenzene aloroethane aloroform aloromethane Chlorotoluene Chlorotoluene dibromochloromethane 2-Dibromo-3-chloropropane (DBCP)	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8 9.6 11	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3 96.1 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
rt-Butyl Alcohol (TBA) Butylbenzene rc-Butylbenzene rt-Butylbenzene rt-Butyl Ethyl Ether (TBEE) arbon Disulfide arbon Tetrachloride hlorobenzene hloroethane hloroform hloromethane Chlorotoluene Chlorotoluene ibromochloromethane 2-Dibromo-3-chloropropane (DBCP) 2-Dibromoethane (EDB)	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8 9.6 11 11	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3 96.1 109 107	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			
	110 89 9.5 9.6 9.6 13 110 11 10 12 10 8.9 8.8 9.6 11	5.0 5.0 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	μg/L μg/L μg/L μg/L μg/L μg/L μg/L μg/L	100 100 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0		109 89.0 95.2 95.8 95.9 130 107 106 100 118 105 89.4 88.3 96.1 109	70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130 70-130			

Spike

Source

%REC

RPD

QUALITY CONTROL

Drinking Water Organics EPA 500 Series Methods - Quality Control

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B290133 - EPA 524.2										
LCS (B290133-BS1)				Prepared &	Analyzed: 09	/14/21				
1,4-Dichlorobenzene	9.9	0.50	$\mu g/L$	10.0		99.1	70-130			
Dichlorodifluoromethane (Freon 12)	10	0.50	$\mu g/L$	10.0		103	70-130			
1,1-Dichloroethane	10	0.50	$\mu g/L$	10.0		103	70-130			
1,2-Dichloroethane	10	0.50	$\mu g/L$	10.0		105	70-130			
1,1-Dichloroethylene	10	0.50	$\mu g/L$	10.0		103	70-130			
eis-1,2-Dichloroethylene	10	0.50	$\mu g/L$	10.0		104	70-130			
rans-1,2-Dichloroethylene	9.9	0.50	$\mu g/L$	10.0		99.4	70-130			
1,2-Dichloropropane	10	0.50	$\mu g/L$	10.0		104	70-130			
1,3-Dichloropropane	11	0.50	$\mu g/L$	10.0		106	70-130			
2,2-Dichloropropane	12	0.50	$\mu g/L$	10.0		118	70-130			
,1-Dichloropropene	10	0.50	$\mu g/L$	10.0		100	70-130			
eis-1,3-Dichloropropene	11	0.50	$\mu g/L$	10.0		107	70-130			
rans-1,3-Dichloropropene	11	0.50	$\mu g/L$	10.0		115	70-130			
Diethyl Ether	10	0.50	$\mu g/L$	10.0		103	70-130			
Diisopropyl Ether (DIPE)	10	0.50	$\mu g/L$	10.0		102	70-130			
Ethylbenzene	9.8	0.50	$\mu g/L$	10.0		97.6	70-130			
Hexachlorobutadiene	10	0.50	$\mu g/L$	10.0		102	70-130			
2-Hexanone (MBK)	110	5.0	μg/L	100		112	70-130			
sopropylbenzene (Cumene)	9.6	0.50	$\mu g/L$	10.0		96.5	70-130			
-Isopropyltoluene (p-Cymene)	9.7	0.50	μg/L	10.0		96.6	70-130			
Methyl tert-Butyl Ether (MTBE)	11	0.50	μg/L	10.0		112	70-130			
Methylene Chloride	10	0.50	μg/L	10.0		100	70-130			
l-Methyl-2-pentanone (MIBK)	110	5.0	μg/L	100		110	70-130			
Naphthalene	7.7	1.0	μg/L	10.0		77.3	70-130			
n-Propylbenzene	9.7	0.50	μg/L	10.0		96.6	70-130			
Styrene	10	0.50	μg/L	10.0		99.6	70-130			
1,1,1,2-Tetrachloroethane	11	0.50	μg/L	10.0		108	70-130			
1,1,2,2-Tetrachloroethane	11	0.50	μg/L	10.0		106	70-130			
Fetrachloroethylene	11	0.50	μg/L	10.0		106	70-130			
Fetrahydrofuran	11	2.0	μg/L	10.0		110	70-130			
Toluene	9.9	0.50	μg/L	10.0		99.4	70-130			
1,2,3-Trichlorobenzene	8.8	0.50	μg/L μg/L	10.0		88.1	70-130			
,2,4-Trichlorobenzene	8.9	0.50	μg/L μg/L	10.0		89.0	70-130			
1,1,1-Trichloroethane	10	0.50	μg/L μg/L	10.0		103	70-130			
,1,2-Trichloroethane		0.50	μg/L	10.0		106	70-130			
Frichloroethylene	11	0.50	μg/L μg/L	10.0		100	70-130			
Frichlorofluoromethane (Freon 11)	10	0.50	μg/L μg/L	10.0		100	70-130			
,2,3-Trichloropropane	11 10	0.50	μg/L μg/L	10.0		107	70-130			
,1,2-Trichloro-1,2,2-trifluoroethane (Freon		0.50	μg/L μg/L	10.0		103	70-130			
13)	11	0.50	µg/L	10.0		100	/0-130			
,2,4-Trimethylbenzene	9.8	0.50	μg/L	10.0		98.2	70-130			
,3,5-Trimethylbenzene	9.7	0.50	μg/L	10.0		96.8	70-130			
Vinyl Chloride	8.0	0.50	μg/L	10.0		79.9	70-130			
n&p-Xylene	20	1.0	μg/L	20.0		98.0	70-130			
o-Xylene	10	0.50	μg/L	10.0		101	70-130			
Surrogate: 4-Bromofluorobenzene	24.3		μg/L	25.0		97.3	80-120			
urrogate: 1,2-Dichlorobenzene-d4	24.9		μg/L μg/L	25.0		99.7	80-120			

QUALITY CONTROL

Tentatively Identified Compounds - EPA 500 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B290133 - EPA 524.2

Blank (B290133-BLK1) Prepared & Analyzed: 09/14/21 $\mu g/L$

No TICs Found 0.0

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS

SW-846 8082A

Lab Sample ID:	B289992-BS1		Date(s) Analyzed:	09/12/2021	09/12/2	2021
Instrument ID (1):	ECD 9	_	Instrument ID (2):	ECD 9		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7.10.12.112	002		FROM	TO	00110211111111111111	70111 2
Aroclor-1016	1	0.000	0.000	0.000	0.45	
	2	0.000	0.000	0.000	0.40	11.8
Aroclor-1260	1	0.000	0.000	0.000	0.41	
	2	0.000	0.000	0.000	0.37	10.3

IDENTIFICATION SUMMARY FOR SINGLE COMPONENT ANALYTES

LCS Dup

SW-846 8082A

Lab Sample ID:	b Sample ID: B289992-BSD1		Date(s) Analyzed:	09/12/2021	09/12/20	
Instrument ID (1):	ECD 9	_	Instrument ID (2):	ECD 9		_
GC Column (1):	ID:	(mm)	GC Column (2):		ID:	(mm)

ANALYTE	COL	RT	RT WI	NDOW	CONCENTRATION	%RPD
7,10,12112		111	FROM	TO	OONOLIVITUUTION	70111 15
Aroclor-1016	1	0.000	0.000	0.000	0.45	
	2	0.000	0.000	0.000	0.41	9.3
Aroclor-1260	1	0.000	0.000	0.000	0.41	
	2	0.000	0.000	0.000	0.36	13.0

FLAG/QUALIFIER SUMMARY

*	QC result is outside of established limits.
†	Wide recovery limits established for difficult compound.
‡	Wide RPD limits established for difficult compound.
#	Data exceeded client recommended or regulatory level
ND	Not Detected
RL	Reporting Limit is at the level of quantitation (LOQ)
DL	Detection Limit is the lower limit of detection determined by the MDL study
MCL	Maximum Contaminant Level
	Percent recoveries and relative percent differences (RPDs) are determined by the software using values in the calculation which have not been rounded.
	No results have been blank subtracted unless specified in the case narrative section.
H-03	Sample received after recommended holding time was exceeded.
H-05	Holding time was exceeded. pH analysis should be performed immediately at time of sampling. Nominal 15 minute holding time was exceeded.

CERTIFICATIONS

Methyl tert-Butyl Ether (MTBE)

Methylene Chloride

	CERTIFICATIONS	
Certified Analyses included in this Report	a .m .	
Analyte	Certifications	
EPA 180.1 in Water		
Turbidity	NC,NY	
EPA 300.0 in Water		
Chloride	NC,NY,MA,VA,ME,NH,CT,RI	
Nitrate as N	NC,NY,MA,VA,ME,NH,CT,RI	
Nitrite as N	NY,NC,NH,VA,ME,CT,RI	
EPA 524.2 in Drinking Water		
Benzene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
Bromobenzene	CT,MA,NH,NY,RI,VT-DW	
Bromochloromethane	CT,MA,NH,NY,RI,VT-DW	
Bromodichloromethane	MA,NH,NY,RI,ME,VA,VT-DW	
Bromoform	CT,MA,NH,NY,RI,ME,VT-DW	
Bromomethane	CT,MA,NH,NY,RI,VT-DW	
n-Butylbenzene	CT,MA,NH,NY,RI,VT-DW	
sec-Butylbenzene	CT,MA,NH,NY,RI,VT-DW	
tert-Butylbenzene	CT,MA,NH,NY,RI,VT-DW	
Carbon Tetrachloride	CT,MA,NH,NY,RI,ME,VA,VT-DW	
Chlorobenzene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
Chloroethane	CT,MA,NH,NY,RI,VT-DW	
Chloroform	MA,NH,NY,RI,ME,VA,VT-DW	
Chloromethane	CT,MA,NH,NY,RI,VT-DW	
2-Chlorotoluene	CT,MA,NH,NY,RI,VT-DW	
4-Chlorotoluene	CT,MA,NH,NY,RI,VT-DW	
Dibromochloromethane	MA,NH,NY,RI,ME,VA,VT-DW	
Dibromomethane	CT,MA,NH,NY,RI,VT-DW	
1,2-Dichlorobenzene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
1,3-Dichlorobenzene	CT,MA,NH,NY,RI,VT-DW	
1,4-Dichlorobenzene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
Dichlorodifluoromethane (Freon 12)	CT,MA,NH,NY,RI,VT-DW	
1,1-Dichloroethane	CT,MA,NH,NY,RI,VT-DW	
1,2-Dichloroethane	CT,MA,NH,NY,RI,ME,VA,VT-DW	
1,1-Dichloroethylene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
cis-1,2-Dichloroethylene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
trans-1,2-Dichloroethylene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
1,2-Dichloropropane	CT,MA,NH,NY,RI,ME,VA,VT-DW	
1,3-Dichloropropane	CT,MA,NH,NY,RI,VT-DW	
2,2-Dichloropropane	CT,MA,NH,NY,RI,VT-DW	
1,1-Dichloropropene	CT,MA,NH,NY,RI,VT-DW	
cis-1,3-Dichloropropene	CT,MA,NH,NY,RI,VT-DW	
trans-1,3-Dichloropropene	CT,MA,NH,NY,RI,VT-DW	
1,3-Dichloropropene (total)	CT,MA	
Ethylbenzene	CT,MA,NH,NY,RI,ME,VA,VT-DW	
Hexachlorobutadiene	CT,MA,NH,NY,RI,VT-DW	
Isopropylbenzene (Cumene)	CT,MA,NH,NY,RI,VT-DW	
p-Isopropyltoluene (p-Cymene)	CT,MA,NH,NY,RI,VT-DW	
Made of took Doted Edwar (MTDE)	CTMA NILNY DI ME VT DW	

CT,MA,NH,NY,RI,ME,VT-DW

CT,MA,NH,NY,RI,ME,VA,VT-DW

ĀÀ !"#\$%& !'#&&' ()*+' ,-./0&*1-23 45 67689 (: 5; <7Ā=>8>?@<6;A),B <7Ā=>8>?8ĀĀ8

CERTIFICATIONS Certified Analyses included in this Report				
Analyte	Certifications			
EPA 524.2 in Drinking Water				
Naphthalene	NY			
n-Propylbenzene	NY,VT-DW			
Styrene	CT,MA,NH,NY,RI,ME,VA,VT-DW			
1,1,1,2-Tetrachloroethane	CT,MA,NH,NY,RI,VT-DW			
1,1,2,2-Tetrachloroethane	CT,MA,NH,NY,RI,VT-DW			
Tetrachloroethylene	CT,MA,NH,NY,RI,ME,VA,VT-DW			
Toluene	CT,MA,NH,NY,RI,ME,VA,VT-DW			
1,2,3-Trichlorobenzene	CT,MA,NH,NY,RI,VT-DW			
1,2,4-Trichlorobenzene	CT,MA,NH,NY,RI,ME,VA,VT-DW			
1,1,1-Trichloroethane	CT,MA,NH,NY,RI,ME,VA,VT-DW			
1,1,2-Trichloroethane	CT,MA,NH,NY,RI,ME,VA,VT-DW			
Trichloroethylene	CT,MA,NH,NY,RI,ME,VA,VT-DW			
Trichlorofluoromethane (Freon 11)	CT,MA,NH,NY,RI,VT-DW			
1,2,3-Trichloropropane	CT,MA,NH,NY,RI,VT-DW			
1,2,4-Trimethylbenzene	CT,MA,NH,NY,RI,VT-DW			
1,3,5-Trimethylbenzene	CT,MA,NH,NY,RI,VT-DW			
Vinyl Chloride	CT,MA,NH,NY,RI,ME,VA,VT-DW			
m&p-Xylene	VA			
o-Xylene	VA			
Xylenes (total)	CT,MA,NH,NY,RI,ME,VA,VT-DW			
EPA 537.1 in Drinking Water				
Perfluorobutanesulfonic acid (PFBS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorohexanoic acid (PFHxA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorohexanesulfonic acid (PFHxS)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluoroheptanoic acid (PFHpA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorooctanoic acid (PFOA)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA			
Perfluorooctanesulfonic acid (PFOS)	VT-DW,NJ,CT,ME,PA,MI,NY,NH,MA			
Perfluorononanoic acid (PFNA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorodecanoic acid (PFDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
N-EtFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluoroundecanoic acid (PFUnA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
N-MeFOSAA	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorododecanoic acid (PFDoA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorotridecanoic acid (PFTrDA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Perfluorotetradecanoic acid (PFTA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
Hexafluoropropylene oxide dimer acid (HFPO-DA)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			
11Cl-PF3OUdS (F53B Minor)	NH-P,VT-DW,NJ,CT,ME,PA,MI,MA			

NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

NH-P,VT-DW,NJ,CT,ME,PA,MI,MA

SM 9223B - COLILERT in Water

4,8-dioxa-3H-perfluorononanoic acid (ADONA)

9Cl-PF3ONS (F53B Major)

E. Coli MA,CT,RI

SM21-23 2120B in Drinking Water

Apparent Color CT,NH,NY,ME,VA

SM21-23 4500 H B in Water

pН CT,MA,RI

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
SW-846 6010 in Water	
Hardness	CT,MA,NH,NY
SW-846 6010D in Water	
Iron	CT,NH,NY,ME,VA,NC
Manganese	CT,NH,NY,ME,VA,NC
Sodium	CT,NH,NY,ME,VA,NC
SW-846 8082A in Water	
Aroclor-1016	CT,NH,NY,NC,ME,VA,PA
Aroclor-1016 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221	CT,NH,NY,NC,ME,VA,PA
Aroclor-1221 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232	CT,NH,NY,NC,ME,VA,PA
Aroclor-1232 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242	CT,NH,NY,NC,ME,VA,PA
Aroclor-1242 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248	CT,NH,NY,NC,ME,VA,PA
Aroclor-1248 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254	CT,NH,NY,NC,ME,VA,PA
Aroclor-1254 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260	CT,NH,NY,NC,ME,VA,PA
Aroclor-1260 [2C]	CT,NH,NY,NC,ME,VA,PA
Aroclor-1262	NH,NY,NC,ME,VA,PA
Aroclor-1262 [2C]	NH,NY,NC,ME,VA,PA
Aroclor-1268	NH,NY,NC,ME,VA,PA
Aroclor-1268 [2C]	NH,NY,NC,ME,VA,PA
Con-Test, a Pace Environmental Laboratory, operates under	the following certifications and accreditations:

Code	Description	Number	Expires
AIHA	AIHA-LAP, LLC - ISO17025:2017	100033	03/1/2022
MA	Massachusetts DEP	M-MA100	06/30/2022
CT	Connecticut Department of Publilc Health	PH-0165	12/31/2022
NY	New York State Department of Health	10899 NELAP	04/1/2022
NH-S	New Hampshire Environmental Lab	2516 NELAP	02/5/2022
RI	Rhode Island Department of Health	LAO00112	12/30/2021
NC	North Carolina Div. of Water Quality	652	12/31/2021
NJ	New Jersey DEP	MA007 NELAP	06/30/2022
FL	Florida Department of Health	E871027 NELAP	06/30/2022
VT	Vermont Department of Health Lead Laboratory	LL720741	07/30/2022
ME	State of Maine	MA00100	06/9/2023
VA	Commonwealth of Virginia	460217	12/14/2021
NH-P	New Hampshire Environmental Lab	2557 NELAP	09/6/2022
VT-DW	Vermont Department of Health Drinking Water	VT-255716	06/12/2022
NC-DW	North Carolina Department of Health	25703	07/31/2022
PA	Commonwealth of Pennsylvania DEP	68-05812	06/30/2022
MI	Dept. of Env, Great Lakes, and Energy	9100	09/6/2021

Glassware in freezer? Y / N Prepackaged Cooler? Y / N responsible for missing samples analyses the laboratory will perform. Any missing information is not the laboratory's responsibility. Pace Analytical values your partnership on each project and will try to assist with missing information, but will Chain of Custody is a legal document that must be complete and accurate and is used to determine what Glassware in the fridge? 1 Matrix Codes: GW = Ground Water WW = Waste Water DW = Drinking Water from prepacked coolers *Pace Analytical is not Total Number Of ² Preservation Codes: Courier Use Only X = Sodium Hydroxide Disclaimer: Pace Analytical is not responsible for any omitted information on the Chain of Custody. A = Air S = Soil SL = Sludge SOL = Solid O = Other (please define) B = Sodium Bisulfate I MM 2 Preservation Code O = Other (please 5 = Sulfuric Acid PLASTIC BACTERIA N = Nitric Acid define) T. R. ENCORE VIALS GLASS M = Methanol T = Sodium Thiosulfate H = HCL possible sample concentration within the Conc H - High; M - Medium; L - Low; C - Clean; U Please use the following codes to indicate NELAC and Alfila Lat. LLC Accredited Chromatogram AIHA-LAP, LLC not be held accountable. Code column above: ANALYSIS REQUESTED Doc # 381 Rev 5, 07/13/2021 82221 2429 CT RCP Required MA MCP Required RCP Certification Form Required MCP Certification Form Required WRTA MA State DW Required 8 39 Spruce Street East Longmeadow, MA 01028 ENCORE D BACTERIA Field Fittered Field Filtered Lab to Filter PCB ONL) Lab to Fitter VIALS GLASS PLASTIC School MWRA MBTA Email To: Forest Coffee CAN Com NON SOXHLET SOXHLET CHAIN OF CUSTODY RECORD 1 00 0 0 Conc Code 21 TOSTS 388 Municipality Due Date: Matrix **Brownfield** 10-Day 30 3 3 PWSID # 3-Day 4-Day EXCEL 4 COMPCERS CLP Like Data Pkg Required: THE RANGE T () PFAS 10-Day (std) PDF Ending Date of (D) NYN N Government 100 ormat: Federal Other: .Day -Day 2-Day Client Comments: per client run bacteria past hold. JLH Project Entity Beginning Date Time シャン 2 Access COC's and Support Requests minesteld Date/Times 830 7550E1B Phone: 413-525-2332 The Mai Fax: 413-525-6405 6 Date/Time: Date/Time: Date/Time: Date/Time Jate/Time: Date/Time: Date/Time: K. C. L. C. L. D. Salla May W. P. C. 500 0 C. Face Analytical* 9/9/2021 Pace Quote Name/Number: 2 (elinquished by: (signature) Relinquished by: (signature) fed by: (signature) Relinguished by: (signature) (eceived by: (signature) Received by: (signature) Received by: (signature) Work Order# Pace Project Location: invoice Recipient: Project Manager: Project Number: Comments: Sampled By: Address: Phone: Page 30 of 32 I Have Not Confirmed Sample Container Numbers With Lab Staff Before Relinquishing Over Samples____

Doc# 277 Rev 5 2017

Login Sample Receipt Checklist - (Rejection	Criteria Listing - Using Acceptance Policy) Any False
	attention of the Client - State True or False

	ed By	<u>IMP</u>	· remana	Date	Ol	a	Time	830	
How were th		In Cooler		No Cooler		On Ice	T	No Ice	
receiv	ed?	Direct from San	npling			- Ambient		Melted Ice	
Were samp	lee within		By Gun #	5		Actual Ten	1p- 4.4		
Temperatur		T	By Blank #			Actual Ten		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
The Control of the last of the	Custody Se	eal Intact?	- Dy Dialik #	Wer	re Samul	es Tampered	The state of the s	A	
	COC Relin					gree With Sa		NA_	
		eaking/loose cap	s on any sam		F	gree ware	inpics:		
Is COC in ink		1		The second secon	ples rece	_ eived within h	olding time?	-	
Did COC in	the second secon	Client	- +	Analysis	-		er Name	T	
pertinent Info	ormation?	Project	1	ID's			Dates/Times		
Are Sample	labels filled	out and legible?	· +	-				1	
Are there Lab			F		Who w	as notified?			
Are there Rus	shes?		F			as notified?		-	
Are there Sho	ort Holds?		1			as notified?	Frank	Weis-	
s there enou	gh Volume	?						, , , , , , , , , , , , , , , , , , , ,	
s there Head	space whe	re applicable?	F	1	MS/MSD	? F			
Proper Media	/Container:	s Used?	T	1:	s splitting	samples red	uired?	F	
Vere trip blar	nks receive	d?	WAFT		On COC	All the second state of the second second second		1	
Do all sample	es have the	proper pH?		Acid	phez		Base		
C No. 100 Miles and the last	d i	Containers:	- #			1 #			(1)
iais									
Jnp-		1 Liter Amb.	2	1 Liter P	Plastic		16 oz	Amb.	
Jnp- fCL-	5	1 Liter Amb. 500 mL Amb.	2	500 mL F	Plastic		16 oz 8oz Am		
Jnp- ICL- Ieoh-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb.	2	500 mL F 250 mL F	Plastic Plastic		The state of the s	b/Clear	
Inp- ICL- Ieoh- isulfate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint	2	500 mL F 250 mL F Col./Bac	Plastic Plastic cteria		8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	
Inp- ICL- Meoh- Sisulfate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	2	500 mL F 250 mL F Col./Bac Other P	Plastic Plastic cteria lastic		8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear b/Clear	
Inp- ICL- Ieoh- isulfate- I- hiosulfate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit	2	500 mL F 250 mL F Col./Bac Other P Plastic	Plastic Plastic cteria lastic Bag	4	8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear	
Inp- ICL- Ieoh- isulfate- I- hiosulfate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass	2	500 mL F 250 mL F Col./Bac Other P	Plastic Plastic cteria lastic Bag	4	8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear b/Clear	
Inp- ICL- Ieoh- isulfate- II- hiosulfate- ulfuric-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate		500 mL F 250 mL F Col./Bac Other P Plastic	Plastic Plastic cteria lastic Bag ck	1 4	8oz Am 4oz Am 2oz Am Enc	b/Clear b/Clear b/Clear	
Inp- ICL- Ideoh- Bisulfate- DI- Chiosulfate- Bulfuric-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate	2 #	500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M	Plastic Plastic cteria lastic Bag ck	1 4 1	8oz Am 4oz Am 2oz Am End Frozen:	b/Clear b/Clear b/Clear core	1
Inp- ICL- Ideoh- Issulfate- Il- Iniosulfate- Inp-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb.		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M	Plastic Plastic cteria lastic Bag ck edia		8oz Am 4oz Am 2oz Am End Frozen:	b/Clear b/Clear b/Clear core	1
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Sulfuric- Vals Jnp- HCL-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb.		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic		8oz Am 4oz Am 2oz Am End Frozen:	b/Clear b/Clear b/Clear core	#
Jnp- HCL- Meoh- Bisulfate- DI- Thiosulfate- Bulfuric- Jnp- HCL- Meoh-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb.		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic Plastic Plastic	4	8oz Am 4oz Am 2oz Am End Frozen: 16 oz 8oz Am 4oz Am	b/Clear b/Clear b/Clear core	#
Inp- ICL- Issulfate- Iniosulfate- Iulfuric- Inp- ICL- Ieoh- Issulfate- Inp- Iculate- Iculate- Iculate- Iculate- Iculate- Iculate- Iculate- Iculate- Iculate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic Plastic Plastic oint		8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear core Amb. b/Clear b/Clear b/Clear	
Jnp- HCL- Meoh- Bisulfate- DI- Chiosulfate- Sulfuric- Jnp- HCL- Meoh- Bisulfate- DI- DI- DI- DI- DI- DI- DI- DI- DI- DI	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp Other G	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic Plastic Plastic Coint Blass		8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am 2oz Am	b/Clear b/Clear b/Clear core Amb. b/Clear b/Clear b/Clear	
Jnp- HCL- Meoh- Bisulfate- OI- Thiosulfate- Sulfuric- Mals Jnp- HCL- Meoh- Bisulfate- OI- Thiosulfate- DI- Thiosulfate- DI- Thiosulfate- DI- Thiosulfate-	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Plashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic SOC Kit		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp Other G Plastic	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic Plastic Plastic Plastic Plastic Bass Bag		8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am	b/Clear b/Clear b/Clear core Amb. b/Clear b/Clear b/Clear	#
Viais Unp- HCL- Meoh- Bisulfate- OI- Thiosulfate- Sulfuric- Vials Unp- HCL- Meoh- Bisulfate- OI- Thiosulfate- OI- Chiosulfate- OI- Chiosulfate- Sulfuric- Comments:	5	1 Liter Amb. 500 mL Amb. 250 mL Amb. Flashpoint Other Glass SOC Kit Perchlorate Containers: 1 Liter Amb. 500 mL Amb. 250 mL Amb. Col./Bacteria Other Plastic		500 mL F 250 mL F Col./Bac Other P Plastic Ziplo Unused M 1 Liter P 500 mL F 250 mL F Flashp Other G	Plastic Plastic cteria lastic Bag ck edia Plastic Plastic Plastic Plastic Plastic Plastic Bass Bag		8oz Am 4oz Am 2oz Am Enc Frozen: 16 oz 8oz Am 4oz Am 2oz Am 2oz Am	b/Clear b/Clear b/Clear core Amb. b/Clear b/Clear b/Clear	1

		ĀÄ!'	'#Ā\$"#À%&'()*+&'#Ā	.,)/#0,1.2/#\$,2)*	š+&)*. %#1. 25	
6&7.2&).2(#8&5,9 \$.%:; ,<)=#&#"&+ <i>)</i> #%&'()*+&'#6&7.2&).2("2.>,+)#?9 JKE				MNN		
"2.>,+)#6.+&)*.%9 D-F),<7F2(=#ĀÄ 0; 89						
;-*<#4	l.25#12.@*/,<	<#+,2)*3*+&)*.%<#	3.2#)-,#3.".A*%B#/&)& #<)#9&7 .2&).2(#D&	.51',#E #8F57,2G <hi< td=""><td></td></hi<>	
JKE	ELMNN:LK#)-	2F#JKELMNN:LJ				
Ā&)2³	*+,<9##	O&), 2				
CA	AM Protocol	(check all that b	pelow)			
	JPL#QR\$## VWVLXVWVK#TBĀK&<< !" #Q"T## NLNJ#"\$Y###			\$(&%*/,X" Ä\$#	PNPL# ",2+-'.2&),# \$ÄĀ#QEEE#Y#G#F	
	#DQR\$# EE#Y##G#H		Ā&< " #Q"T##<br #晦ÄĀ#EQ#\$#G#H	NLNK#",<)*+*/,<# \$ÄĀ#Q#Y#G#H	VKZP#T,U#\$2### \$ÄĀ#QE#Y#G#H	Ā&<< !" #Ä"T# \$ÄĀ#E[#Ä#G#H
	#Ā,)&'<## 'EE Ä## G#H		Ā&<< !" #!"T## ŀ \$ÄĀ#EQ#Y#G#H	NKSK#T,27*+*/,<# \$ÄĀ#Q#\$#G#H	NMML#!U1'.<*@,<# \$ÄĀ#QE <i>E</i> Ä##\$#H	;R :KS#QR\$# \$ÀĀ#E[#Y#G#H
	Ai	firmative response	to Questions A throu	ghF is required for "Pr	esumptive Certainty" s	tatus
Α		@,/#G*%+'F/*%B#),51		#,<+2*7,/#.%#)-,#\$-&*%:.3 & *) &7 (=#&%/#12,1&2,/X&%		☑ < □8.]
В	O, 2,#-,#&%\(\)(12.).+.\(\)G <h#3.< td=""><td></td><td>#&<<. +*&), / # \$#2, aF*2, 5</td><td>, %)<#<1,+*3*+,/#*%#)-,#<</td><td>,',+),/#\$ÀĀ#</td><td>☑ < □8.]</td></h#3.<>		#&<<. +*&), / # \$#2, aF*2, 5	, %)<#<1,+*3*+,/#*%#)-,#<	,',+),/#\$ÀĀ#	☑ < □8.]
С			% #&%&'()*+&'#2, <1. %<, #&+ *3*,/#1,23.25&%+,#<)&%	+)*.%<#<1,+*3*,/#*%#)-,#< 6#8⁄2/%:+.%3.25&%+,<	:,',+),/#\$ÀĀ#	☑ < □8.]
D	.,<#)-,#'&7.2&} `F&'*)(#Ä< <f2& &)&_</f2&).2(#2,1.2)#+.51'(#A*)- ₁ &%+,#&%/#`F&'*)(#\$.%	#&"#)-,#2,1.2)*%B#2,aF*, %)2.'#bF*/'*%,<#3.2 ¼})<i>af</i>*	2,%)<#<1,+*3*,/#*%#\$ÄĀ; <}*. %#&%#D,1.2)*%B#3#Ä%&	#Q ÀEE# k'()*+&'#	☑ < □8.]
Еа				/#A*) F)#<*B%*3*+&% &#B%#3*+&%)#5./*3*+&)*.</td><td></td><td>□ < □8.]</td></tr><tr><td>Εb</td><td>Ä"T#&%/#, R:K</td><td>S#Ā,)/<#.%'(9#O&<#</td><td>*)-,#+.51',),#&%&'(),#'*<)#</td><td>[‡]2,1.2,/#3.2#,&+-#5,)/_</td><td></td><td>□ < □8.]</td></tr><tr><td>F</td><td></td><td></td><td></td><td>821 #% %+. %3 25 &%+, <#/ , 9 #);#`,<)*.%<#À#)-2.FB-#!H</td><td>⁄9*3*, / #&% #</td><td>☑ < □8.]</td></tr><tr><td></td><td></td><td></td><td></td><td>d for "Presumptive Ce</td><td>rtainty" status</td><td></td></tr><tr><td>G Data</td><td colspan=6>G O, 2 #-, #2 1. 2/*/№#*5 *)<#&)# 2#7, '. A#&''#\$ ÄĀ #2 1. 2/*/№#*5 *)<#≮1,+*3*,/#*%#)-,#<,',+),/#\$ ÄĀ# □ \</td></tr><tr><td></td><td>representative</td><td>ness requirements</td><td>described in 310 CMF</td><td>R 40. 1056 (2)(k) and W</td><td>•</td><td>,</td></tr><tr><td>Н</td><td>O, 2,#&"# \$#1,</td><td>23 5 &%, #)&% &2 <#</td><td>1, +*3*, / #%#)-, #\$ ÀĀ#12).</td><td>+. 'G:H#&+-*,@,/_</td><td></td><td>□ < □8.]</td></tr><tr><td>I</td><td colspan=5>I O, 2 #2, <F')<#2, 1. 2), / #8 2h-, #. 5 1',), #&%&'(), #*<)#<1, +*3, / #%#)-,#<,',+),/#\$ÄĀ#12.).+.'G<H_ □ < □8.</td><td>☑ < □8.]</td></tr><tr><td>]All</td><td>Negative respo</td><td>onses must be addre</td><td>ssed in an attached Er</td><td>nvironmental Laboratory</td><td>case narrative.</td><td></td></tr><tr><td colspan=6>I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, accurate and complete.</td></tr><tr><td>D*B</td><td>8%&)F2,9</td><td>hisa W</td><td>forthungton_</td><td>".<*)*.%9</td><td>; +- %+&'#0 , 12 <, %&</td><td>v)*@</td></tr><tr><td colspan=6>"2*%),/#8&5,9 6*<&#c#Q2)-*%B).%</td></tr></tbody></table>		

O'REILLY, TALBOT & OKUN ASSOCIATES, INC. ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

		GROUND	WATER SA	MPLING R	ECORD	4PN		
PROJECT:	1	Cooleyu	1/e Rd	166	LEVENETA PROJECT NO	0:2060	1-02-6	21
CITY/STATE:		Shutesb		MA				
SAMPLING PER	SONNEL:		Mark	OHall	lex	1		
DATE:	8/21	WEAT	THER:	Stri	4 close	15 70	75	1 ,
SAMPLE DESIGN PURGE METHOL METHOD: BAIL	D. BAILER	PUMP - LO ALTIC PUM	W of HIGHLI	FLOW YO'	AMPLING SA THER U OTHER	EQUENCE N	io. 1st	_
WELL DATA								
MEASURING POL	NT: Top of:	PVC / Curb	box / Protec	ctive pipe / C	Other:			
Vertical distance fr	om measurir	ng point to gr	ound surface	e: ^	12'		below grade	5
WELL DIAMETER		- 0	TH TO WAT			TOTAL DEP	- 110	_
STANDING WATE		rgo		VOLUME -	(gai):	~102	_	
INTAKE DEPTH(fit		Punlocked /	etanding wa		is / other:			
RECHARGE RATE				ner m annun				
		deruite i i uni						
WATER DATA		2 10 1	1.00		1-1	5	1-1-	
APPEARANCE: CO	lean/ cloudy	/ silty / shee	n / floating r	product / oth	cr: Forug	orange;	KAT	
ODOR: None / Pet	roieum / Oti	ier (describe));			-		
Time	1815	1820	1825	1830	1835	1840	1845	
Depth to water	10.84	10.85	10.85	10.85	10,85	10.85	10.86	
Cum. purge volume	~470	-437	454	471	488	503	322	low
Temp (°C)	12.0	11.8	11.0	10.8	10.8	10.8	10,6	Sunly
Dissolved O ₂ (mg/l)	2.17	1.74	1.76	1.74	1.62	1.84	1.73	
Cond'y (umho/cm)	70.6	70.1	69.5	69.2	69.0	68.9	68.8	
pH (S.U.)	7.55	7.43	7,43	7.45	7.44	7.44	7.44	
ORP/other:	55.5	47.6	35.9	35.9	38.2	39.2	39.6	
Turbidity	66.	20.5	16.7	15.9	19,8	26.7	23.8	
SAMPLE BOTTLES	1	FILTRATIO	N?: YES/N	If yes, po	ore size: 0.45	micron / oth	er	
ANALYSIS		BOTTLES	(number &	type)	PRESE	RVATIVE	(type&amo	ount)
See Chair	7	Varior	5		see	2 Cha	4	
PFAS								
PCB5								
VOC5		Ir				Nr		
Potability		V				U		
NOTES AND OBSEL	RVATIONS	S:		21-11 V/w	inute			
hears D	wsins	: 10-16	(1) Q	5 to 1 gay	SAIN	plea	194	5
J. J.	7 9	Cy ,		·	,	EDD	1000	
11.1	Twola	124	41.3	boleronia		770	1900	
High	1000	17 /	1051/tec	remova)	replicat	e 1850	0
V		1 1000	1 upon	10		1		

MEMORANDUM

Date: 21 January 2022

To: Mr. Gary Morin, P.E. & Ms. Heather Sullivan (USACE CENAE)

From: Mr. Michael Kulbersh, PG/LSP & Dr. Yixian Zhang (USACE CENAE)

Subject: Shutesbury - Westover Remote Site: Terminal VHF Omni-Range Facility (TVOR) by Westover AFB

Purpose:

The purpose of this memorandum is to briefly summarize the underground storage tank (UST) removal efforts completed at the subject project site by the US Army Corps of Engineers, New England District (USACE) in 1994 and 1995, and a subsequent limited subsurface investigation conducted on-behalf of the Town of Shutesbury (Town) in the area of the UST resulting in a potential reporting condition to the Massachusetts Department of Environmental Protection. Section 1. provides more detail on the activities completed at the site by USACE and the Town. Section 2. outlines potential data quality issues that were identified by (USACE), as a result of reviewing the Town's contractor's analytical data. Section 3. provides a conclusion.

1. Introduction:

The Westover Terminal VHF Omni-Range (TVOR) facility site was formerly located in Shutesbury, MA. The United States leased the Site along with leaseholds/purchase on other surrounding land in 1957. The Air Force constructed a circular concrete TVOR pad with tower and an Emergency Power Unit Shelter (4'x8') at the site and an associated underground fuel storage tank. Thirty-five wooden posts in a 100-foot radius around the TVOR pad were constructed to be used in conjunction with the TVOR facility to affect the transmission. The Air Force used the site until 1967; the leaseholds were not extended beyond June 1967. In 1992, the Department of Defense Installation Restoration Program (IRP) Formerly Used Defense Site Program recommended to remove one 275-gallon gasoline UST, contents, piping and any contaminated soil were slated for removal. Based on photologs, the tank was excavated on 14 September 1994, and soil was removed from the tank grave on approximately 26 September 1994. A total of 11.5 tons of petroleum impacted soil was removed and two confirmation soil samples were collected. One sample contained petroleum hydrocarbons at 145 mg/Kg (TVO2) and TVO1 contained 67.3 mg/Kg. Based on pay estimate sheets, an additional 89.78 tons of petroleum impacted soils were subsequently removed. Confirmatory soil samples collected on 5 January 1995, presumably following the removal of the approximately 90 tons of soil contained TPH at 94.9 mg/Kg TPH with a duplicate result 69.5 mg/Kg.

O'Reilly, Talbot & Okun Associates, Inc. (OTO) of on behalf of the Town, conducted a limited subsurface assessment at the above referenced property. On 16 September 2021, Martin Geo/Environmental, LLC and OTO performed ten soil borings (B-1 through B-10) using a direct-push drill rig. OTO logged the borings, field screened soil samples with a photoionization detector (PID) and retained soil samples for laboratory analysis. Sample location B-9 (Figure 1) was collected within the former tank grave of the 275-gallon gasoline UST. The sample collected from 8-10 feet below ground surface was analyzed for Volatile Petroleum Hydrocarbons (VPH), VOCs, and PCBs. The VPH results contained C5-C8 aliphatic hydrocarbons at 100 mg/Kg, exactly at the RCS-1 reporting concentration under the Massachusetts Contingency Plan (MCP) (Table 1).

MEMORANDUM

The OTO report stated "pursuant to 310 CMR 40.0315(3), the concentration of C5-C8 aliphatic hydrocarbon detected in soil at boring B-9 is a condition which requires release notification to MassDEP. The hydrocarbon profile detected is consistent with impacts frequently associated with releases of gasoline. Under the MCP at 310 CMR 40.0315, persons required to notify under 310 CMR 40.0331 shall inform MassDEP within 120 days after obtaining knowledge of a release to the environment indicated by the measurement of oil in soil in an amount equal to or greater than the applicable Reportable Concentration listed at 310 CMR 40.1600. We recommend providing notice to MassDEP on or before January 28, 2022, based on the date of receipt of the laboratory report. Further assessment is warranted to evaluate the source, nature, and extent of the release detected at boring B-9."

Figure 1- Location of TVOR Site and Soil Boring B-9

Table 1 Soil Analytical Results Volatile Petroleum Hydrocarbons (VPH) Concentrations in mg/kg 66 Leverett Road Shutesbury, Massachusetts

Sample No.:	B-9	Reportable
Depth (feet):	8-10'	Conc.
Date Collected:	9/16/21	RCS-1
PID Reading (ppmv):	780	NA
VPH Fractions		
C5-C8 Aliphatics	100	100
C9-C12 Aliphatics	89	1,000
C9-C10 Aromatics	66	100
VPH Target Compounds		
Benzene	0.3	2
Ethylbenzene	0.18	40
Methyl tert-butyl ether	< 0.085	0.1
Naphthalene	0.54	4
Toluene	< 0.085	30
Xylenes (total)	0.48	100
VOCs by 8260		
n-Butylbenzene	1.2	NS
sec-Butylbenzene	0.28	NS
Isopropylbenzene	0.25	1,000
n-Propylbenzene	1.6	100
1,2,4-Trimethylbenzene	2.1	1,000
1,3,5-Trimethylbenzene	3.2	10

NOTES:

- 1. Concentrations in mg/kg (parts per million) on a dry weight basis.
- 2. "<" indicates not detected; value is sample-specific quantitation limit.
- 3. "RCS" = Reportable concentration from 310 CMR 40.1600.
- 4. "PID"=Photoionization detector soil headspace measurement in
- Only analytes detected in at least one sample are shown; refer to laboratory reports for full analyte listing.
- Values shown in **bold** are equal to or exceed Reportable Concentrations.

MEMORANDUM

Potential Data Quality Issue:

As indicated in the MADEP MCP Analytical Method Report Certification Form (page 1 - Attachment A) contained in the report prepared by OTO, the laboratory indicated that not all QC performance standards specified in the Compendium of Analytical Methods (CAM) protocols were achieved. Given that the concentration of the C5-C8 aliphatic carbon fraction was detected exactly at the RCS-1 reporting concentration of 100 mg/Kg, Mr. Kulbersh (USACE Geologist and Licensed Site Professional (MA License # 1203)), requested that Dr. Zhang, USACE Chemist, further evaluate the data package to identify what were the QC performance standards that were not achieved. As part of her review, Dr. Zhang noted the following for the VPH data associated with sample B-9 (8-10 feet bgs). Dr. Zhang found two data quality issues as described below:

- 1) Field sample preservation did not meet method requirement: the MADEP VPH method requires that soil samples for VPH analysis be preserved in the field at a soil/sediment-to-methanol ratio of 1 gram soil/sediment to 1 mL methanol ±25%. The case narrative of the lab report (page 2 in Attachment A) states "Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with less than the method-specified amount." Because field sample preservation did not meet the method requirement in this sample, the quality of the VPH data may have been impacted.
- 2) Surrogate recoveries exceeded method acceptance limits: the case narrative also states "Surrogate recovery outside of control limits due to suspected sample matrix interference. Chromatogram(s) is attached." As indicated in the VPH result page for sample B-9 (8-10) (page 3 Attachment A), recoveries of surrogates 2,5-dibromotoluene (FID) and 2,5-dibromotoluene (PID) were both above the method acceptance limits (70%-130%) at 136% and 131%, respectively. The high surrogate recoveries indicate that the VPH results in the sample may have a high bias (i.e., reported results are higher than the actual results). Because the 100 mg/kg C5-C8 Aliphatics was just at the MA Reportable Concentration of 100 mg/kg, the high bias suggests that the actual C5-C8 Aliphatics concentration in sample B-9 (8-10) may be below the 100 mg/kg MA Reportable Concentration. The VPH chromatogram is included as page 4 in Attachment A.

Mr. Kulbersh subsequently contacted Mr. John Fitzgerald of the MassDEP Northeast Regional office (NERO), an expert on the reDUA (Representative Evaluation and Data Useability Analysis) process used in the MCP (310 CMR 40.1056(2)(k) on 19 January 2022. Mr. Fitzgerald indicated the Data Useability Assessment is not necessarily required as part of the notification process; however valid data is required. Mr. Kulbersh indicated that the surrogate recoveries were over the acceptance range. Mr. Fitzgerald suggested that since a sample was also tested for Volatile Organic Compounds (VOC) that perhaps the chromatogram for that sample may shed some light on whether Non-Petroleum compounds might be present in the sample elevating the C5-C8 aliphatic result. Given the age of the release, Mr. Fitzgerald questioned why the other heavier weight carbon range fractions would be less than the C5-C8 aliphatics (**Table 1**), potentially questioning the results of the C5-C8 aliphatic results.

MEMORANDUM

3. Conclusion:

As a result of the above review of the data by Dr. Zhang and discussions with Mr. Fitzgerald (MassDEP NERO). The USACE project teams feels that this information should be presented to the Town for their consideration in discussions with their contractor, OTO, and MassDEP Western Regional Office (WERO). If the 120-day notification has already occurred, and the data is of questionable quality there is a process for retracting the reporting condition, if warranted.

ATTACHMENTS – Excerpts from Laboratory Data Package

ATTACHMENT A – Excerpts from Laboratory Data Package
ATTACHMENT A - Excerpts from Laboratory Data Package

		MADE	P MCP Analytical	Method Report Cert	tification Form		
Labo	ratory Name	e: Con-Test, a F	Pace Analytical Labo	ratory	Project #: 2110	921	
Proje	ect Location:	Shutesbury, N	ИΑ		RTN:		
		es certifications for u 2110921-11	the following data se	et: [list Laboratory Sar	mple ID Number(s)]	T.	
Matri	ces:	Soil					
CA	AM Protoco	ol (check all that	below)				
	VOC II A (X)	7470/7471 Hg CAM IIIB ()	MassDEP VPH CAM IV A (X)	8082 PCB CAM V A (X)	9014 Total Cyanide/PAC CAM VI A ()	6860 Perchlo CAM V	orate 'III B ()
	SVOC IIB()	7010 Metals CAM III C ()	MassDEP VPH CAM IV C ()	8081 Pesticides CAM V B ()	7196 Hex Cr CAM VI B ()	MassD CAM IX	EP APH (A()
	Metals III A ()	6020 Metals CAM III D ()	MassDEP EPH CAM IV B (X)	8151 Herbicides CAM V C ()	8330 Explosives CAM VIII A ()	TO-15 CAM IX	
		Affirmative response	to Questions A thro	ughF is required for "F	Presumptive Certainty	status	
Α		served (including tempe		e described on the Chain- pratory, and prepared/anal		☑ Yes	□No¹
В		alytical method(s) and a	Il associated QC require	ments specificed in the sel	lected CAM	☑ Yes	□No¹
С	Were all requ	ired corrective actions	and analytical response	actions specified in the sel	lected CAM	☑ Yes	□No¹
D				rements specified in CAM isition and Reporting of Ar		☑ Yes	□No¹
Ea	The state of the s	to the first process of the fi	Was each method condu ual method(s) for a list of	icted without significant f significant modifications).		☑ Yes	□No¹
Еb				reported for each method		□Yes	□No¹
F				dard non-conformances ide s to Qestions A through E		☑ Yes	□No¹
	A respons	se to questions G, H	and I below is requir	ed for "Presumptive C	ertainty" status		
G	protocol(s)?			specified in the selected C		☐ Yes	☑No¹
				R 40. 1056 (2)(k) and V	ssarily meet the data u NSC-07-350.	sability	
Н	Were all QC	perfomance standards	specified in the CAM pro	tocol(s) achieved?		□ _{Yes}	☑ _{No¹}
1	Were results	reported for the comple	ete analyte list specified i	n the selected CAM protoc	col(s)?	☑ Yes	□No¹
¹ All	Negative resp	ponses must be addr	essed in an attached E	Environmental Laborator	ry case narrative.		
thos	se responsib		information, the mate		pon my personal inqui nalytical report is, to t		
Sign	nature:	hisa V	Vorthungton	Position:	Technical Represen	tative	
Prin	nted Name:	Lisa A. Worthing	ton	Date:	09/23/21		

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

MADEP-VPH-Feb 2018 Rev 2.1

Oualifications:

0-01

Soil/methanol ratio does not meet method specifications. Excess amount of soil. Sample was completely covered with methanol, but with

less than the method-specified amount.

Analyte & Samples(s) Qualified:

21I0921-10[B-9 (8-10)]

S-15

Surrogate recovery outside of control limits due to suspected sample matrix interference. Chromatogram(s) is attached.

Analyte & Samples(s) Qualified:

2110921-10[B-9 (8-10)]

SW-846 8082A

Qualifications:

0-32

A dilution was performed as part of the standard analytical procedure.

Analyte & Samples(s) Qualified:

 $2110921-01[B-1\ (5-7)], 2110921-02[B-2\ (1-3)], 2110921-03[B-3\ (5-7)], 2110921-04[B-4\ (3-5)], 2110921-05[B-5\ (5-7)], 2110921-06[B-6\ (3-5)], 2110921-07[B-7\ (0-1)], 2110921-08[B-8\ (1-3)], 2110921-09[B-9\ (0-1)], 2110921-10[B-9\ (8-10)], 2110921-11[B-10\ (1-3)]$

SW-846 8260C-D

Qualifications:

L-07

Either laboratory fortified blank/laboratory control sample or duplicate recovery is outside of control limits, but the other is within limits. RPD between the two LFB/LCS results is within method specified criteria.

Analyte & Samples(s) Qualified:

Chloroethane

B290528-BS1

RL-05

Elevated reporting limit due to high concentration of target compounds. MA CAM reporting limit not met.

Analyte & Samples(s) Qualified:

2110921-10[B-9 (8-10)]

V-05

Continuing calibration verification (CCV) did not meet method specifications and was biased on the low side for this compound.

Analyte & Samples(s) Qualified:

Dichlorodifluoromethane (Freon 17

 $2110921 - 01[B - 1\ (5 - 7)], 2110921 - 03[B - 3\ (5 - 7)], 2110921 - 05[B - 5\ (5 - 7)], 2110921 - 11[B - 10\ (1 - 3)], B290543 - BLK1, B290543 - BS1, B290543 - BSD1, S063414 - CCVI - BCVI

V-16

Response factor is less than method specified minimum acceptable value. Reduced precision and accuracy may be associated with reported

result.
Analyte & Samples(s) Qualified:

1,4-Dioxane

S063414-CCV1, S063445-CCV1

Tetrahydrofuran

S063414-CCV1

39 Spruce Street * East Longmeadow, MA 01028 * FAX 413/525-6405 * TEL. 413/525-2332

Project Location: Shutesbury, MA Sample Description: Work Order: 2110921

Date Received: 9/17/2021
Field Sample #: B-9 (8-10)

Sampled: 9/16/2021 13:00

Sample ID: 21I0921-10 Sample Matrix: Soil

Sample Flags: O-01, S-15		Pet	roleum Hydrocarbo	ons Analyses	- VPH				
Soil/Methanol Preservation Ratio: 1.48 Analyte	Results	RL	Units	Dilution	Flag/Qual	Method	Date Prepared	Date/Time Analyzed	Analys
Unadjusted C5-C8 Aliphatics	100	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C5-C8 Aliphatics	100	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Unadjusted C9-C12 Aliphatics	160	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C9-C12 Aliphatics	89	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
C9-C10 Aromatics	66	17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Benzene	0.30	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Ethylbenzene	0.18	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Methyl tert-Butyl Ether (MTBE)	ND	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Naphthalene	0.54	0,42	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2,1	9/21/21	9/21/21 19:10	KMB
Toluene	ND	0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
m+p Xylene	0.28	0.17	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
o-Xylene	0.20	-0.085	mg/Kg dry	2		MADEP-VPH-Feb 2018 Rev 2.1	9/21/21	9/21/21 19:10	KMB
Surrogates		% Recovery	Recovery Limits		Flag/Qual				
2,5-Dibromotoluene (FID)		136 *	70-130					9/21/21 19:10	
2,5-Dibromotoluene (PID)		131 *	70-130					9/21/21 19:10	

Data Path : C:\msdchem\1\data\092021\

Data File : H21V268060.D

Signal(s): Signal #1: FID1B.ch Signal #2: OIMFID2A.ch

: 21 Sep 2021 07:10 pm

Operator

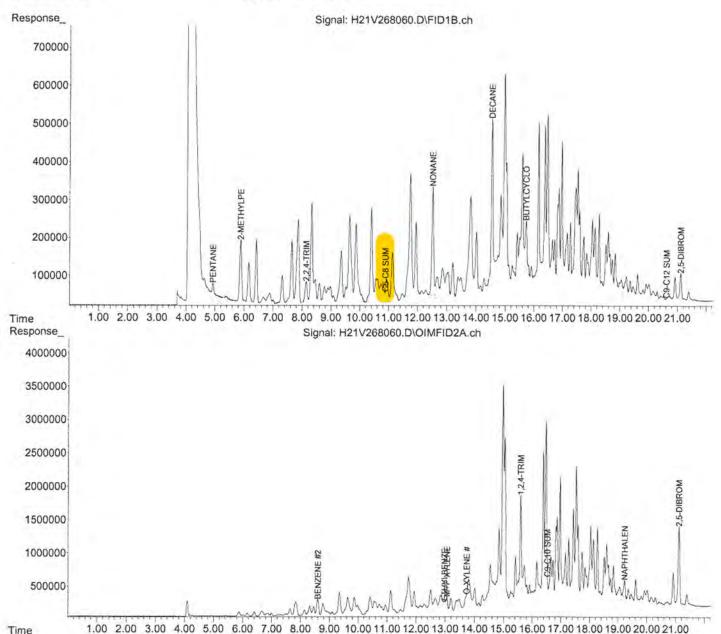
Sample : 21i0921-10 @ 100x meoh Inst : VPHGC3

Misc

ALS Vial : 19 Sample Multiplier: 1

Integration File signal 1: events.e Integration File signal 2: events2.e Quant Time: Sep 22 09:03:12 2021

Quant Method : C:\msdchem\1\methods\VN20421.M


Quant Title : VPHNEW

QLast Update : Mon Sep 20 15:42:15 2021 Response via : Initial Calibration

Integrator: ChemStation

Volume Inj.

Signal #1 Phase : Signal #2 Phase: Signal #1 Info : Signal #2 Info :

Time

Appendix C

Soil Boring and Groundwater Sampling Logs

PROJECT NUMBER: 20091032.A22

PROJECT NAME: Shutesbury Library **ADDRESS:** Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push **BORING DIAMETER:** 1.5 inches **TOTAL DEPTH:** 20 feet

COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis
CHECKED BY: M

COMMENTS: Field Instrument: PID BACKFILL: Native Material (0-20 feet) Elevation (ft) **Graphic Log** Recovery Samples **Material Description** Depth (ft) 문 ~ CL Clay and sand; little gravel; light brown, dry. 0 1 0 2 0.1 3 NR No recovery. 4 5 CL Clay and sand; little gravel; light brown, dry. 6 6 1.8 7 SC Sand F and gray clay; white. 0 8 8 NR No recovery. 9 - 10 10 1701221111-01 SC Sand F and gray clay; lense of white sand and flakes at 11 feet; white, moist 65.1 (10-12 feet) at 12 feet. Light petroleum odor. 11 7.8 12 12 3.8 13 NR No recovery. 14 14 15 CL CLAY; little gravel and sand; gray, wet. 0.2 16 16 0.4 17 0.1 - 18 18 NR No recovery. 19 20 20 End of Boring Depth at 20 feet. 21

Proportions Used $\,$ Trace 0-10% / Little 10-20% / Some 20-35% / And 35-50% $\,$ Template $\,$ FnO Borehole100 $\,$

PROJECT NUMBER: 20091032.A22
PROJECT NAME: Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push **BORING DIAMETER:** 1.5 inches

TOTAL DEPTH: 15 feet

COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis

CHECKED BY: MK

Samples Sam	0.5	Elevation (ft)
CL Clay and sand; trace gravel; tan. NR No recovery. CL Clay and sand; trace gravel; tan.	0.5 0.3 0.2	2
CL Clay and sand; trace gravel; tan. NR No recovery. CL Clay and sand; trace gravel; tan.	0.3 0.2	3
NR No recovery. CL Clay and sand; trace gravel; tan.	0.1	3
CL Clay and sand; trace gravel; tan.		F
- 8 - 8	0.1	5 - 6
	0.2	7
	0.1	9
1701221111-04 (10.5-12.5 feet) CL Clay and sand; trace gravel; tan, wet at 12.5 feet.	0.2	10
- 12 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0.1	12
- 14	0	13
End of Boring Depth at 15 feet.	Ů	15
- 16		- 16 - 17
- 18		18
		19
- 20 		- 20 - 21

PROJECT NUMBER: 20091032.A22
PROJECT NAME: Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push **BORING DIAMETER:** 1.5 inches **TOTAL DEPTH:** 15 feet

COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis

CHECKED BY: MK

COMMEN	NTS: F	Field Instrument: PID		BACKFILL: Native Material (0-15 feet)		
Depth (ft)	% Recovery	Samples	Graphic Log	Material Description	DID	Elevation (ft)
-				MH Silt and clay; trace gravel; light brown.	0.1	1
- 2 - -				SC Sand and clay; trace gravel; gray.	0.5	3
_ 4 _ _				NR No recovery.		4
- - 6 -				SC Sand and clay; trace gravel; gray.	1.3	- 6 - 7
- - 8 -					26.5	8 - - - - - - - 9
10				NR No recovery.		F
- 10 - -		1701221111-03 (10-12 feet)		SC Sand and clay; trace gravel; gray, wet at 13 feet. Petroleum odor.	58.7 68.2	10 - - 11
- 12 - -					5.2	12
- 14 -				NR No recovery.		14
- - 16 -				End of Boring Depth at 15 feet.		15 - - - - - - - - - - - - - - - - - - -
_ _ 18 _ _						- - - - - - - - - - - - - - - - - - -
- - 20 -						- 20 - 21
_						

Proportions Used $\,$ Trace 0-10% / Little 10-20% / Some 20-35% / And 35-50% $\,$ Template $\,$ FnO Borehole100 $\,$

PROJECT NUMBER: 20091032.A22

PROJECT NAME: Shutesbury Library **ADDRESS:** Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push BORING DIAMETER: 1.5 inches TOTAL DEPTH: 15 feet COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis CHECKED BY: M

COMMENTS: Field Instrument: PID BACKFILL: Native Material (0-15 feet)

Depth (ft)	Recovery Samples		Graphic Log	Material Description	PID	Elevation (ft)
				√OR ORGANICS.	r 0	
				SW SAND; trace clay; light brown.		<u> </u>
	-			SW SAND; trace clay; trace gravel; gray.	0.1	
!				ON OAND, trace clay, trace graver, gray.		2
					0.2	E
					0.4	3
					0.1	E
				NR No recovery.		-4
						F
				SW SAND; trace clay; trace gravel; gray.	0	5
						Ē
					0	6
						F _
					510.5	7
				SW SAND; trace clay; trace gravel; lense of F white sand and flakes; gray. Odor.		8
					400.1	F
						9
		1701221111-02 (9-11 feet)				Ė
0		(9-11 leet)				10
				SW SAND; trace clay; trace gravel; lense of F white sand and flakes; gray. Petroleum odor.	102.1	F
			-		262.3	11
			////////	CL Clay and sand; trace gravel; gray.	202.3	E
2				or olay and sand, trace graver, gray.	60.5	12
					00.0	Ē
					13.3	13
						E ,
4				NR No recovery.		14
						15
				End of Boring Depth at 15 feet.		F '3
6						16
						E
						17
						E
8						18
						E
						19
						Ė
20						20
						21
						F

PROJECT NUMBER: 20091032.A22
PROJECT NAME: Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push **BORING DIAMETER:** 1.5 inches **TOTAL DEPTH:** 15 feet

COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis CHECKED BY: W

COMMENTS: Field Instrument: PID BACKFILL: Native Material (0-15 feet) Elevation (ft) **Graphic Log** % Recovery Samples **Material Description** Depth (ft) 문 OR ORGANICS. 0.2 SC Sand and clay; little gravel; light gray. 0.2 1 0.1 2 NR No recovery. 3 5 SC Sand and clay; little gravel; light gray. Heterogenous (sections of sandy clay, mostly clay and mostly sand). 6 6 0.2 7 0.4 8 8 0.2 9 0.3 - 10 10 6.2 SC Sand and clay; little gravel; light gray, moist at 11 feet. Petroleum odor. 1701221111-05 11 (10.5-12.5 feet) 222.7 12 12 CL Clay and silt; little gravel; light gray. Petroleum odor. 13 5.1 14 14 6 End of Boring Depth at 15 feet. 16 16 17 - 18 18 19 20 20 21

Proportions Used $\,$ Trace 0-10% / Little 10-20% / Some 20-35% / And 35-50% $\,$ Template $\,$ FnO Borehole100 $\,$

PROJECT NUMBER: 20091032.A22 **PROJECT NAME:** Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push BORING DIAMETER: 1.5 inches TOTAL DEPTH: 15 feet COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis
CHECKED BY: M

COMMENTS: Field Instrument: PID BACKFILL: Native Material (0-15 feet) Elevation (ft) **Graphic Log** % Recovery Samples **Material Description** Depth (ft) 문 MH Silt and clay; some sand; little organics; dark brown. 0.6 3.4 SW Sand, C-M and gravel. 1 8.0 - 2 NR No recovery. 3 4 5 SW Sand, C-M and gravel. 0.7 SW Sand, C-M and gravel; trace clay; wet at 9.0 feet. - 6 6 1.4 7 1701221111-06 2 (7-9 feet) 8 8 0.9 9 NR No recovery. - 10 10 0.5 SC Sand, C-M and gravel; some clay. 11 0.4 12 12 0.1 13 0 14 14 NR No recovery. End of Boring Depth at 15 feet. 16 16 17 - 18 18 19 20 20 21

Proportions Used $\,$ Trace 0-10% / Little 10-20% / Some 20-35% / And 35-50% $\,$ Template $\,$ FnO Borehole100 $\,$

PROJECT NUMBER: 20091032.A22
PROJECT NAME: Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE:** 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push **BORING DIAMETER:** 1.5 inches **TOTAL DEPTH:** 15 feet

COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis

CHECKED BY: MK

				I		
Depth (ft)	% Recovery	Samples	Graphic Log	Material Description	Qid	i i
			177771	TS TOPSOIL.		
				FI Clay and sand; some gravel; light brown. (Fill).	0.2	F.,
					0.5	 1
2						F ₂
2					0.3	2
						F _
					0.3	3
						Ė,
4						-4
				NR No recovery.		<u> </u>
				FI Clay and sand; some gravel; light brown. (Fill).	0.1	5
•						F _
6					0.2	6
						7
					0.1	F′
8						8
0						F°
					0.3	9
					0	F
10				FI Ash, gray and clay; trace sand. (Fill).		10
10				FI Ash, gray and clay; trace sand. (Fill).	0	F '0
						11
		1701221111-07		CL CLAY; some sand; trace gravel; moist at 11.5 feet.	0.4	ļ ''
12		(11-13 feet)				12
-					1.2	F
						F 13
					0.2	Ė
14			(////////	NR No recovery.		- - 14
						15
				End of Boring Depth at 15 feet.		Ē
16						16
						E
						17
						Ē
18						18
						F
						19
						F
20						20
						F
						21

PROJECT NUMBER: 20091032.A22 **PROJECT NAME:** Shutesbury Library

ADDRESS: Cooleyville Road Shutesbury,

Massachusetts

START DATE: 11/11/2022 **END DATE**: 11/11/2022

DRILLING COMPANY: GeoSearch Inc

DRILLER: E. Belsky

DRILLING METHOD: Direct Push BORING DIAMETER: 1.5 inches TOTAL DEPTH: 15 feet COORDINATES: NA, NA

DATUM: NA

SURFACE ELEVATION NA

LOGGED BY: C. Otis CHECKED BY: MK

COMMENTS: Field Instrument: PID BACKFILL: Native Material (0-15 feet) Elevation (ft) **Graphic Log** % Recovery Samples **Material Description** Depth (ft) 문 MH Silt and clay; some sand; little organics; dark brown. 0.1 CL Clay and sand; trace gravel; gray. 1 0.3 2 2 0.5 3 4 - 4 NR No recovery. 5 CL Clay and sand; trace gravel; gray. - 6 6 0.1 7 0.1 8 8 0.2 9 - 10 10 0.1 CL Clay and sand; trace gravel; gray, moist at 14.2 feet. 11 1701221111-08 0.2 (11-13 feet) - 12 12 1.9 13 3.7 14 14 NR No recovery. End of Boring Depth at 15 feet. - 16 16 17 - 18 18 19 20 20 21

Proportions Used $\,$ Trace 0-10% / Little 10-20% / Some 20-35% / And 35-50% $\,$ Template $\,$ FnO Borehole100 $\,$

Monitoring Well Sample Log Low Flow Sampling

Client/Project Name: Shutesbury Librar	y Ph II	
Project Location: Shutesbury, MA	PROJECT #: 20091032.A22	FUSS & O'NEILL Disciplines to Deliver
Sample#: 1701221202-01	WELL ID: New well	

Purge Data Sample Data

			ata
Date: 12/02/22	Container	Quantity	Preservative
Start time: 1125 Stop time: 1145 Sample time: 1150	VOA	3	HC1
Pump Rate: 150 (ml/m) Depth Sampled: ~ 18	Amber L	1	HCl
Total time purged: ZO win Sampler: CJO	P 250	1	I-INO3
Volume Purged: ~ 3 (ltr)			
Purge Device: Oedicated / Nondedicated Weather: Clear ~ 35 F			
Device Type: Bladder Peristaltic / Submersible			
Filtered? (N) Y Filter Size: 10u / 0.45u Filtered in: Field / Lab			1
Appearance: CLECUT, Highel Petra Color Occasionally PVC: 13.48			II.
Appearance: Clear, light petro color occasionally PVC: 13.98 Well Yield: (light / Moderate / Low / Dry TPS:			

Field Parameter Data

Instrument ID#

Solinst#		2020#	YSI 600 #				-
Water Level (ft)	Time	Turbidity (ntu)	Dissolved Oxygen (mg/L)	pH	Temp. (deg C)	Specific Conductivity (uS)	ORP(mV)
13.98	1125	Start -					>
14.20	1135	4.13	2,62	6.24	9.5	169,9	14.3
14,27	1140	5,90	3,25	6,24	9.5	167.3	19,6
14,32	1145	3,34	3,19	6.25	9.7	168,9	10.0
		Stup					
	1150	Sample					

Well Condition Checklist	(circle appropriate item(s), cross out if not applicable]
General Condition: Good / Needs Repair Protective Steel: OK / Cracked / Leaking / Bent / Loose, Well # Visible?: Y / N Well Cap Good / Broken / None Evidence of rain water between steel and PVC?: Y / N Evidence of ponding around well?: Y / N Gopher type holes around collar?: Y / N Comments:	Is well plumb? Y / N Lock Good / Broken / None Rust around cap: Y / N PVC Riser: Good / Damaged / None Concrete collar: OK / Cracked / Leaking / None Other evidence of: Rodents / Insects None Curb Box: N Y (key is: Hex / Pent / Other)

Appendix D

Laboratory Reports (Nov 2022 to Dec 2022)

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2K14059 Client Project: 20091032.A22 - Shutesbury Library

Report Date: 29-November-2022

Prepared for:

Matt Kissane Fuss & O'Neill 317 Iron Horse Way Providence, RI 02908

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 11/14/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2K14059. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2K14059-01	1701221111-01	Soil	11/11/2022	11/14/2022
			• •	
2K14059-02	1701221111-02	Soil	11/11/2022	11/14/2022
2K14059-05	1701221111-05	Soil	11/11/2022	11/14/2022
2K14059-06	1701221111-06	Soil	11/11/2022	11/14/2022
2K14059-07	1701221111-07	Soil	11/11/2022	11/14/2022
2K14059-08	1701221111-08	Soil	11/11/2022	11/14/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

1701221111-01 (Lab Number: 2K14059-01)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH

1701221111-02 (Lab Number: 2K14059-02)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH

1701221111-05 (Lab Number: 2K14059-05)

<u>Method</u>
EPA 6010C
MADEP EPH
MADEP VPH

1701221111-06 (Lab Number: 2K14059-06)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH

1701221111-07 (Lab Number: 2K14059-07)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH

1701221111-08 (Lab Number: 2K14059-08)

<u>Analysis</u>	<u>Method</u>
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Total Metals

Sample: 1701221111-01 Lab Number: 2K14059-01 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Lead	3.92		0.61	ma/ka	11/15/22	11/18/22

Results: Total Metals

Sample: 1701221111-02 Lab Number: 2K14059-02 (Soil)

		Reporting				
Analyte Result Qual Limit Units Date Prepared						Date Analyzed
Lead	2.10		0.55	ma/ka	11/15/22	11/18/22

Results: Total Metals

Sample: 1701221111-05 Lab Number: 2K14059-05 (Soil)

Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Lead	2.83		0.58	ma/ka	11/15/22	11/18/22

Results: Total Metals

Sample: 1701221111-06 Lab Number: 2K14059-06 (Soil)

		Reporting					
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Lead	1.49		0.58	ma/ka	11/15/22	11/18/22	

Results: Total Metals

Sample: 1701221111-07 Lab Number: 2K14059-07 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Lead	1.58		0.57	ma/ka	11/15/22	11/18/22	

Results: Total Metals

Sample: 1701221111-08 Lab Number: 2K14059-08 (Soil)

Reporting							
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed	
Lead	1.48		0.56	ma/ka	11/15/22	11/18/22	

Volatile Petroleum Hydrocarbons Sample: 1701221111-01 (2K14059-01)

SAMPLE INFORMATION

Matrix	Soil		
Containers	Satisfactory		
	Aqueous	NA	_
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:
		Received in air-tight container	1:1 +/- 25%
Temperature	Received on Ice	Received at: 4+/-2 C°	•

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1			1701221111-01			
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID			2K14059-01		
VPH Surrogate Standards:	Date Collected			11/11/22		
PID: 2,5-Dibromotoluene			Date Re	ceived	11/14/22	
FID: 2,5-Dibromotoluene			% M	loisture	12.20	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.0	mg/kg	9.0	11/21/22 13:28
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.0	mg/kg	90.0	11/21/22 13:28
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 13:28
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/21/22 13:28
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/21/22 13:28
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/21/22 13:28
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 13:28
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/21/22 13:28
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/21/22 13:28
Total xylenes		50X	0.6	mg/kg	<0.6	11/21/22 13:28
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.0	mg/kg	9.0	11/21/22 13:28
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.0	mg/kg	75.2	11/21/22 13:28
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.0	mg/kg	14.9	11/21/22 13:28
2,5-Dibromotoluene-PID				%	87.0	11/21/22 13:28
2,5-Dibromotoluene-FID				%	88.5	11/21/22 13:28
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221111-02 (2K14059-02)

SAMPLE INFORMATION

Matrix	Soil			
Containers	Satisfactory			
	Aqueous	NA	_	
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol	
Sediment		Methanol preserved (covering sample) per gra		
		Received in air-tight container	1:1 +/- 25%	
Temperature	Received on Ic	Received at: 4+/-2 C°		

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1			1701221111-02			
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID			2K14059-02		
VPH Surrogate Standards:	Date Collected			11/11/22		
PID: 2,5-Dibromotoluene			Date Re	ceived	11/14/22	
FID: 2,5-Dibromotoluene			% M	loisture	8.40	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	6.1	mg/kg	22.6	11/21/22 14:01
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	6.1	mg/kg	95.0	11/21/22 14:01
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 14:01
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/21/22 14:01
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.06	mg/kg	<0.06	11/21/22 14:01
Naphthalene	NA	50X	0.6	mg/kg	<0.6	11/21/22 14:01
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 14:01
m&p-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/21/22 14:01
o-Xylene	C9-C12	50X	0.6	mg/kg	<0.6	11/21/22 14:01
Total xylenes		50X	0.6	mg/kg	<0.6	11/21/22 14:01
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	6.1	mg/kg	22.5	11/21/22 14:01
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	6.1	mg/kg	73.4	11/21/22 14:01
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	6.1	mg/kg	21.4	11/21/22 14:01
2,5-Dibromotoluene-PID				%	92.9	11/21/22 14:01
2,5-Dibromotoluene-FID	_			%	96.5	11/21/22 14:01
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221111-05 (2K14059-05)

SAMPLE INFORMATION

Matrix	Soil		
Containers	Satisfactory		
	Aqueous	NA	_
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:
		Received in air-tight container	1:1 +/- 25%
Temperature	Received on Ice	Received at: 4+/-2 C°	•

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1			1701221111-05			
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID			2K14059-05		
VPH Surrogate Standards:	Date Collected			11/11/22		
PID: 2,5-Dibromotoluene			Date Re	ceived	11/14/22	
FID: 2,5-Dibromotoluene			% M	loisture	7.50	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	76.1	11/21/22 15:40
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	161	11/21/22 15:40
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 15:40
Ethylbenzene	C9-C12	50X	0.3	mg/kg	0.9	11/21/22 15:40
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.05	mg/kg	<0.05	11/21/22 15:40
Naphthalene	NA	50X	0.5	mg/kg	<0.5	11/21/22 15:40
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 15:40
m&p-Xylene	C9-C12	50X	0.5	mg/kg	1.4	11/21/22 15:40
o-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 15:40
Total xylenes		50X	0.5	mg/kg	1.4	11/21/22 15:40
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	5.0	mg/kg	76.1	11/21/22 15:40
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	5.0	mg/kg	125	11/21/22 15:40
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	33.9	11/21/22 15:40
2,5-Dibromotoluene-PID				%	88.9	11/21/22 15:40
2,5-Dibromotoluene-FID				%	89.8	11/21/22 15:40
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221111-06 (2K14059-06)

SAMPLE INFORMATION

Matrix	Soil		
Containers	Satisfactory		
	Aqueous	NA	_
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:
		Received in air-tight container	1:1 +/- 25%
Temperature	Received on Ice	Received at: 4+/-2 C°	•

VPH ANALYTICAL RESULTS							
Method for Ranges: MADEP VPH-18-2.1			Clie	nt ID	1701221111-06	1701221111-06	
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID			2K14059-06			
VPH Surrogate Standards:	Date Collected			11/11/22			
PID: 2,5-Dibromotoluene			Date Re	ceived	11/14/22		
FID: 2,5-Dibromotoluene			% M	loisture	8.90		
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed	
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	5.1	mg/kg	<5.1	11/21/22 16:12	
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	5.1	mg/kg	<5.1	11/21/22 16:12	
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 16:12	
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/21/22 16:12	
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.05	mg/kg	<0.05	11/21/22 16:12	
Naphthalene	NA	50X	0.5	mg/kg	<0.5	11/21/22 16:12	
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 16:12	
m&p-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 16:12	
o-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 16:12	
Total xylenes		50X	0.5	mg/kg	<0.5	11/21/22 16:12	
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	5.1	mg/kg	<5.1	11/21/22 16:12	
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	5.1	mg/kg	<5.1	11/21/22 16:12	
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	5.1	mg/kg	<5.1	11/21/22 16:12	
2,5-Dibromotoluene-PID				%	87.7	11/21/22 16:12	
2,5-Dibromotoluene-FID				%	88.7	11/21/22 16:12	
Surrogate Acceptance Range				%	70-130		

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221111-07 (2K14059-07)

SAMPLE INFORMATION

Matrix	Soil		
Containers	Satisfactory		
	Aqueous	NA	_
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol
Freservation	Sediment	Methanol preserved (covering sample) per	
		Received in air-tight container	1:1 +/- 25%
Temperature	Received on Ice	Received at: 4+/-2 C°	•

VPH ANALYTICAL RESULTS						
Method for Ranges: MADEP VPH-18-2.1	Client ID 1701221111-07					
Method for Target Analytes: MADEP VPH-18-2.1		Lab ID		2K14059-07		
VPH Surrogate Standards:			Date Col	lected	11/11/22	
PID: 2,5-Dibromotoluene	Date Received 11/14/22					
FID: 2,5-Dibromotoluene	% Moisture 7.80					
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	4.9	mg/kg	<4.9	11/21/22 16:46
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	4.9	mg/kg	<4.9	11/21/22 16:46
Benzene	C5-C8	50X	0.2	mg/kg	<0.2	11/21/22 16:46
Ethylbenzene	C9-C12	50X	0.2	mg/kg	<0.2	11/21/22 16:46
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.05	mg/kg	<0.05	11/21/22 16:46
Naphthalene	NA	50X	0.5	mg/kg	<0.5	11/21/22 16:46
Toluene	C5-C8	50X	0.2	mg/kg	<0.2	11/21/22 16:46
m&p-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 16:46
o-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 16:46
Total xylenes		50X	0.5	mg/kg	<0.5	11/21/22 16:46
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	4.9	mg/kg	<4.9	11/21/22 16:46
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	4.9	mg/kg	<4.9	11/21/22 16:46
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	4.9	mg/kg	<4.9	11/21/22 16:46
2,5-Dibromotoluene-PID				%	89.9	11/21/22 16:46
2,5-Dibromotoluene-FID				%	94.3	11/21/22 16:46
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221111-08 (2K14059-08)

SAMPLE INFORMATION

Matrix	Soil					
Containers	Satisfactory					
	Aqueous	NA				
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol			
Freservation	Sediment	Methanol preserved (covering sample)	per gram soil:			
		Received in air-tight container	1:1 +/- 25%			
Temperature	Received on Ic	Received on Ice Received at: 4+/-2 C°				

VPH ANALYTICAL RESULTS	-					
Method for Ranges: MADEP VPH-18-2.1	Client ID 1701221111-08					
Method for Target Analytes: MADEP VPH-18-2.1		Lab ID [2K14059-08		
VPH Surrogate Standards:			Date Col	lected	11/11/22	
PID: 2,5-Dibromotoluene	Date Received 11/14/22					
FID: 2,5-Dibromotoluene	% Moisture 8.30			8.30		
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	<5.0	11/21/22 17:19
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	8.7	11/21/22 17:19
Benzene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 17:19
Ethylbenzene	C9-C12	50X	0.3	mg/kg	<0.3	11/21/22 17:19
Methyl t-butyl ether (MTBE)	C5-C8	50X	0.05	mg/kg	<0.05	11/21/22 17:19
Naphthalene	NA	50X	0.5	mg/kg	<0.5	11/21/22 17:19
Toluene	C5-C8	50X	0.3	mg/kg	<0.3	11/21/22 17:19
m&p-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 17:19
o-Xylene	C9-C12	50X	0.5	mg/kg	<0.5	11/21/22 17:19
Total xylenes		50X	0.5	mg/kg	<0.5	11/21/22 17:19
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	5.0	mg/kg	<5.0	11/21/22 17:19
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	5.0	mg/kg	8.7	11/21/22 17:19
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	5.0	mg/kg	<5.0	11/21/22 17:19
2,5-Dibromotoluene-PID				%	87.7	11/21/22 17:19
2,5-Dibromotoluene-FID				%	87.6	11/21/22 17:19
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Extractable Petroleum Hydrocarbons Sample: 1701221111-01 (2K14059-01)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RES	OLIS	1					
Method for Ranges: MADEP	EPH 4-1.1	Client ID			1701221111-01		
Method for Target Analytes	: MADEP EPH 4-1.1	Lab ID			2K14059-01		
EPH Surrogate Standards:		Date Collected Date Received			11/11/22		
Aliphatic: Chlorooctadecane					11/14/22		
Aromatic: o-Terphenyl			D	ate Thawed	NA		
				e Extracted	11/23/22		
EPH Fractionation Surrogate (1) 2-Fluorobiphenyl	es:		Perce	ent Moisture	12.20		
(2) 2-Bromonaphthalene							
RANGE/TARGET ANALYT	Έ	Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Aro	matic Hydrocarbons [1]	1X	7.55	mg/kg	<7.55	11/29/22 03:16	
·	Naphthalene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
Diesel PAH	2-Methylnaphthalene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
Analytes	Phenanthrene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
·	Acenaphthene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Acenaphthylene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Fluorene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Anthracene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Fluoranthene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Pyrene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Benzo(a)anthracene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
Other	Chrysene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
Target PAH	Benzo(b)fluoranthene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
Analytes	Benzo(k)fluoranthene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
·	Benzo(a)pyrene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Indeno(1,2,3-cd)pyrene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Dibenz(a,h)anthracene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
	Benzo(g,h,i)perylene	1X	0.37	mg/kg	<0.37	11/29/22 03:16	
C9-C18 Aliphatic Hydroca		1X	15.0	mg/kg	<15.0	11/29/22 04:41	
C19-C36 Aliphatic Hydro		1X	15.0	mg/kg	<15.0	11/29/22 04:41	
C11-C22 Aromatic Hydro		1X	7.55	mg/kg	<7.55	11/29/22 03:16	
Chlorooctadecane (Samp				%	52.5	11/29/22 04:41	
o-Terphenyl (Sample Surrogate)				%	49.1	11/29/22 03:16	
2-Fluorobiphenyl (Fraction	onation Surrogate)			%	74.0	11/29/22 03:16	
2-Bromonaphthalene (Fr	actionation Surrogate)			%	72.4	11/29/22 03:16	
Surrogate Acceptance Range	[3]			%	40 - 140		

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1701221111-02 (2K14059-02)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

Method for Ranges: MADEP EPH 4-1.1				Client ID	1701221111-02		
Method for Target Analytes:	MADEP EPH 4-1.1	Lab ID			2K14059-02		
EPH Surrogate Standards:		Date Collected			11/11/22		
Aliphatic: Chlorooctadecane			Da	te Received	11/14/22		
Aromatic: o-Terphenyl			D	ate Thawed	NA		
			Dat	e Extracted	11/23/22		
EPH Fractionation Surrogates (1) 2-Fluorobiphenyl	EPH Fractionation Surrogates:		Perce	nt Moisture	8.40		
(1) 2-Fluorobiphenyi (2) 2-Bromonaphthalene							
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Arom	natic Hydrocarbons [1]	1X	7.23	mg/kg	10.0	11/29/22 03:39	
	Naphthalene	1X	0.36	mg/kg	0.60	11/29/22 03:39	
Diesel PAH	2-Methylnaphthalene	1X	0.36	mg/kg	0.47	11/29/22 03:39	
Analytes	Phenanthrene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Acenaphthene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Acenaphthylene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Fluorene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Anthracene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Pyrene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Benzo(a)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
Other	Chrysene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
Target PAH	Benzo(b)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
Analytes	Benzo(k)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Benzo(a)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Indeno(1,2,3-cd)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Dibenz(a,h)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
	Benzo(g,h,i)perylene	1X	0.36	mg/kg	<0.36	11/29/22 03:39	
C9-C18 Aliphatic Hydrocar	bons [1]	1X	14.4	mg/kg	15.2	11/29/22 05:05	
C19-C36 Aliphatic Hydroca	arbons [1]	1X	14.4	mg/kg	<14.4	11/29/22 05:05	
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	7.23	mg/kg	8.95	11/29/22 03:39	
Chlorooctadecane (Sample Surrogate)				%	46.1	11/29/22 05:05	
o-Terphenyl (Sample Surrogate)				%	42.3	11/29/22 03:39	
2-Fluorobiphenyl (Fraction	nation Surrogate)			%	64.3	11/29/22 03:39	
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	62.3	11/29/22 03:39	
Surrogate Acceptance Range [[3]			%	40 - 140		

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1701221111-05 (2K14059-05)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

Method for Ranges: MADEP	EPH 4-1.1	Client ID			1701221111-05	
Method for Target Analytes:	MADEP EPH 4-1.1	Lab ID			2K14059-05	
EPH Surrogate Standards:		Date Collected Date Received			11/11/22 11/14/22	
Aliphatic: Chlorooctadecane						
Aromatic: o-Terphenyl			Di	ate Thawed	NA	
			Dat	e Extracted	11/23/22	
EPH Fractionation Surrogates	5:		Perce	nt Moisture	7.50	
(1) 2-Fluorobiphenyl(2) 2-Bromonaphthalene						
RANGE/TARGET ANALYTI	=	Dilution	RL	Units	Result	Analyzed
Unadjusted C11-C22 Aron		1X	7.16	mg/kg	<7.16	11/29/22 04:01
•	Naphthalene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
Diesel PAH	2-Methylnaphthalene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
Analytes	Phenanthrene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
•	Acenaphthene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Acenaphthylene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Fluorene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Anthracene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Fluoranthene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Pyrene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Benzo(a)anthracene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
Other	Chrysene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
Target PAH	Benzo(b)fluoranthene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
Analytes	Benzo(k)fluoranthene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
, ,	Benzo(a)pyrene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Indeno(1,2,3-cd)pyrene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Dibenz(a,h)anthracene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
	Benzo(g,h,i)perylene	1X	0.35	mg/kg	<0.35	11/29/22 04:01
C9-C18 Aliphatic Hydroca		1X	14.3	mg/kg	<14.3	11/29/22 05:29
C19-C36 Aliphatic Hydroc		1X	14.3	mg/kg	<14.3	11/29/22 05:29
C11-C22 Aromatic Hydroc		1X	7.16	mg/kg	<7.16	11/29/22 04:01
Chlorooctadecane (Sample Surrogate)				%	48.7	11/29/22 05:29
o-Terphenyl (Sample Surrogate)				%	45.9	11/29/22 04:01
2-Fluorobiphenyl (Fraction	nation Surrogate)			%	81.5	11/29/22 04:01
2-Bromonaphthalene (Fra	ctionation Surrogate)			%	80.0	11/29/22 04:01
Surrogate Acceptance Range	[3]			%	40 - 140	

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1701221111-06 (2K14059-06)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALTTICAL RESC	JE13				T	
Method for Ranges: MADEP	EPH 4-1.1			Client ID	1701221111-06	
Method for Target Analytes:	MADEP EPH 4-1.1			Lab ID	2K14059-06	
EPH Surrogate Standards:		Date Collected			11/11/22	
Aliphatic: Chlorooctadecane		Date Received			11/14/22	
Aromatic: o-Terphenyl			D	ate Thawed	NA	
			Dat	e Extracted	11/23/22	
EPH Fractionation Surrogates (1) 2-Fluorobiphenyl	S:		Perce	ent Moisture	8.90	
(2) 2-Bromonaphthalene						
RANGE/TARGET ANALYTI		Dilution	RL	Units	Result	Analyzed
Unadjusted C11-C22 Aron	natic Hydrocarbons [1]	1X	7.27	mg/kg	9.11	11/29/22 04:24
<u> </u>	Naphthalene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
Diesel PAH	2-Methylnaphthalene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
Analytes	Phenanthrene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Acenaphthene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Acenaphthylene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Fluorene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Anthracene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Benzo(a)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
Other	Chrysene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
Target PAH	Benzo(b)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
Analytes	Benzo(k)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
, , , , , , , , , , , , , , , , , , , ,	Benzo(a)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Indeno(1,2,3-cd)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Dibenz(a,h)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
	Benzo(q,h,i)perylene	1X	0.36	mg/kg	<0.36	11/29/22 04:24
C9-C18 Aliphatic Hydroca	1	1X	14.5	mg/kg	<14.5	11/29/22 05:55
C19-C36 Aliphatic Hydroci		1X	14.5	mg/kg	<14.5	11/29/22 05:55
C11-C22 Aromatic Hydroc		1X	7.27	mg/kg	9.11	11/29/22 04:24
Chlorooctadecane (Sample Surrogate)				%	46.2	11/29/22 05:55
o-Terphenyl (Sample Surrogate)				%	45.5	11/29/22 04:24
2-Fluorobiphenyl (Fraction	nation Surrogate)			%	74.5	11/29/22 04:24
2-Bromonaphthalene (Fra	ctionation Surrogate)			%	73.1	11/29/22 04:24
Surrogate Acceptance Range	[3]			%	40 - 140	
					_	

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1701221111-07 (2K14059-07)

SAMPLE INFORMATION

Matrix	Soil								
Containers	Satisfactory								
Aqueous Preservatives	NA								
Temperature	Received on Ice Received at: 4+/-2 C°								
Extraction Method	EPA Method 3546								

EPH ANALYTICAL RES	30113	ı							
Method for Ranges: MADE	P EPH 4-1.1			Client ID	1701221111-07				
Method for Target Analytes	s: MADEP EPH 4-1.1			Lab ID	2K14059-07				
EPH Surrogate Standards:			Da	te Collected	11/11/22				
Aliphatic: Chlorooctadecane			Da	te Received	11/14/22				
Aromatic: o-Terphenyl			D	ate Thawed	NA				
				e Extracted	11/23/22				
EPH Fractionation Surrogat (1) 2-Fluorobiphenyl	ces:		Perce	nt Moisture	7.80				
(2) 2-Bromonaphthalene									
RANGE/TARGET ANALY	TE	Dilution	RL	Units	Result	Analyzed			
Unadjusted C11-C22 Are	omatic Hydrocarbons [1]	1X	7.19	mg/kg	<7.19	11/29/22 04:47			
	Naphthalene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
Diesel PAH	2-Methylnaphthalene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
Analytes	Phenanthrene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
·	Acenaphthene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Acenaphthylene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Fluorene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Anthracene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Benzo(a)anthracene		1X 0.36 mg/kg		<0.36	11/29/22 04:47			
Other	Chrysene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
Target PAH	Benzo(b)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
Analytes	Benzo(k)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
·	Benzo(a)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Indeno(1,2,3-cd)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Dibenz(a,h)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
	Benzo(g,h,i)perylene	1X	0.36	mg/kg	<0.36	11/29/22 04:47			
C9-C18 Aliphatic Hydrod		1X	14.3	mg/kg	<14.3	11/29/22 06:17			
C19-C36 Aliphatic Hydro		1X	14.3	mg/kg	<14.3	11/29/22 06:17			
C11-C22 Aromatic Hydro		1X	7.19	mg/kg	<7.19	11/29/22 04:47			
Chlorooctadecane (Sam				%	53.0	11/29/22 06:17			
o-Terphenyl (Sample Su	ırrogate)			%	60.4	11/29/22 04:47			
2-Fluorobiphenyl (Fracti	onation Surrogate)			%	87.8	11/29/22 04:47			
2-Bromonaphthalene (F	ractionation Surrogate)			%	86.6	11/29/22 04:47			
Surrogate Acceptance Range	e [3]			%	40 - 140				

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1701221111-08 (2K14059-08)

SAMPLE INFORMATION

Matrix	Soil							
Containers	Satisfactory							
Aqueous Preservatives	NA .							
Temperature	Received on Ice Received at: 4+/-2 C°							
Extraction Method	EPA Method 3546							

EPH ANALYTICAL RES	30213	1							
Method for Ranges: MADE	P EPH 4-1.1			Client ID	1701221111-08				
Method for Target Analytes	s: MADEP EPH 4-1.1			Lab ID	2K14059-08				
EPH Surrogate Standards:			Da	te Collected	11/11/22				
Aliphatic: Chlorooctadecane			Da	te Received	11/14/22				
Aromatic: o-Terphenyl			D	ate Thawed	NA				
			Dat	e Extracted	11/23/22				
EPH Fractionation Surrogat (1) 2-Fluorobiphenyl	tes:		Perce	nt Moisture	8.30				
(2) 2-Bromonaphthalene									
RANGE/TARGET ANALY	TE	Dilution	RL	Units	Result	Analyzed			
Unadjusted C11-C22 Ar	omatic Hydrocarbons [1]	1X	7.22	mg/kg	<7.22	11/29/22 05:09			
	Naphthalene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
Diesel PAH	2-Methylnaphthalene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
Analytes	Phenanthrene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Acenaphthene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Acenaphthylene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Fluorene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Anthracene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Pyrene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Benzo(a)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
Other	Chrysene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
Target PAH	Benzo(b)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
Analytes	Benzo(k)fluoranthene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
•	Benzo(a)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Indeno(1,2,3-cd)pyrene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Dibenz(a,h)anthracene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
	Benzo(g,h,i)perylene	1X	0.36	mg/kg	<0.36	11/29/22 05:09			
C9-C18 Aliphatic Hydrod		1X	14.4	mg/kg	<14.4	11/29/22 06:41			
C19-C36 Aliphatic Hydro		1X	14.4	mg/kg	<14.4	11/29/22 06:41			
C11-C22 Aromatic Hydr		1X	7.22	mg/kg	<7.22	11/29/22 05:09			
Chlorooctadecane (Sam				%	46.7	11/29/22 06:41			
o-Terphenyl (Sample Su	urrogate)			%	50.7	11/29/22 05:09			
2-Fluorobiphenyl (Fracti	onation Surrogate)			%	83.0	11/29/22 05:09			
2-Bromonaphthalene (F	ractionation Surrogate)			%	81.1	11/29/22 05:09			
Surrogate Acceptance Rang	e [3]			%	40 - 140				

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit		
atch: B2K0858 - Metals Digestion Soils												
Blank (B2K0858-BLK1)				Pre	pared: 11/1	5/22 Analyzed	d: 11/16/22					
Lead	ND		0.50	mg/kg								
LCS (B2K0858-BS1)				Pre	pared: 11/1	5/22 Analyzed	d: 11/16/22					
Lead	102		0.50	mg/kg	100		102	85-115				
LCS Dup (B2K0858-BSD1)				Pre	pared: 11/1	5/22 Analyzed	d: 11/16/22					
Lead	102		0.50	mg/kg	100		102	85-115	0.00	200		
Matrix Spike (B2K0858-MS1)	S	Source: 2K14	1040-02	Pre	pared: 11/1	5/22 Analyzed	d: 11/18/22					
Lead	124		0.54	mg/kg dry	108	8.30	107	75-125				
Matrix Spike Dup (B2K0858-MSD1)	S	Source: 2K14	1040-02	Pre	pared: 11/1	5/22 Analyzed	d: 11/18/22					
Lead	140		0.60	mg/kg dry	120	8.30	110	75-125	11.8	20		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1045 - MADEP VPH										
Blank (B2K1045-BLK1)					Prepared 8	& Analyzed: 1	1/21/22			
Unadjusted C5-C8 Aliphatic Hydrocarbons	ND		5.0	mg/kg						
Unadjusted C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg						
C5-C8 Aliphatic Hydrocarbons	ND		5.0	mg/kg						
C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg						
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg						
Surrogate: 2,5- Dibromotoluene-PID			41.5	ug/l	50.0		83.1	70-130		
Surrogate: 2,5- Dibromotoluene-FID			40.4	ug/l	50.0		80.9	70-130		
LCS (B2K1045-BS1)					Prepared 8	& Analyzed: 1	1/21/22			
Benzene	2.3		0.2	mg/kg	2.50		93.1	70-130		
Ethylbenzene	2.5		0.2	mg/kg	2.50		99.2	70-130		
Methyl t-butyl ether (MTBE)	2.3		0.05	mg/kg	2.50		93.4	70-130		
Naphthalene	2.6		0.5	mg/kg	2.50		104	70-130		
Toluene	2.4		0.2	mg/kg	2.50		95.9	70-130		
m&p-Xylene	5.1		0.5	mg/kg	5.00		101	70-130		
2-Methylpentane	2.3		250	mg/kg	2.50		93.5	70-130		
o-Xylene	2.5		0.5	mg/kg	2.50		102	70-130		
n-Nonane	2.2		250	mg/kg	2.50		89.8	70-130		
Decane	2.5		250	mg/kg	2.50		101	70-130		
C5-C8 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		
n-Butylcylohexane	2.6		250	mg/kg	2.50		106	70-130		
n-Pentane	2.3		250	mg/kg	2.50		91.5	70-130		
C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		
1,2,4-Trimethylbenzene	2.8		0.5	mg/kg	2.50		113	70-130		
VPH_LCS_Aliphatic_C5-C8	7.0		0.5	mg/kg	7.50		92.9	70-130		
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg	2.50			70-130		
VPH_LCS_Aliphatic_C9-C12	5.2		0.5	mg/kg	5.00		103	70-130		
VPH_LCS_Aromatic_C9-C10	2.8		0.5	mg/kg	2.50		113	70-130		
Surrogate: 2,5- Dibromotoluene-PID			37.5	ug/l	50.0		75.0	70-130		
Surrogate: 2,5- Dibromotoluene-FID			40.0	ug/l	50.0		80.1	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1045 - MADEP VPH	(Continued)									
LCS Dup (B2K1045-BSD1)					Prepared 8	& Analyzed: 1	1/21/22			
Benzene	2.4		0.2	mg/kg	2.50		96.2	70-130	3.30	25
Ethylbenzene	2.6		0.2	mg/kg	2.50		102	70-130	3.23	25
Methyl t-butyl ether (MTBE)	2.4		0.05	mg/kg	2.50		96.4	70-130	3.16	25
Naphthalene	2.7		0.5	mg/kg	2.50		107	70-130	3.21	25
Toluene	2.5		0.2	mg/kg	2.50		99.1	70-130	3.30	25
m&p-Xylene	5.2		0.5	mg/kg	5.00		105	70-130	3.39	25
2-Methylpentane	2.4		250	mg/kg	2.50		97.0	70-130	3.65	25
n-Nonane	2.3		250	mg/kg	2.50		91.2	70-130	1.61	25
o-Xylene	2.6		0.5	mg/kg	2.50		105	70-130	3.12	25
Decane	2.6		250	mg/kg	2.50		104	70-130	3.05	25
C5-C8 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		25
n-Butylcylohexane	2.5		250	mg/kg	2.50		102	70-130	4.01	25
n-Pentane	2.4		250	mg/kg	2.50		95.6	70-130	4.38	25
C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		25
1,2,4-Trimethylbenzene	2.9		0.5	mg/kg	2.50		115	70-130	1.74	25
VPH_LCS_Aliphatic_C5-C8	7.2		0.5	mg/kg	7.50		96.5	70-130	3.72	25
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg	2.50			70-130		25
VPH_LCS_Aliphatic_C9-C12	5.1		0.5	mg/kg	5.00		103	70-130	0.505	25
VPH_LCS_Aromatic_C9-C10	2.9		0.5	mg/kg	2.50		115	70-130	1.74	25
Surrogate: 2,5- Dibromotoluene-PID			38.3	ug/l	50.0		76.7	70-130		
Surrogate: 2,5- Dibromotoluene-FID			37.3	ug/l	50.0		74.6	70-130		

Extractable Petroleum Hydrocarbons (MADEP-EPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B2K1235 - EPA 3546										
Blank (B2K1235-BLK1)				Pr	epared: 11/2	23/22 Analyze	ed: 11/28/22			
Unadjusted C11-C22 Aromatic	ND		6.67	mg/kg	. ,	. ,				
Hydrocarbons										
Naphthalene	ND		0.33	mg/kg						
2-Methylnaphthalene	ND		0.33	mg/kg						
Phenanthrene	ND		0.33	mg/kg						
Acenaphthene	ND		0.33	mg/kg						
Acenaphthylene	ND		0.33	mg/kg						
Fluorene	ND		0.33	mg/kg						
Anthracene	ND		0.33	mg/kg						
Fluoranthene	ND		0.33	mg/kg						
Pyrene	ND		0.33	mg/kg						
Benzo(a)anthracene	ND		0.33	mg/kg						
Chrysene	ND		0.33	mg/kg						
Benzo(b)fluoranthene	ND		0.33	mg/kg						
Benzo(k)fluoranthene	ND		0.33	mg/kg						
Benzo(a)pyrene	ND		0.33	mg/kg						
Indeno(1,2,3-cd)pyrene	ND		0.33	mg/kg						
Dibenz(a,h)anthracene	ND		0.33	mg/kg						
Benzo(g,h,i)perylene	ND		0.33	mg/kg						
C9-C18 Aliphatic Hydrocarbons	ND		13.3	mg/kg						
C19-C36 Aliphatic Hydrocarbons	ND		13.3	mg/kg						
C11-C22 Aromatic Hydrocarbons	ND		6.67	mg/kg						
Surrogate: Chlorooctadecane			4.02	mg/kg	8.33		48.2	40-140		
Surrogate: o-Terphenyl			4.15	mg/kg	8.33		49.8	40-140		
Surrogate: 2-Fluorobiphenyl			2.99	mg/kg	3.33		89.6	40-140		
Surrogate: 2-Bromonaphthalene			2.19	mg/kg	3.33		65.7	40-140		
LCS (B2K1235-BS1)				Pr	epared: 11/2	23/22 Analyze	ed: 11/28/22			
Naphthalene	1.37		0.33	mg/kg	2.67		51.2	40-140		
2-Methylnaphthalene	1.36		0.33	mg/kg	2.67		51.1	40-140		
Phenanthrene	1.28		0.33	mg/kg	2.67		48.0	40-140		
Acenaphthene	1.31		0.33	mg/kg	2.67		49.0	40-140		
Acenaphthylene	1.28		0.33	mg/kg	2.67		48.0	40-140		
Fluorene	1.32		0.33	mg/kg	2.67		49.3	40-140		
Anthracene	1.39		0.33	mg/kg	2.67		52.1	40-140		
Fluoranthene	1.36		0.33	mg/kg	2.67		51.0	40-140		
Pyrene	1.37		0.33	mg/kg	2.67		51.5	40-140		
Benzo(a)anthracene	1.35		0.33	mg/kg	2.67		50.8	40-140		
Chrysene	1.45		0.33	mg/kg	2.67		54.2	40-140		
Benzo(b)fluoranthene	1.38		0.33	mg/kg	2.67		51.6	40-140		
Benzo(k)fluoranthene	1.78		0.33	mg/kg	2.67		66.7	40-140		
Benzo(a)pyrene	1.78		0.33	mg/kg	2.67		50.0	40-140		
* ***	1.33		0.33	mg/kg	2.67		46.1	40-140		
Indeno(1,2,3-cd)pyrene				mg/kg						
Dibenz(a,h)anthracene	1.33		0.33		2.67		49.8	40-140		
Benzo(g,h,i)perylene	1.58		0.33	mg/kg	2.67		59.2	40-140		
EPH_LCS_Aliphatic_C19-C36	12.8		0.00	mg/kg	21.3		60.0	40-140		
EPH_LCS_Aliphatic_C9-C18	7.60		0.00	mg/kg	16.0		47.5	40-140		
EPH_LCS_Aromatic_C11-C22	23.5		0.00	mg/kg	45.3		51.8	40-140		
Nonane	0.99		0.33	mg/kg	2.67		37.2	30-140		
Decane	1.27		0.33	mg/kg	2.67		47.5	40-140		
Dodecane	1.23		0.33	mg/kg	2.67		46.2	40-140		
Tetradecane	1.36		0.33	mg/kg	2.67		50.9	40-140		
Hexadecane	1.40		0.33	mg/kg	2.67		52.6	40-140		
Octadecane	1.34		0.33	mg/kg	2.67		50.4	40-140		
Nonadecane	1.42		0.33	mg/kg	2.67		53.1	40-140		
Eicosane	1.39		0.33	mg/kg	2.67		52.2	40-140		
Docosane	1.62		0.33	mg/kg	2.67		60.6	40-140		
Tetracosane	1.56		0.33	mg/kg	2.67		58.5	40-140	Page	26.0

Quality Control

(Continued)

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1235 - EPA 3546 (C	Continued)									
LCS (B2K1235-BS1)				Pr	epared: 11/2	3/22 Analyze	d: 11/28/22			
Hexacosane	1.53		0.33	mg/kg	2.67		57.3	40-140		
Octacosane	1.60		0.33	mg/kg	2.67		60.2	40-140		
Triacontane	1.63		0.33	mg/kg	2.67		61.2	40-140		
Hexatriacontane	2.06		0.33	mg/kg	2.67		77.1	40-140		
Surrogate: Chlorooctadecane			3.42	mg/kg	8.33		41.0	40-140		
Surrogate: o-Terphenyl			3.44	mg/kg	8.33		41.3	40-140		
Surrogate: 2-Fluorobiphenyl			2.81	mg/kg	3.33		84.2	40-140		
Surrogate: 2-Bromonaphthalene			1.89	mg/kg	3.33		56.7	40-140		
LCS Dup (B2K1235-BSD1)				Pr	epared: 11/2	3/22 Analyze	d: 11/28/22			
Naphthalene	1.34		0.33	mg/kg	2.67		50.1	40-140	2.27	25
2-Methylnaphthalene	1.34		0.33	mg/kg	2.67		50.2	40-140	1.68	25
Phenanthrene	1.46		0.33	mg/kg	2.67		54.7	40-140	13.1	25
Acenaphthene	1.40		0.33	mg/kg	2.67		52.5	40-140	6.94	25
Acenaphthylene	1.34		0.33	mg/kg	2.67		50.2	40-140	4.58	25
Fluorene	1.35		0.33	mg/kg	2.67		50.4	40-140	2.20	25
Anthracene	1.58		0.33	mg/kg	2.67		59.2	40-140	12.8	25
Fluoranthene	1.60		0.33	mg/kg	2.67		60.1	40-140	16.4	25
Pyrene	1.67		0.33	mg/kg	2.67		62.7	40-140	19.7	25
Benzo(a)anthracene	1.66		0.33	mg/kg	2.67		62.4	40-140	20.4	25
Chrysene	1.79		0.33	mg/kg	2.67		67.1	40-140	21.1	25
Benzo(b)fluoranthene	1.69		0.33	mg/kg	2.67		63.5	40-140	20.6	25
Benzo(k)fluoranthene	1.77		0.33	mg/kg	2.67		66.5	40-140	0.413	25
Benzo(a)pyrene	1.66		0.33	mg/kg	2.67		62.3	40-140	22.0	25
Indeno(1,2,3-cd)pyrene	1.53		0.33	mg/kg	2.67		57.5	40-140	22.0	25
Dibenz(a,h)anthracene	1.62		0.33	mg/kg	2.67		60.9	40-140	20.0	25
Benzo(g,h,i)perylene	1.71		0.33	mg/kg	2.67		64.0	40-140	7.71	25
EPH_LCS_Aliphatic_C19-C36	15.2		0.00	mg/kg	21.3		71.0	40-140	16.8	25
EPH_LCS_Aliphatic_C9-C18	7.56		0.00	mg/kg	16.0		47.2	40-140	0.528	25
EPH_LCS_Aromatic_C11-C22	26.5		0.00	mg/kg	45.3		58.5	40-140	12.2	25
Nonane	0.94		0.33	mg/kg	2.67		35.2	30-140	5.38	25
Decane	1.18		0.33	mg/kg	2.67		44.1	40-140	7.42	25
Dodecane	1.32		0.33	mg/kg	2.67		49.5	40-140	7.05	25
Tetradecane	1.29		0.33	mg/kg	2.67		48.5	40-140	4.88	25
Hexadecane	1.34		0.33	mg/kg	2.67		50.1	40-140	4.82	25
Octadecane	1.49		0.33	mg/kg	2.67		55.8	40-140	10.1	25
Nonadecane	1.53		0.33	mg/kg	2.67		57.6	40-140	8.04	25
Eicosane	1.62		0.33	mg/kg	2.67		60.9	40-140	15.4	25
Docosane	1.77		0.33	mg/kg	2.67		66.6	40-140	9.40	25
Tetracosane	1.84		0.33	mg/kg	2.67		68.9	40-140	16.2	25
Hexacosane	1.87		0.33	mg/kg	2.67		70.0	40-140	20.1	25
Octacosane	1.94		0.33	mg/kg	2.67		72.6	40-140	18.8	25
Triacontane	2.10		0.33	mg/kg	2.67		78.7	40-140	25.0	25
Hexatriacontane	2.48		0.33	mg/kg	2.67		92.9	40-140	18.6	25
Surrogate: Chlorooctadecane			4.39	mg/kg	8.33		<i>52.7</i>	40-140		
Surrogate: o-Terphenyl			4.47	mg/kg	8.33		<i>53.7</i>	40-140		
Surrogate: 2-Fluorobiphenyl			2.87	mg/kg	3.33		86.0	40-140		
Surrogate: 2-Bromonaphthalene			2.15	mg/kg	3.33		64.5	40-140		

Notes and Definitions

<u>Item</u>	<u>Definition</u>
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

nchester, CT 06040

bull, CT 06611

olumbia, SC 29201

☐ 78 Interstate Drive, West Springfield, MA 01089

□ 317 Iron Horse Way, Suite 204, Providence, RI 02908

□ 80 Washington Street, Suite 301, Poughkeepsie, NY

MOther 1550 Main Street, Stite 400, Springfred,

CHAIN-OF-CUSTODY RECORD									36156						Turnaround 1												
		(H	IAIN	-OF-(JUSTO.	DY J	RECO	KD		JO	ΙŢ	סכ					ļ	-Hou			Hour* ndard (days)		other rcharge Λpp	
	PRC	јест]	Jam				JEOIECJ.	LOCATION		·				PRO	DJECT 1	Jum	BER	🗆 40	~110u		Stai	idata (uays)		ORATORY	
(phII			stury, 1							2009			A27	-							TLAB	
REPOR	т То:	Mes +	J K	issane	e (MK	issane ef				A	naly	ysis			7	7	7 /	7		7	7				Со	ntainers	
Invoi			11				#/	<u> </u>						/	/ /		ردنه/	/ ,	/ ,	/ /	/ //		7	$\overline{}$	$\overline{\mathcal{I}}$	///	
P.O. N			120	20910	32.A22									200		//,	Sur				$/\!/$,	Ι,	/ /	/ /	//		
Sample					al a	tij]	Date: 11/	11/22				,	کرنگیری ک کرند کرنده						$/\!/$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/,	//				
Source (MW=Mo SW=Sur X=Othe	codes: onitorin face Wa	g Well	ΡV	V=Potable '=Stormwa	Water T=	=Treatment Facility =Waste A=Air		il B=Se	ediment		,		(2) (2)						Today		(((((((((((((((((((//	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Item No.		fe r Chec			Sample Num	ber	Source Code	Date Sampled	Time Sampled		La Light		out of the same of	ZOJČ!					John Coll		j. 1		25 DE ST	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cor	mments
				17012	221111	- 01	2	11/11/22	0915	×	X	X					2	i									
						02	1	1	0930	X	×	X			•	•	2	i									
						03			0950				×		••	•	2	i					\neg				
						04			1010				X			-	2	ı							+		
	+		-			05		 -	1050	X	×	X	 		• •		2	1	 	-			-	+	-		
	+-	+	-	-+	- (1115	X	+	+				-#-	\rightarrow	+		+	-		+	\dashv	+-		
	-	+						 	1135	₩-	\vdash	1	+-			-1-	2	+	+	-		\vdash	\dashv	+	+-	1	
	+	-	-				\downarrow			 	X	X	-	 		-#-	 -	+	┼─	 		\vdash	\dashv	+	+-	ļ	
	-		_	<u>v</u>	- 0	" ' 6	V		1150	×	X	×	-		•	2	-		-	-		\dashv	- -	+	+	<u> </u>	
_		11	_							-	<u> </u>	<u> </u>				\bot	-	-	<u> </u>		-	$\vdash \downarrow$		+			
											<u>.</u>																
Transfer Number			Relin	quished By		A	ccepted By		Date	e	Tir	me	Cha	irge Except	ions:		ax Exe						ner				
1	1	Ma	ul	at		FLO F	ridge		11/11		14:		J .	orting and	Detection	n Lin	iit Requ	uiremo	ents:	□ RC	P De	liverat	oles E	∃ MCF	САМ	Cert.	
2	C	HAL	6	One		blewa	W		11/14																		4
. 3		DU	W	U EL					11-19	11	鏎	我	[]dy	ional Cor	nments:											Page	29 of 30

MassDEP Analytical Protocol Certification Form												
Labo	ratory Na	nme: New England	d Testing Laboratory	, Inc.	Project #: 20	09103	2.A22					
Proje	ect Location	on: Shutesbury, M	1A		RTN:							
	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 2K14059											
Matrices: ☐ Groundwater/Surface Water ☒ Soil/Sediment ☐ Drinking Water ☐ Air ☐ Other:												
CAM Protocol (check all that apply below):												
	8260 VOC CAM III B											
	SVOC II B 🗆	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B	7196 Hex Cr CAM VI B		MassDEP APH CAM IX A □					
	Metals III A ⊠	6020 Metals CAM III D	MassDEP EPH CAM IV B ⊠	8151 Herbicides CAM V C	8330 Explosive CAM VIII A	es 🗆	TO-15 VOC CAM IX B □					
A	Affirmativ	e Responses to	Questions A throug	gh F are required t	or "Presumptiv	ve Cer	tainty" status					
A	Custody,	properly preser	in a condition consist wed (including tempor ethod holding times?									
В		e analytical method tocol(s) followed?	d(s) and all associated	d QC requirements s	pecified in the s	elected	⊠ Yes □ No					
С			e actions and analyticated for all identified perfe				⊠ Yes □ No					
D		Assurance and C	comply with all the rep Quality Control Guidel									
E	a. VPH, modificat	tion(s)? (Refer to th	only Methods only: Was e individual method(s) only: Was the complet	for a list of significant	modifications).		⊠ Yes □ No					
F			rotocol QC and perform y narrative (including a				⊠ Yes □ No					
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certain	ty" sta	atus					
G	Were the protocol(or below all CAM repor	ting limits specified in	the selected CAI	M	⊠ Yes □ No¹					
			ve "Presumptive Certair s described in 310 CMR			e data u	sability and					
Н	Were all	QC performance s	andards specified in th	ne CAM protocol(s) ac	chieved?		⊠ Yes □ No¹					
I	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol	(s)?	⊠ Yes □ No¹					
¹All r	negative re	esponses must be	addressed in an attac	ched laboratory narra	ative.							
respoi	I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.											
Sign	ature: 💯			Positio	n: <u>Laboratory Dir</u>	ector						
Print	ted Name	: Richard Warila		— Date :11	1/29/2022							

Page 30 of 30

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2L05028 Client Project: 20091032.A22 - Shutesbury Library

Report Date: 12-December-2022

Prepared for:

Matt Kissane Fuss & O'Neill 317 Iron Horse Way Providence, RI 02908

> Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 12/05/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2L05028. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2L05028-01	1701221202-01	Water	12/02/2022	12/05/2022
2L05028-02	1701221202-02	Water	12/02/2022	12/05/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

1701221202-01 (Lab Number: 2L05028-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 6010C
Vanadium	EPA 6010C
Zinc	EPA 6010C

1701221202-02 (Lab Number: 2L05028-02)

<u>Analysis</u>	<u>Method</u>
MADEP VPH	MADEP VPH

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Total Metals

Sample: 1701221202-01 Lab Number: 2L05028-01 (Water)

		Reporting			
Analyte	Result	Qual Limit	Units	Date Prepared	Date Analyzed
Antimony	ND	0.005	mg/L	12/06/22	12/09/22
Arsenic	ND	0.01	mg/L	12/06/22	12/09/22
Barium	ND	0.005	mg/L	12/06/22	12/09/22
Beryllium	ND	0.005	mg/L	12/06/22	12/09/22
Cadmium	ND	0.005	mg/L	12/06/22	12/09/22
Chromium	ND	0.005	mg/L	12/06/22	12/09/22
Lead	ND	0.005	mg/L	12/06/22	12/09/22
Mercury	ND	0.0005	mg/L	12/07/22	12/07/22
Nickel	0.006	0.005	mg/L	12/06/22	12/09/22
Selenium	ND	0.01	mg/L	12/06/22	12/09/22
Silver	ND	0.005	mg/L	12/06/22	12/09/22
Vanadium	ND	0.005	mg/L	12/06/22	12/09/22
Zinc	0.022	0.020	mg/L	12/06/22	12/09/22
Thallium	0.010	0.005	mg/L	12/06/22	12/09/22

Volatile Petroleum Hydrocarbons Sample: 1701221202-01 (2L05028-01)

SAMPLE INFORMATION

Matrix	Water					
Containers	Satisfactory					
Aqueous	pH<2					
Sample Preservation	Soil or	NA				
Freservation	Sediment	NA				
		Received in air-tight container				
Temperature	Received on Ice Received at: 4+/-2 C°					

VPH ANALYTICAL RESULTS							
Method for Ranges: MADEP VPH-18-2.1	Client ID				1701221202-01		
Method for Target Analytes: MADEP VPH-18-2.1	Lab ID 2			2L05028-01			
VPH Surrogate Standards:			Date Col	lected	12/02/22		
PID: 2,5-Dibromotoluene			Date Red	ceived	12/05/22		
FID: 2,5-Dibromotoluene			% M	loisture	NA		
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed	
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	10X	1000	ug/l	11800	12/06/22 12:30	
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	10X	1000	ug/l	36600	12/06/22 12:30	
Benzene	C5-C8	1X	5.0	ug/l	<5.0	12/06/22 12:30	
Ethylbenzene	C9-C12	10X	50.0	ug/l	985	12/06/22 12:30	
Methyl t-butyl ether (MTBE)	C5-C8	1X	10.0	ug/l	<10.0	12/06/22 12:30	
Naphthalene	NA	1X	10.0	ug/l	161	12/06/22 12:30	
Toluene	C5-C8	10X	50.0	ug/l	933	12/06/22 12:30	
m&p-Xylene	C9-C12	10X	100	ug/l	2000	12/06/22 12:30	
o-Xylene	C9-C12	10X	100	ug/l	770	12/06/22 12:30	
Total xylenes		10X	100	ug/l	2770	12/06/22 12:30	
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	1X	100	ug/l	10900	12/06/22 12:30	
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	1X	100	ug/l	29500	12/06/22 12:30	
C9-C10 Aromatic Hydrocarbons [1]	NA	10X	1000	ug/l	3420	12/06/22 12:30	
2,5-Dibromotoluene-PID				%	120	12/06/22 12:30	
2,5-Dibromotoluene-FID				%	119	12/06/22 12:30	
Surrogate Acceptance Range				%	70-130		

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1701221202-02 (2L05028-02)

SAMPLE INFORMATION

Matrix	Water					
Containers	Satisfactory					
Sample Preservation Soil or Sediment	pH<2					
	Soil or	NA				
		NA				
		Received in air-tight container				
Temperature	Received on Ice Received at: 4+/-2 C°					

Wethod for Ranges: MADEP VPH-18-2.1			Clie	ent ID	1701221202-02	
Method for Target Analytes: MADEP VPH-18-2.1				2L05028-02		
VPH Surrogate Standards:			Date Col		12/02/22	
PID: 2,5-Dibromotoluene			Date Red		12/05/22	
FID: 2,5-Dibromotoluene				loisture	NA	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/06/22 11:56
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/06/22 11:56
Benzene	C5-C8	1X	5.0	ug/l	<5.0	12/06/22 11:56
Ethylbenzene	C9-C12	1X	5.0	ug/l	<5.0	12/06/22 11:56
Methyl t-butyl ether (MTBE)	C5-C8	1X	10.0	ug/l	<10.0	12/06/22 11:56
Naphthalene	NA	1X	10.0	ug/l	<10.0	12/06/22 11:56
Toluene	C5-C8	1X	5.0	ug/l	<5.0	12/06/22 11:56
m&p-Xylene	C9-C12	1X	10.0	ug/l	<10.0	12/06/22 11:56
o-Xylene	C9-C12	1X	10.0	ug/l	<10.0	12/06/22 11:56
Total xylenes		1X	10.0	ug/l	<10.0	12/06/22 11:56
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	1X	100	ug/l	<100	12/06/22 11:56
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	1X	100	ug/l	<100	12/06/22 11:56
C9-C10 Aromatic Hydrocarbons [1]	NA	1X	100	ug/l	<100	12/06/22 11:56
2,5-Dibromotoluene-PID				%	96.9	12/06/22 11:56
2,5-Dibromotoluene-FID				%	98.7	12/06/22 11:56
Surrogate Acceptance Range				%	70-130	

^[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

^[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

^[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Extractable Petroleum Hydrocarbons Sample: 1701221202-01 (2L05028-01)

SAMPLE INFORMATION

Matrix	Water
Containers	Satisfactory
Aqueous Preservatives	pH<2
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3510C

Method for Ranges: MADEP EPH 4-1.1				Client ID	1701221202-01		
Method for Target Analytes: I				Lab ID	2L05028-01		
EPH Surrogate Standards: Aliphatic: Chlorooctadecane Aromatic: o-Terphenyl			Da	te Collected	12/02/22		
			Da	te Received	12/05/22		
			D	ate Thawed	NA		
			Dat	e Extracted	12/06/22		
EPH Fractionation Surrogates	:		Perce	ent Moisture	NA		
(1) 2-Fluorobiphenyl(2) 2-Bromonaphthalene							
RANGE/TARGET ANALYTE		Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Arom		1X	100	ug/l	358	12/09/22 10:09	
j	Naphthalene	1X	1.0	ug/l	101	12/09/22 10:09	
Diesel PAH	2-Methylnaphthalene	1X	1.0	ug/l	23.0	12/09/22 10:09	
Analytes	Phenanthrene	1X	1.0	ug/l	<1.0	12/09/22 10:09	
	Acenaphthene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
	Acenaphthylene	1X	1.0	ug/l	<1.0	12/09/22 10:09	
	Fluorene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
	Anthracene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
	Fluoranthene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
	Pyrene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
	Benzo(a)anthracene	1X	1.0	ug/l	<1.0	12/09/22 10:09	
Other	Chrysene	1X	2.0	ug/l	<2.0	12/09/22 10:09	
Target PAH	Benzo(b)fluoranthene	1X	1.0	ug/l	<1.0	12/09/22 10:09	
Analytes	Benzo(k)fluoranthene	1X	1.0	ug/l	<1.0	12/09/22 10:09	
	Benzo(a)pyrene	1X	0.2	ug/l	<0.2	12/09/22 10:09	
	Indeno(1,2,3-cd)pyrene	1X	0.5	ug/l	<0.5	12/09/22 10:09	
	Dibenz(a,h)anthracene	1X	0.5	ug/l	<0.5	12/09/22 10:09	
	Benzo(g,h,i)perylene	1X	5.0	ug/l	<5.0	12/09/22 10:09	
C9-C18 Aliphatic Hydrocar	bons [1]	1X	200	ug/l	739	12/08/22 19:31	
C19-C36 Aliphatic Hydroca	arbons [1]	1X	200	ug/l	<200	12/08/22 19:31	
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	100	ug/l	234	12/09/22 10:09	
Chlorooctadecane (Sample	e Surrogate)			%	58.9	12/08/22 19:31	
o-Terphenyl (Sample Surro	ogate)			%	59.5	12/09/22 10:09	
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	81.0	12/09/22 10:09	
2-Bromonaphthalene (Frac	ctionation Surrogate)			%	60.4	12/09/22 10:09	
Surrogate Acceptance Range [3]			%	40 - 140		

^[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

^[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

^[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0233 - Metals Dig	gestion Waters									
Blank (B2L0233-BLK1)				Pi	repared: 12/0	6/22 Analyze	d: 12/09/22			
Arsenic	ND		0.01	mg/L						
Zinc	ND		0.020	mg/L						
Vanadium	ND		0.005	mg/L						
Selenium	ND		0.01	mg/L						
Antimony	ND		0.005	mg/L						
Lead	ND		0.005	mg/L						
Nickel	ND		0.005	mg/L						
Chromium	ND		0.005	mg/L						
Cadmium	ND		0.005	mg/L						
Beryllium	ND		0.005	mg/L						
Barium	ND		0.005	mg/L						
Silver	ND		0.005	mg/L						
Thallium	ND		0.005	mg/L						
LCS (B2L0233-BS1)				Pı	repared: 12/0	6/22 Analyze	d: 12/09/22			
Vanadium	0.950		0.005	mg/L	1.00		95.0	85-115		
Cadmium	0.909		0.005	mg/L	1.00		90.9	85-114		
Beryllium	0.192		0.005	mg/L	0.200		95.8	85-115		
Zinc	0.933		0.020	mg/L	1.00		93.3	85-115		
Barium	0.946		0.005	mg/L	1.00		94.6	85-115		
Selenium	0.18		0.01	mg/L	0.200		87.6	85-115		
Nickel	0.905		0.005	mg/L	1.00		90.5	85-112		
Arsenic	0.18		0.01	mg/L	0.200		91.7	85-115		
Silver	0.454		0.005	mg/L	0.400		114	85-115		
Antimony	1.03		0.005	mg/L	1.00		103	85-115		
Lead	0.898		0.005	mg/L	1.00		89.8	85-115		
Chromium	0.954		0.005	mg/L	1.00		95.4	85-115		
Thallium	0.883		0.005	mg/L	1.00		88.3	85-115		

			Quality (Conti							
Total Metals (Continued)										
			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2L0309 - Metals Co	old-Vapor Mercu	ry								
Blank (B2L0309-BLK1)	•				Prepared 8	& Analyzed: 1	2/07/22			
Mercury	ND		0.0005	mg/L						
LCS (B2L0309-BS1)					Prepared 8	& Analyzed: 1	2/07/22			
Mercury	0.0045		0.0005	mg/L	0.00500		89.1	85-115		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analyte	Dogu ^{lt}	Oual	Reporting Limit	Units	Spike Level	Source Result	0/s DEC	%REC Limits	RPD	RPD
Analyte	Result	Qual	LITTIL	Units	Level	Result	%REC	Limits	KPD	Limit
Batch: B2L0215 - MADEP VPH										
Blank (B2L0215-BLK1)					Prepared 8	& Analyzed: 1	2/06/22			
Unadjusted C5-C8 Aliphatic	ND		100	ug/l						
Hydrocarbons	ND		100	//						
Unadjusted C9-C12 Aliphatic Hydrocarbons	ND		100	ug/l						
Benzene	ND		5.0	ug/l						
Ethylbenzene	ND		5.0	ug/l						
Methyl t-butyl ether (MTBE)	ND		10.0	ug/l						
Naphthalene	ND		10.0	ug/l						
Toluene	ND		5.0	ug/l						
m&p-Xylene	ND		10.0	ug/l						
o-Xylene	ND		10.0	ug/l						
Total xylenes	ND		10.0	ug/l						
C5-C8 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C12 Aliphatic Hydrocarbons	ND		100	ug/l						
C9-C10 Aromatic Hydrocarbons	ND		100	ug/l						
Surrogate: 2,5- Dibromotoluene-PID			44.9	ug/l	50.0		89.9	70-130		
Surrogate: 2,5- Dibromotoluene-FID			47.4	ug/l	50.0		94.9	70-130		
LCS (B2L0215-BS1)					Prepared 8	& Analyzed: 1	2/06/22			
Benzene	47.8		5.0	ug/l	50.0		95.6	70-130		
Ethylbenzene	49.7		5.0	ug/l	50.0		99.4	70-130		
Methyl t-butyl ether (MTBE)	48.4		10.0	ug/l	50.0		96.9	70-130		
Naphthalene	38.8		10.0	ug/l	50.0		77.6	70-130		
Toluene	48.8		5.0	ug/l	50.0		97.6	70-130		
m&p-Xylene	102		10.0	ug/l	100		102	70-130		
2-Methylpentane	50.8		5.0	ug/l	50.0		102	70-130		
n-Nonane	48.9		5.0	ug/l	50.0		97.9	70-130		
o-Xylene	51.3		10.0	ug/l	50.0		103	70-130		
Decane	54.3		5.0	ug/l	50.0		109	70-130		
n-Butylcylohexane	53.3		5.0	ug/l	50.0		107	70-130		
n-Pentane	48.6		5.0	ug/l	50.0		97.3	70-130		
1,2,4-Trimethylbenzene	56.3		10.0	ug/l	50.0		113	70-130		
VPH_LCS_Aliphatic_C5-C8	150		5.0	ug/l	150		99.7	70-130		
VPH_LCS_Aliphatic_C9-C12	108		10.0	ug/l	100		108	70-130		
VPH_LCS_Aromatic_C9-C10	56.3		10.0	ug/l	50.0		113	70-130		
Surrogate: 2,5- Dibromotoluene-PID			39.1	ug/l	50.0		78.2	70-130		
Surrogate: 2,5- Dibromotoluene-FID			39.9	ug/l	50.0		<i>79.8</i>	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

			Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2L0215 - MADEP VPH ((Continued)									
LCS Dup (B2L0215-BSD1)	_				Prepared 8	& Analyzed: 1	2/06/22			
Benzene	48.2		5.0	ug/l	50.0		96.5	70-130	0.958	25
Ethylbenzene	50.4		5.0	ug/l	50.0		101	70-130	1.38	25
Methyl t-butyl ether (MTBE)	49.4		10.0	ug/l	50.0		98.8	70-130	1.94	25
Naphthalene	42.5		10.0	ug/l	50.0		84.9	70-130	9.03	25
Toluene	49.4		5.0	ug/l	50.0		98.9	70-130	1.32	25
m&p-Xylene	104		10.0	ug/l	100		104	70-130	1.56	25
2-Methylpentane	49.4		5.0	ug/l	50.0		98.9	70-130	2.63	25
o-Xylene	52.3		10.0	ug/l	50.0		105	70-130	2.05	25
n-Nonane	49.3		5.0	ug/l	50.0		98.6	70-130	0.713	25
Decane	56.9		5.0	ug/l	50.0		114	70-130	4.66	25
n-Butylcylohexane	52.4		5.0	ug/l	50.0		105	70-130	1.63	25
n-Pentane	48.0		5.0	ug/l	50.0		95.9	70-130	1.39	25
1,2,4-Trimethylbenzene	57.6		10.0	ug/l	50.0		115	70-130	2.21	25
VPH_LCS_Aliphatic_C5-C8	147		5.0	ug/l	150		97.8	70-130	1.97	25
VPH_LCS_Aliphatic_C9-C12	109		10.0	ug/l	100		109	70-130	1.60	25
VPH_LCS_Aromatic_C9-C10	57.6		10.0	ug/l	50.0		115	70-130	2.21	25
Surrogate: 2,5- Dibromotoluene-PID			42.5	ug/l	50.0		84.9	70-130		
Surrogate: 2,5- Dibromotoluene-FID			43.8	ug/l	50.0		87.7	70-130		

Extractable Petroleum Hydrocarbons (MADEP-EPH)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPI Lim
Batch: B2L0217 - Sep-Funnel	-extraction									
Blank (B2L0217-BLK1)	-			Pi	epared: 12/0	6/22 Analyze	ed: 12/08/22			
Unadjusted C11-C22 Aromatic	ND		100	ug/l	, ,	.,	, ,			
Hydrocarbons				· ·						
Naphthalene	ND		1.0	ug/l						
2-Methylnaphthalene	ND		1.0	ug/l						
Phenanthrene	ND		1.0	ug/l						
Acenaphthene	ND		5.0	ug/l						
Acenaphthylene	ND		1.0	ug/l						
Fluorene	ND		5.0	ug/l						
Anthracene	ND		5.0	ug/l						
Fluoranthene	ND		5.0	ug/l						
Pyrene	ND		5.0	ug/l						
Benzo(a)anthracene	ND		1.0	ug/l						
Chrysene	ND ND		2.0	ug/l						
Benzo(b)fluoranthene	ND ND		1.0	ug/l						
Benzo(k)fluoranthene	ND ND		1.0	ug/l						
Benzo(a)pyrene	ND		0.2	ug/l						
Indeno(1,2,3-cd)pyrene	ND		0.5	ug/l						
Dibenz(a,h)anthracene	ND		0.5	ug/l						
Benzo(g,h,i)perylene	ND		5.0	ug/l						
C9-C18 Aliphatic Hydrocarbons	ND		200	ug/l						
C19-C36 Aliphatic Hydrocarbons	ND		200	ug/l						
C11-C22 Aromatic Hydrocarbons	ND		100	ug/l						
Surrogate: Chlorooctadecane			72.0	ug/l	125		57.6	40-140		
Surrogate: o-Terphenyl			50.7	ug/l	125		40.6	40-140		
Surrogate: 2-Fluorobiphenyl			37.8	ug/l	50.0		75.6	40-140		
Surrogate: 2-Bromonaphthalene			34.4	ug/l	50.0		68.8	40-140		
LCS (B2L0217-BS1)				Pi	repared: 12/0	6/22 Analyze	ed: 12/08/22			
Naphthalene	16.5		1.0	ug/l	40.0		41.3	40-140		
2-Methylnaphthalene	16.2		1.0	ug/l	40.0		40.4	40-140		
Phenanthrene	17.4		1.0	ug/l	40.0		43.5	40-140		
Acenaphthene	17.2		5.0	ug/l	40.0		42.9	40-140		
Acenaphthylene	16.4		1.0	ug/l	40.0		40.9	40-140		
Fluorene	16.4		5.0	ug/l	40.0		40.9	40-140		
	18.2		5.0	ug/l	40.0		45.6	40-140		
Anthracene Fluoranthene	20.9		5.0	ug/l	40.0 40.0		52.4	40-140		
Pyrene Renze(a)anthracene	21.2		5.0	ug/l	40.0		53.0	40-140		
Benzo(a)anthracene	22.2		1.0	ug/l	40.0		55.6	40-140		
Chrysene	24.5		2.0	ug/l	40.0		61.3	40-140		
Benzo(b)fluoranthene	22.8		1.0	ug/l	40.0		57.1	40-140		
Benzo(k)fluoranthene	24.3		1.0	ug/l	40.0		60.8	40-140		
Benzo(a)pyrene	22.4		0.2	ug/l	40.0		56.0	40-140		
Indeno(1,2,3-cd)pyrene	20.8		0.5	ug/l	40.0		52.0	40-140		
Dibenz(a,h)anthracene	21.7		0.5	ug/l	40.0		54.3	40-140		
Benzo(g,h,i)perylene	23.9		5.0	ug/l	40.0		59.8	40-140		
Nonane	13.8		5.0	ug/l	40.0		34.4	30-140		
Decane	17.6		5.0	ug/l	40.0		44.1	40-140		
Dodecane	17.9		5.0	ug/l	40.0		44.6	40-140		
Tetradecane	17.3		5.0	ug/l	40.0		43.2	40-140		
Hexadecane	17.6		5.0	ug/l	40.0		44.0	40-140		
Octadecane	20.9		5.0	ug/l	40.0		52.3	40-140		
Nonadecane	22.9		5.0	ug/l	40.0		57.2	40-140		
Eicosane	24.9		5.0	ug/l	40.0		62.4	40-140		
Docosane	27.8		5.0	ug/l	40.0		69.4	40-140		
Tetracosane	29.0		5.0	ug/l	40.0		72.6	40-140		
Hexacosane	29.0		5.0	ug/l	40.0		72.8 72.8	40-140		
Octacosane	28.5		5.0	ug/l	40.0		71.2	40-140		

Quality Control

(Continued)

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0217 - Sep-Funnel-	extraction (Col	ntinuea								
LCS (B2L0217-BS1)	•		-	Pi	repared: 12/0	6/22 Analyze	d: 12/08/22			
Hexatriacontane	28.3		5.0	ug/l	40.0		70.7	40-140		
EPH_LCS_Aliphatic_C19-C36	218		0.0	ug/l	320		68.2	40-140		
EPH_LCS_Aliphatic_C9-C18	105		0.0	ug/l	240		43.8	40-140		
EPH_LCS_Aromatic_C11-C22	343		0.0	ug/l	680		50.5	40-140		
Surrogate: Chlorooctadecane			76.0	ug/l	125		60.8	40-140		
Surrogate: o-Terphenyl			58.8	ug/l	125		47.0	40-140		
Surrogate: 2-Fluorobiphenyl			35.5	ug/l	50.0		71.0	40-140		
Surrogate: 2-Bromonaphthalene			33.8	ug/l	50.0		67.6	40-140		
LCS Dup (B2L0217-BSD1)				P	repared: 12/0	6/22 Analyze	d: 12/08/22			
Naphthalene	16.7		1.0	ug/l	40.0		41.6	40-140	0.783	25
2-Methylnaphthalene	17.2		1.0	ug/l	40.0		43.0	40-140	6.11	25
Phenanthrene	19.2		1.0	ug/l	40.0		48.0	40-140	9.73	25
Acenaphthene	18.1		5.0	ug/l	40.0		45.2	40-140	5.17	25
Acenaphthylene	17.3		1.0	ug/l	40.0		43.2	40-140	5.47	25
Fluorene	17.6		5.0	ug/l	40.0		43.9	40-140	7.08	25
Anthracene	20.2		5.0	ug/l	40.0		50.6	40-140	10.3	25
Fluoranthene	23.3		5.0	ug/l	40.0		58.4	40-140	10.8	25
Pyrene	23.7		5.0	ug/l	40.0		59.2	40-140	11.0	25
Benzo(a)anthracene	24.6		1.0	ug/l	40.0		61.4	40-140	9.95	25
Chrysene	26.8		2.0	ug/l	40.0		67.1	40-140	9.03	25
Benzo(b)fluoranthene	25.0		1.0	ug/l	40.0		62.6	40-140	9.19	25
Benzo(k)fluoranthene	26.6		1.0	ug/l	40.0		66.4	40-140	8.76	25
Benzo(a)pyrene	24.6		0.2	ug/l	40.0		61.5	40-140	9.41	25
Indeno(1,2,3-cd)pyrene	22.7		0.5	ug/l	40.0		56.7	40-140	8.51	25
Dibenz(a,h)anthracene	24.1		0.5	ug/l	40.0		60.2	40-140	10.4	25
Benzo(g,h,i)perylene	25.7		5.0	ug/l	40.0		64.2	40-140	7.02	25
Nonane	12.5		5.0	ug/l	40.0		31.2	30-140	9.74	25
Decane	16.9		5.0	ug/l	40.0		42.2	40-140	4.52	25
Dodecane	16.3		5.0	ug/l	40.0		40.7	40-140	9.26	25
Tetradecane	16.6		5.0	ug/l	40.0		41.4	40-140	4.19	25
Hexadecane	17.0		5.0	ug/l	40.0		42.4	40-140	3.64	25
Octadecane	19.8		5.0	ug/l	40.0		49.6	40-140	5.30	25
Nonadecane	21.7		5.0	ug/l	40.0		54.2	40-140	5.30	25
Eicosane	23.6		5.0	ug/l	40.0		59.0	40-140	5.48	25
Docosane	26.1		5.0	ug/l	40.0		65.2	40-140	6.32	25
Tetracosane	27.1		5.0	ug/l	40.0		67.8	40-140	6.76	25
Hexacosane	27.2		5.0	ug/l	40.0		68.0	40-140	6.82	25
Octacosane	26.5		5.0	ug/l	40.0		66.2	40-140	7.32	25
Triacontane	25.9		5.0	ug/l	40.0		64.8	40-140	7.36	25
Hexatriacontane	26.0		5.0	ug/l	40.0		65.0	40-140	8.33	25
EPH_LCS_Aliphatic_C19-C36	204		0.0	ug/l	320		63.8	40-140	6.76	25
EPH_LCS_Aliphatic_C9-C18	99.0		0.0	ug/l	240		41.3	40-140	5.94	25
EPH_LCS_Aromatic_C11-C22	373		0.0	ug/l	680		54.9	40-140	8.40	25
Surrogate: Chlorooctadecane			72.5	ug/l	125		58.0	40-140		
Surrogate: o-Terphenyl			65.7	ug/l	125		52.5	40-140		
Surrogate: 2-Fluorobiphenyl			39.6	ug/l	50.0		79.2	40-140		
Surrogate: 2-Bromonaphthalene			36.6	ug/l	50.0		73.2	40-140		

Notes and Definitions

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

☐ 146 Hartford Road, Manc
☐ 56 Quarry Road, Trumbu

☐ 1419 Richland Street, Col

36169

MOther 1550 Main Street, Soite 400 Springfield pet

			•	
1		Turnaroui	nd	
	□ 24-Hour*	□ 72-Hour*	□ Other	(days)
	□ 48-Hour*	▼ Standard (days)	*Surcharge Ap	plies
			LADORATION	137

CHAIN-OF-CUSTODY RECORD

PROJECT LOCATION PROJECT NUMBER PROJECT NAME LABORATORY 2009 1032 . A22 NETLAR Shutestury, MA Shutesbury Library ph II Containers (misssone @ fando.com) Analysis Request INVOICE TO: P.O. No.: 170120091032. A22 A STATE OF THE STA 180 (30 m) (230 m) (23 Date: 12 / 2 / 22 Sampler's Signature: Source Codes: T=Treatment Facility S=Soil B=Sediment MW=Monitoring Well PW=Potable Water Source of the state of the stat ST=Stormwater W=Waste $\Lambda = Air$ C=Concrete SW=Surface Water X = Trip Blank X=Other _ Transfer Check Source Time Oznai. Item Sample Number Code Sampled Sampled 1 2 3 4 Comments 3, X X X 1701221202 - 01 12/2/22 1150 MW 1200 X Trip Blenck - 02 Charge Exceptions: □ CT Tax Exempt □ QA/QC Transfer

lumber	Relinquished By	Accepted By	Date	Time	Duplicates Blanks (Item Nos:
1	assert otos	FRO FRIDGE	12/2/22	1345	Reporting and Detection Limit Requirements: RCP Deliverables MCP CAM Cert.
2	DATA	an	12/5	1504	Massachusens DEP methodology for EPH & YPH
3	Cyc		13/5	1904	Additional Comments: Metals by USEPA methers 6010/7471 Page 16
4		Yay	1215	1740	Fage 10
			•		

MassDEP Analytical Protocol Certification Form										
Labo	ratory Na	me: New England	d Testing Laboratory	, Inc.	Project #: 2009103	32.A22				
Proje	Project Location: Shutesbury, MA RTN:									
	This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 2L05028									
Matrio	Matrices: ⊠ Groundwater/Surface Water □ Soil/Sediment □ Drinking Water □ Air □ Other:									
CAM	CAM Protocol (check all that apply below):									
8260 VOC CAM III B										
	SVOC	7010 Metals CAM III C □	MassDEP VPH (GC/MS) CAM IV C □	8081 Pesticides CAM V B □	7196 Hex Cr CAM VI B	MassDEP APH CAM IX A □				
	Metals III A ⊠	6020 Metals CAM III D □	MassDEP EPH CAM IV B ⊠	8151 Herbicides CAM V C □	8330 Explosives CAM VIII A	TO-15 VOC CAM IX B □				
A	\ffirmativ	e Responses to	Questions A through	gh F are required f	or "Presumptive Ce	rtainty" status				
Α	Custody,	properly preserv			cribed on the Chain-or ld or laboratory, an					
В	Were the analytical method(s) and all associated QC requirements specified in the selected CAM protocol(s) followed? ☑ Yes ☐ No									
С	Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ☑ Yes ☐ No									
D		Assurance and C			specified in CAM VII A ition and Reporting o					
E	a. VPH, modificat	ion(s)? (Refer to th		for a list of significant		Yes □ No				
F					conformances identifie					
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	tatus				
G	protocol(s)?	or below all CAM repor			⊠ Yes □ No¹				
			ve "Presumptive Certails s described in 310 CMR		cessarily meet the data (SC-07-350.	usability and				
Н	Were all	QC performance st	andards specified in th	ne CAM protocol(s) ac	chieved?	⊠ Yes □ No¹				
I	Were res	ults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	⊠ Yes □ No¹				
¹All r	negative re	esponses must be	addressed in an attac	ched laboratory narra	ative.					
respoi	nsible for d		nation, the material con		sed upon my personal al report is, to the best					
Sign	ature: 🚱	N De Carl		Position	n: Laboratory Director					
Print	ed Name	: Richard Warila		— Date: <u>12</u>	2/12/2022					
						Page 17 of 17				

Appendix E

Conceptual Phase II Scope of Work

MEMORANDUM

TO: MassDEP

FROM: Timothy Clinton, CPG, LSP

DATE: January 27, 2023

RE: Phase II Conceptual Scope of Work

66 Leverett Road, Shutesbury MA

RTN 3-21489

In 2021, a release of oil and hazardous materials (OHM), including VPH Ranges in soil, was identified in the vicinity of a former Air Force very high frequency omni-directional range (VOR) facility including a radio tower located on the southern portion of the property at 66 Leverett Road, Shutesbury, Massachusetts (the Site). In January 2022, the disposal site was reported to MassDEP. Concurrent to this document, the disposal site is being classified Tier I due to confirmed groundwater impacts proximal to private drinking water wells.

The conceptual Phase II Scope of Work to support comprehensive characterization of the nature and extent of the release condition includes the following elements:

- Quarterly groundwater monitoring using low-flow procedures is planned to begin in Q1 2023 to
 assess the nature and extent, as well as seasonal variation, for petroleum and metals impacts in
 groundwater. There are currently five monitoring wells used to characterize the Disposal Site
 and the results of the initial groundwater assessment were presented in the accompanying Phase
 I ISI Report. Future data will likely be used to support exposure point concentration (EPC)
 calculations and characterization or risk to human and environmental receptors.
- Groundwater monitoring activities will include measurement of water table elevations and hydraulic gradient to evaluate fluctuations in groundwater flow direction relative to nearby private drinking water wells.
- Visual inspection of wetlands and surface water features adjacent to the Disposal Site will be
 conducted to observe the presence or absence of petroleum impacts (i.e. sheening) concurrent
 to quarterly groundwater monitoring activities. Visual observations will be photographed and
 documented. If evidence of contaminant discharge to surface water receptors is identified,
 surface water sampling may be conducted.
- The installation of additional groundwater monitoring wells to the existing monitoring well network may be warranted based on the results of future groundwater monitoring activities.

It is anticipated that quarterly groundwater monitoring, and installation of additional groundwater monitoring wells, if required, will be conducted in 2023. The need for further investigatory and/or remedial response actions will be evaluated at the conclusion of a full year of monitoring activities. It is anticipated that the results of the monitoring activities will be documented in a future Phase II Comprehensive Site Assessment.

Appendix F

Public Notice Letters

NOTICE OF INITIAL SITE INVESTIGATION AND TIER I CLASSIFICATION

66 Leverett Road, Shutesbury, MA RTN 1-21489

A release of hazardous material has occurred at this location, which is a disposal site as defined by M.G.L. c. 21E, § 2 and the Massachusetts Contingency Plan, 310 CMR 40.0000. To evaluate the release, a Phase I Initial Site Investigation was performed pursuant to 310 CMR 40.0480. As a result of this investigation, the site has been classified as Tier I pursuant to 310 CMR 40.0500. On January 28, 2023, the Town of Shutesbury (the Owner) filed a Tier I Classification Submittal with the Department of Environmental Protection (MassDEP). To obtain more information on this disposal site, please contact:

Ms. Rebecca Torres, Town Administrator Town of Shutesbury 1 Cooleyville Road, Shutesbury, MA 01072 413-259-1214

Email: TownAdmin@shutesbury.org

The Tier Classification and an associated Phase I Initial Site Investigation Report documenting the site history and extents of contamination was submitted electronically, and may be viewed by searching for RTN 1-21489 at the following website:

Massachusetts Department of Environmental Protection Reportable Releases Look Up https://eeaonline.eea.state.ma.us/Portal/#!/search/wastesite.

Additional public involvement opportunities are available under 310 CMR 40.1403(9) and 310 CMR 40.1404.

January 28, 2023

Catherine Hilton Chair, Town of Shutesbury Board of Health P.O. Box 216 Shutesbury, MA 01702

Re: **RTN 1-21489**

Notice – Tier Classification and Phase I Initial Site Investigation 66 Leverett Road, Shutesbury, MA

Dear Ms. Hilton:

Fuss & O'Neill, Inc. (Fuss & O'Neill) has prepared this letter, on behalf of the Town of Shutesbury, to provide notice that, in accordance with the Massachusetts Contingency Plan (MCP; 310 CMR 40.0480), a *Phase I Initial Site Investigation (ISI) & Tier I Classification* has been submitted to the Massachusetts Department of Environmental Protection (MassDEP) for the hazardous material release identified by Release Tracking Number (RTN) 1-21489 at the above-referenced property (the Site). The disposal site was identified after the completion of a Limited Subsurface Assessment completed at the property by O'Reilly, Talbot, and Okun Associates of Springfield, Massachusetts in October 2021.

The *Phase I ISI & Tier I Classification* documenting the Site conditions was submitted electronically and may be viewed by searching for RTN 1-21489 at the MassDEP online file viewer, https://eeaonline.eea.state.ma.us/Portal/#!/search/wastesite

A copy of the report's executive summary and the disposal site map from the *Phase I ISI & Tier I Classification* are attached to this letter. Also attached is a copy of the public notice to be published in the Hampshire Gazette.

1550 Main Street Suite 400 Springfield, MA 01103 t 413.452.0445 800.286.2469 f 860.533.5143

Timothy Clinton, CPG, LSP

LSP of Record

Sincerely,

www.fando.com

California

Connecticut

Maine

Massachusetts

New Hampshire

New York

Rhode Island

Vermont