

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Drinking Water Program

UIC Class V Well **Post-Closure Notification Form**

Enter UIC Registration Number (required):

MAS11A272200-5K UIC Registration #

.... Α.

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key

Β.

Facility information		
Lot O-32 Property Facility/Residential Property Name		
66 Leverett Road Facility/Residential Property Street Address		
Shutesbury City	MA State	01072 Zip Code
Preparer and Contact Information		
Matthew Kissane (Fuss & O'Neill) Preparer Name	1550 Main Street, Suite 4 Preparer Address	100

Preparer Name	Preparer Address				
Springfield	MA	01103			
City/Town	State	Zip Code			
mkissane@fando.com	413-333-5472				
Preparer's Email	Preparer's Telephone Number				
Massachusetts Engineer License Number (if applicable)	Licensed Site Profes	sional (LSP)# (if applicable)			
Rebecca	Torres				
Contact First Name	Contact Last Name				
townadmin@shutesbury.org	413-259-1214				
Contact's email	Contact's Phone nur	nber			

C. Well Closure Information

Enter the data that all of the well alcours activities were completed:	11/18/2022
Enter the date that all of the well closure activities were completed.	Date of Well Closure(s)

Did the Closure include Floor Drain(s)?

X Yes

of Well Closure(s

No No

If you answered "Yes" to this question you shall select one or more of the following four options and provide any additional information requested.

Option 1 – Sealing: Plug point of entry, if applicable (see 248 CMR 2.09).

Attach copy of Form WS1: Notice of Plumbing Inspector Approval to Seal Floor Drain

Plumbing Permit # (if assigned by inspector)

Date of Plugging

Option 2 – Industrial Wastewater Holding Tank (314 CMR 18.00):

Connect discharge to a Certified holding tank meeting all appropriate MassDEP requirements. Attach floor plan with holding tank and floor drain location(s), and copy of Page 1 of Compliance Certification Form (DEP 01).

IWW Holding Tank Certification Transmittal #

Date of Certification Application Submittal to MassDEP

Tank ID #

Date of Connection

Massachusetts Department of Environmental Protection Bureau of Resource Protection – Drinking Water Program

UIC Class V Well Post-Closure Notification Form

C. Well Closure Information (cont.)

Option 3 – Sewer: Connect discharge to municipal sanitary sewer system.

Attach copy of sewer discharge permit # or letter of approval from the issuing authority.

Date of Approval to Connect Date of Connection

Name of POTW

Permit # (if issued by issuing authority)

Option 4 - Other: Certain other options are also acceptable (e.g. former discharge discontinued, closed loop recirculating system, closure and removal of entire operation, surface water discharge permit, and connection to municipal stormwater system (with approval from the issuing authority). Specify and attach a sheet with additional information:

Closure and removal of entire floor drain with drainpipe abandoned in-place. See attached narrative for additional information.

D. Previously Submitted Information

Has any of the information that was submitted with the original UIC registration application and/or Pre-Closure Notification form (including any previously submitted UIC registration modification forms) changed or have any of the UIC well and discharge system conditions that MassDEP placed on the UIC registration/Pre-Closure approval not been met (excluding any post start-up sampling requirements)? This would include, but not be limited to, the following: well dimensions, well seal materials, piping/tubing materials, well(s) location(s), number of wells, number of entry points to the system, types of discharges, potential contaminants of concern, and any of the attachments previously submitted.

🛛 Yes 🗌 No

If you answered yes to this questions, you shall submit one or more of the following with this Post Closure Notification Form:

- A BRP WS06 Modification or Well Conversion form (if any of the information submitted on that form has changed) completing only the UIC Registration Number, facility name and address and those portions of the form that are changed, including data not supplied with the original application;
- Resubmitting only those attachments, that were modified; and/or,
- A narrative description of any UIC Registration/Pre-Closure approval conditions that were not met or any closure activities that were proposed that were either not completed or were modified.

E. Attachments

Check all of the following that are being attached to this submittal package:

Copy of Form WS-1, Notice of Plumbing Inspector Approval to Seal Floor Drain: Form WS-1 is required if you answered "Yes" to the first question in Section C regarding floor drains AND you selected "Option – Sealing".

Massachusetts Department of Environmental Protection Bureau of Resource Protection – Drinking Water Program

UIC Class V Well Post-Closure Notification Form

E. Attachments (cont.)

- All Screening and Analytical Results: This information must be submitted in accordance with criteria specified in MassDEP Guidance Document Massachusetts Closure Requirements for Underground Injection Control (UICs) Wells (Guidance # BRP/DWM/DW/G04-3). Copies of all laboratory analytical reports shall be included along with a clear explanation (combination of narrative and figures) of where each of the field screening and laboratory analytical samples was collected and a description of all soil samples collected (i.e. texture, color, odor, whether it's sediment or sludge, etc.).
- ☐ Facilities Waste Management Report: When required via the issuance of an enforcement order from the MassDEP's UIC program or other entity (EPA or MassDEP Program) or as a condition stated in your UIC Registration or Pre-Closure application approval, a waste management report specifying the methods that were used to properly collect, store, and dispose of all potentially hazardous wastes/material must be submitted including documentation regarding the quantities of potentially hazardous waste that were shipped off-site.
- Copy of discharge permit or letter of approval from the issuing authority for the floor drain connection to the municipal sewer system.
- Copy of page 1 of Compliance Certification Form (DEP 01).
- **Revised Information:** Applicable BRP WS06 Registration form (including any revised plans or attachments)
- **Other** (specify):

F. Certification

Operator

I certify under pains and penalties of law that I have personally examined and am familiar with the information submitted in this document and all attachments and based on my personal knowledge or inquiry of those agents immediately responsible for obtaining the information on my behalf, I believe the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possible fines and imprisonment.

	12/9/22
Signature of Operator	Date
Rebecca Torres	Town Administrator
Printed Name of Operator	Position/Title

Owner (must be completed if owner has not signed above as operator)

I certify that I have personally examined and am familiar with the information submitted in this document.

Signature of Owner	Date		
Printed Name of Owner	Position/Title		
Submit a signed and complete application package to: MassDEP Bureau of Resource Protection UIC Program One Winter Street, 5th Floor Boston, MA 02108	Send duplicate copies of this form to: Local Board of Health Local Plumbing Inspector (for any applications involving the closure of floor drains)		

it's sediment or sludge, etc.).

☐ Facilities Waste Management Report: When required via the issuance of an enforcement order from the MassDEP's UIC program or other entity (EPA or MassDEP Program) or as a condition stated in your UIC Registration or Pre-Closure application approval, a waste management report specifying the methods that were used to properly collect, store, and dispose of all potentially hazardous wastes/material must be submitted including documentation regarding the quantities of potentially hazardous waste that were shipped off-

drain connection to the municipal sewer system.

Copy of page 1 of Compliance Certification Form (DEP 01).

Revised Information: Applicable BRP WS06 Registration form (including any revised plans or attachments)

	Other
(sp	pecify):

F. Certification

Operator

I certify under pains and penalties of law that I have personally examined and am familiar with the information submitted in this document and all attachments and based on my personal knowledge or inquiry of those agents immediately responsible for obtaining the information on my behalf, I believe the information is true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including possible fines and imprisonment.

Rebecca Jones	12/9/22
Signature of Operator	Date
Rebecca Torres	Town Administrator
Printed Name of Operator	Position/Title

Owner (must be completed if owner has not signed above as operator)

I certify that I have personally examined and am familiar with the information submitted in this document.

Signature of Owner	Date		
Printed Name of Owner	Position/Title		
Submit a signed and complete application package to: MassDEP Bureau of Resource Protection UIC Program One Winter Street, 5th Floor	Send duplicate copies of this form to: Local Board of Health Local Plumbing Inspector (for any applications involving the closure of floor drains)		

December 9, 2022

Mr. Joseph Cerutti UIC Program Coordinator MassDEP Drinking Water Program 1 Winter Street Boston, MA 02108

Re: UIC Closure Report UIC Registration ID# MAS11A272200-5K 66 Leverett Rd., Shutesbury, MA Fuss & O'Neill Reference No. 20091032.A22

Dear Mr. Cerutti

On behalf of the Town of Shutesbury (the Town), Fuss & O'Neill has prepared this report in support of an Underground Injection Control (UIC) Class V Well Post-Closure Notification Form being submitted for a Class V Well located at 66 Leverett Road, Shutesbury, Massachusetts (the Site). The Site is identified by the Town Assessor's map as Lot O-32.

On October 26, 2022, the Town submitted a BRP WS 06 UIC Permit Application to the Massachusetts Department of Environmental Protection (MassDEP) Drinking Water Program (DWP) under eDEP Transaction #1440467. On November 7, 2022, a UIC Registration (ID# MAS11A272200-5K) was issued in accordance with the UIC program procedures and regulations, 310 CMR 27.00, which authorized closure of the UIC well in accordance with the description provided in the permit application and conditions stated in the authorization. This authorization e-mail is included as *Attachment A*.

On the accompanying Class V Well Post-Closure Notification Form, Section D, the Town has indicated that some information that was submitted with the original UIC registration application and Pre-Closure Notification form has changed since its submittal. The Town has answered in the affirmative for this question due to the in-field discovery of additional information related to the location of the historical floor drain since the submittal, which led to corresponding changes to the number of test pits and target locations, and sample methodology (i.e. grab samples in lieu of three-point composite samples).

The objective of the closure activities was to address the requirements under 310 CMR 27.10 and the *Massachusetts Closure Guidance for Underground Injection Control (UIC) Wells (including shallow injection wells) (Guidance #BRP/DWM/DW/G04-3)*. Specifically, the closure activities were intended to evaluate whether the floor drain, and associated drainpipe, may have served as a preferential pathway for migration of oil and/or hazardous materials (OHM) to the environment. The following narrative describes the project background, previous environmental investigation related to the UIC well, and a summary of UIC closure activities completed.

1550 Main Street Suite 400 Springfield, MA 01103 t 413.452.0445 800.286.2469 f 860.533.5143

www.fando.com

California Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont

1. Project Background

The UIC Class V well that is the subject of this UIC Closure Report is a floor drain that existed within the three-bay vehicle garage that was historically located at the Site. The three-bay garage was historically used for automotive repair purposes and then as a storage facility for the Town of Shutesbury Department of Public Works (DPW). It is unknown what year the garage and the floor drain were constructed; however the structure is not evident in aerial photography from 1962, but does appear on aerial photography from 1987. Therefore, it is inferred that the three-bay garage was built during that time. The floor drain and its drainpipe components were initially thought to have been removed from the Site during the demolition of the three-bay vehicle garage by the Town in August of 2021. However, as further discussed in *Section 3*, it has been determined that portions of the drainpipe remain.

2. Previous Environmental Investigations

The following is a brief summary of historical environmental investigations relevant to the location and condition of the UIC well that is the subject of this report.

- Subsurface Soil Boring/Well Installation and Sampling Letter CSEC, April 2012
 - **Soil:** As part of a larger environmental assessment, CSEC oversaw the collection of \cap two (2) soil samples taken from test pit excavations along the length of the floor drain drainpipe and at the terminus of the floor drain drainpipe, at depths of 1 foot below ground surface (ft bgs) and 1.2 ft bgs respectively (CSEC sample numbers FD-S-1 and FD-S-2) and one (1) soil sample taken from a boring near the terminus of the floor drain drainpipe, at a depth interval of 4 to 8 ft bgs (CSEC sample number GP-3 4-8'). The samples were collected on December 15 and 16, 2011 and submitted for laboratory analysis for Volatile Organic Compounds (VOCs) by EPA Method 5035A and for Extractable Petroleum Hydrocarbons (EPH) and Target Polycyclic Aromatic Hydrocarbons (PAHs) by MassDEP Methodology. For both samples, no VOCs were detected at concentrations above laboratory reporting limits. For both samples, no EPH or target PAHs were detected at concentrations above laboratory reporting limits, with the exception of C19-C36 Aliphatics (19.1 milligrams/kilogram (mg/kg)) and C11-C22 Aromatics (33.5 mg/kg) in sample FD-S-1 and C11-C22 Aromatics (14.1 mg/kg) in sample GP-3 4-8'. These concentrations were well below their applicable RCS-1 Reportable Concentrations of 3,000 mg/kg for C19-C36 Aliphatics and 1,000 mg/kg for C11-C22 Aromatics.
 - Groundwater: CSEC also oversaw the installation of a groundwater monitoring well at soil boring location GP-3, and subsequently, the collection of two (2) groundwater samples from that groundwater monitoring well. The first sample was collected on December 22, 2011 and was submitted for laboratory analysis for VOCs by EPA Method 5030 and for EPH and Target PAHs by MassDEP Methodology. No VOCs, EPH, or target PAHs were detected above laboratory reporting limits. The second sample was collected on April 9, 2012 and was submitted for laboratory analysis for

Polychlorinated Biphenyls (PCBs) by EPA Method 3510C. No PCBs were detected above laboratory reporting limits, with the exception of Aroclor-1242 (0.425 micrograms/liter (μ g/l)). This result was below the applicable RCGW-1 Reportable Concentration of 0.5 μ g/l.

- Limited Subsurface Assessment O'Reilly, Talbot & Okun Engineering Associates, October 2021
 - As part of a larger environmental assessment, O'Reilly, Talbot & Okun Engineering Associates (OTO) oversaw the installation of one soil boring, B-1, within the footprint of the historic three-bay garage and near the reported location of the historic floor drain. One soil sample was collected at an interval of 5 to 7 ft bgs and was analyzed for VOCs by EPA Method 8260, EPH with Target PAHs by MassDEP methods, and Polychlorinated Biphenyls by EPA Method 8082. No compounds were detected at concentrations above laboratory reporting limits.

3. November 2022 UIC Closure Activities

On November 18, 2022, following approval of the BRP WS06 permit application package for the closure of the UIC Class V well, Fuss & O'Neill performed the following UIC closure related activities:

- Excavation of three (3) test pits (designated as TP-1, TP-2, and TP-3) and the collection of soil samples by Fuss & O'Neill personnel.
- Laboratory analysis of two (2) soil samples.

Field Observations:

With Mr. Joseph Cerutti of MassDEP present, Fuss & O'Neill personnel oversaw the UIC closurerelated activities. Test pits were excavated by DPW personnel with a backhoe, to depths of up to 24 inches below grade surface (in bgs). Test pit locations are depicted in *Figure 1*.

Fuss & O'Neill oversaw the excavation of one test pit to the east of the location of the former three-bay garage to investigate whether the drainpipe associated with the former floor drain was still in-place. The footprint of the historical three-bay garage was determined based on a combination of satellite imagery, historical photographs of the Site, and visual observations of changes in topography and/or vegetation indicative of the limits of a historical foundation. The inferred locations for the floor drain and associated drainpipe were derived from the *Subsurface Soil Boring/Well Installation and Sampling Letter* (CSEC 2012), firsthand testimonials, and photographs of the historical floor drain before removal in 2021.

The first test pit excavated (TP-3), was the initially inferred location of the terminus of the floor drain drainpipe. The drainpipe was discovered partially intact, approximately 16 in bgs within TP-3. This drainpipe was a 4-inch inner diameter perforated pipe, which resembled a bituminized fiber pipe (aka Orangeburg pipe). Perforations were located on only one side of the pipe, and those perforations alternated from one side of the pipe to another, along its length. The drainpipe was

partially-to-fully collapsed in places and was visibly filled with soil in others. In an attempt to locate the beginning and terminus of the pipe, two additional test pits (TP-1 and TP-2) were excavated. TP-2 was excavated on the eastern-most portion of the work area along the border of a mapped wetland resource area. A section of the drainpipe was discovered approximately 12-inches below grade within TP-2. TP-1 was excavated within the footprint of the former garage within the observed alignment of the drainpipe. The beginning of the drainpipe at the inferred location of the historical floor drain, was discovered approximately 13 in bgs, approximately 58-inches from the eastern exterior of the former garage. The inferred location of the historical drainpipe was based off visual observation of subsurface lithology and the lack of any evidence of drainpipe or drainpipe bedding along the western end of TP-1. It was determined in the field based on the visual observation that there was no impermeable bottom beneath the inferred location of the historic floor drain, that the historical floor drain was not watertight in nature. A concrete slab and wood feature of unknown origin was also observed approximately 24 in bgs within TP-1, roughly 5-feet from- and parallel to- the eastern former garage wall.

A Fuss & O'Neill representative oversaw the excavation of the test pits and logged soil conditions and performed field screening of soils for total organic vapors (TOVs) using a photoionization detector (PID). No visual or olfactory evidence of contamination was observed in the test pits during the excavation. Groundwater infiltrated the test pits minutes after the excavation and remained at roughly 12 in bgs. Test Pit Logs are included as *Attachment C*.

The top 12 to 13-inches of soil was characterized as fill and contained mostly fine to coarse grained sand, with trace amounts of silt and sub-rounded gravel. Below this layer of soil was fine to medium grained sand, light brown in color. A photo log of representative photos from the November 18, 2022 closure activities is included as *Attachment B*.

Soil Sampling for Laboratory Analysis:

A total of two (2) soil sample locations were collected and submitted to New England Testing Laboratory in West Warwick, Rhode Island (NETLAB). The two (2) points were selected as the two most high probability locations where a potential release of OHM to the environment would have occurred based on the characteristics of the floor drain system (i.e. perforated pipe and a nonwatertight floor drain). One (1) soil sample was sampled from the perforated side of the western end of the drainpipe (the inferred connection point to the historic floor drain) within TP-1, from 11 to 13 in bgs. Another sample was collected from the perforated side of the drainpipe at the wetland boundary within TP-2, from 10 to 12 in bgs. Both samples were collected with a dedicated nitrile glove.

Per Massachusetts Closure Guidance for Underground Injection Control (UIC) Wells (including shallow injection wells), Guidance #BRP/DWM/DW/G04-3, the soil samples were submitted under chain of custody to NETLAB for the analysis of the following analytical parameters:

• Volatile organic compounds (VOCs) via EPA Method 8260C;

- Extractable petroleum hydrocarbons (EPHs) with target polyaromatic hydrocarbons (PAHs) via the MassDEP Method;
- Volatile petroleum hydrocarbons (VPHs) Ranges via MassDEP Method;
- Select Metals (arsenic, barium, cadmium, chromium, lead, mercury nickel, selenium, and zinc) via EPA Methods 6010C/7471B; and
- Polychlorinated biphenyls (PCBs) via EPA Method 8082A.

A summary of the soil samples submitted for laboratory analysis is included in Table 1 below:

Location	Location	Date	Sample	Sample ID	Analyses
ID			Depth		
			(ibg)		
TP-1	Historical Location		11 – 13	1708221118-01	VOCs, EPH w/
	of Floor Drain	11/19/2022			target PAHs,
TP-2	Drainpipe at	11/10/2022	10 - 12	1708221118-04	VPH, Select
	Wetlands Boundary				Metals, PCBs*

Table 1Summary of Soil Sample Activities

ibg: inches below grade

* two samples, one from the TP-1 sample location, and one from a dripline location of the former three-bay garage, and were submitted to Alpha Analytical Labs (Alpha) of Westborough, MA to be analyzed for per- and polyfluoroalkyl substances (PFAS). While PFAS was not a MassDEP requirement for the UIC closure process, these samples voluntarily collected and analyzed in response to concern regarding the possible presence of PFAS at the site. Results for this analysis were not available at the time of this closure report and will be provided to the MassDEP under separate cover.

4. Analytical Results

Soil Laboratory Results:

Test pit results were compared to the MassDEP RCS-1 Reportable Concentrations in Soil (310 CMR 40.0361) and the published background values for "natural" soil per the 2002 MassDEP Technical Update for Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in Soil. The following describes the analytical results:

• One to two EPH Ranges (C19-C36 and C11-C22) were detected above laboratory reporting limits in the two soil samples collected from TP-1 and TP-2. The concentrations detected were below applicable MassDEP Reportable Concentrations in soil (RCS-1) in both samples.

- Seven to eight Target PAH compounds were detected above laboratory reporting limits in the two samples collected form TP-1 and TP-2. The concentrations detected were below applicable RCS-1 criteria and consistent with "natural" background levels in both samples.
- A total of seven metals (arsenic, barium, cadmium, chromium, lead, nickel, selenium, zinc, and mercury) were detected above laboratory reporting limits in both samples collected from TP-1 and TP-2. The concentrations detected were below applicable RCS-1 criteria in both samples and consistent with "natural" soil background levels, except for zinc (108 mg/kg) which exceeded the published "natural" background level of 100 mg/kg.
- No PCBs, VOC, or VPH were detected in either sample at concentrations above laboratory reporting limits.

Refer to *Table 2* for a summary of soil analytical results compared to applicable MassDEP Reportable concentrations. The laboratory analytical report is included as *Attachment B*.

5. Conclusions

Based on results of the UIC Post-Closure Notification summarized herein, all concentrations of EPH and target PAHs, PCBs, select metals, VOCs, and VPHs detected were below applicable MassDEP Reportable Concentrations in soil and were generally consistent with MassDEP published "natural" soil background guidance values. Additionally, no visual or olfactory evidence of releases to the environment was observed in the field during this investigation. Based on the results of this and the previous investigations summarized herein, no evidence was observed to indicate that the floor drain and pipe constituting the UIC structure served as a migration pathway for releases to the environment. Therefore, no further response actions regarding the UIC structure are warranted.

If you have any questions, please feel free to contact the undersigned at 413-333-4572.

Sincerely,

Matthew Kissane Project Manager

Timothy Clinton, CPG, LSP Department Manager

Attachments: Figure 1 – Site Plan
Table 2 – Summary of Test Pit Data and Objectives
Attachment A – UIC Registration and Pre-Closure Approval
Attachment B – Photo Log
Attachment C – Test Pit Logs
Attachment D – Laboratory Analytical Report

cc: Mary Anne Antonellis, Director, M.N. Spear Memorial Library Rebecca Torres, Town Administrator, Town of Shutesbury Catherine Hilton, Chair, Shutesbury Board of Health

	L			HORZ.: 1"= 20'		
		<u> </u>		VERT.:		
			DA	DATUM:	FUSS&UNEILL	
				HORZ.:		UNDERGROUNDI
				VERT.:	1550 MAIN STREET, SUITE 400	
		<u> </u>	0	10 20	SPRINGFIELD, MA 01103 413 452 0445	
	L			10 20	www.fando.com	
DESCRIPTION	DESIGNER	REVIEWER		GIVALITIC SCALE		SHUTESBURY

JECTION CONTROL CLOSURE REPORT

66 LEVERETT ROAD

MASSACHUSETTS

FIGURE 1

Table 2

Summary of Test Pit Analytical Data and Objectives Underground Injection Control (UIC) Closure Report 66 Leverett Road

Shutesbury, Massachusetts

December 2022

	Location ID	TP-1	TP-2	MCD Description	L. C	
	Matrix	Soil	Soil	мСР керопаы	le Concentrations	
	Sample Interval (ibg)	11-13	10-12			MassDEP Background
	TOV (ppmv)	0.0	0.0	DCS 1	DCS 1	Guidance1
	Sampling Date	11/18/2022	11/18/2022	KC3-1	RC3-2	
	Field Sample ID	1708221118-01	1708221118-04			
Parameters	Units					
EPH w/ Target PAH (MassDEP EPH Method)						
C9-C18 Aliphatic Hydrocarbons	mg/kg	ND < 16.8	ND < 15.9	1000	3000	NE
C19-C36 Aliphatic Hydrocarbons	mg/kg	165	ND < 15.9	3,000	5000	NE
C11-C22 Aromatic Hydrocarbons	mg/kg	62.1	22	1,000	3000	NE
Fluoranthene	mg/kg	0.98	0.87	1000	3000	4
Pyrene	mg/kg	0.89	0.78	1000	3000	4
Benzo(a)anthracene	mg/kg	0.67	0.6	7	40	2
Chrysene	mg/kg	0.78	0.67	70	400	2
Benzo(b)fluoranthene	mg/kg	0.66	0.5	7	40	2
Benzo(k)fluoranthene	mg/kg	0.6	0.53	70	400	1
Benzo(a)pyrene	mg/kg	0.61	0.54	2	7	2
Benzo(g,h,i)perylene	mg/kg	0.42	ND < 0.4	1,000	3000	1
PCBs (EPA Method 8082A)						
Various PCB Aroclors	ug/kg	ND < Varies	ND < Varies	Various	Various	NE
PCBs (Total)	ug/kg	ND < 83	ND < 78	1,000	4000	NE
Metals (EPA Method 6010C/7471B)						
Arsenic	mg/kg	1.62	1.65	20	20	20
Barium	mg/kg	44.8	19.4	1,000	3000	50
Cadmium	mg/kg	1.26	0.97	70	100	2
Chromium	mg/kg	10.4	7.87	100	200	30
Lead	mg/kg	38.2	36.9	200	600	100
Nickel	mg/kg	10.5	9.26	600	1000	20
Selenium	mg/kg	ND < 1.37	ND < 1.25	400	700	0.5
Zinc	mg/kg	108	50.5	1000	3000	100
Mercury	mg/kg	$ND \le 0.202$	ND < 0.197	20	30	0.3
VOCs (EPA Method 8260C)						
Various VOCs	ug/kg	ND < Varies	ND < Varies	Various	Various	NE
VPH Ranges (MassDEP VPH Method)						
C5-C8 Aliphatic Hydrocarbons	mg/kg	ND < 7.7	ND < 7.1	100	500	NE
C9-C12 Aliphatic Hydrocarbons	mg/kg	ND < 7.7	ND < 7.1	1,000	3000	NE
C9-C10 Aromatic Hydrocarbons	mg/kg	ND < 7.7	ND < 7.1	100	500	NE

Prepared by: Checked by:

EK MK

Notes: ¹2002 MassDEP Technical Update for Background Levels of Polycyclic Aromatic Hydrocarbons and Metals in "Natural" Soil Soil samples were analyzed by New England Testing Laboratory of West Warwick, Rhode Island. Generally, compounds having detections greater than their laboratory reporting limits are shown. Refer to the laboratory analytical reports for the complete analytical data. Shaded and bold value exceeds one or more criteria EPA: Environmental Protection Agency EPH: Extractable Petroleum Hydrocarbon VDH: Voleisile Detroleum Hydrocarbon

PFH: Voltable Petroleum Hydrocarbon VOC: Volatile Organic Compounds MCP: Massachusetts Contigency Plan ND < X: Not Detected above the lab reporting limit PAH: Polycyclic Aromatic Hydrocarbons Comp. Dy Machine Linking Company, 2010 (2010)

PCB: Polychlorinated Biphenyl RCS: Reportable Concentrations in Soil

TP: Test Pit NE: No available MassDEP Background Guidance Value

Matthew Kissane

From:	Cerutti, Joseph (DEP) <joseph.cerutti@state.ma.us></joseph.cerutti@state.ma.us>
Sent:	Monday, November 7, 2022 11:22 AM
То:	townadmin@shutesbury.org
Cc:	Director-DWP, Program (DEP); Doherty, Deirdre (DEP); Motamedi, Saadi (DEP); Longridge, Kimberly
	(DEP); Grover, Mary (DEP); Matthew Kissane
Subject:	UIC Registration and pre-closure approval_Shutesbury_66 Leverett Road_MAS11A272200-5K

Dear Rebecca Torres,

The Massachusetts Department of Environmental Protection (MassDEP), Drinking Water Program (DWP) received on October 26, 2022, the submittal of a **BRP WS 06** permit application, eDEP Transaction # 1440467 with supporting documentation in the form of one attached PDF document for the registration and closure of one Underground Injection Control (UIC) Class V well.

MassDEP/DWP has reviewed the above referenced permit application and is hereby issuing **UIC Registration ID# MAS11A272200-5K** in accordance with the UIC program procedures and regulations, 310 CMR 27.00; and is authorizing the closure of the UIC wells in accordance with the description provided in the permit application and the conditions stated in this email. In all future correspondence regarding this UIC registration please reference the UIC Registration ID Number.

UIC Class V Well Pre-Closure Application Information:

Facility Name:	Lot 0-32 Property
Owner:	Town of Shutesbury
Operator:	same as owner
Owner's and Ope	rator's legal contact: Rebecca Torres
Facility Address:	66 Leverett Road, Shutesbury, MA 01072
Applicant:	Town of Shutesbury
Well category:	Motor Vehicle
Well type:	Motor Vehicle Waste Disposal
EPA Well Code:	5K
Number of wells p	proposed for complete closure: 2 (1 subsurface pipe outfall and 1 presumed leaching floor
drain) [Note: the f	loor drain entry point to the former UIC well was also a UIC well if it was a leaching
structure. Since t	he physical removal of that floor drain was not documented, MassDEP assumes that it was a
leaching floor dra	in structure (i.e. any fluids entering the floor drain had the potential to infiltrate directly into the
subsurface becau	ise it was not a water-tight structure)]
Number of Motor	Vehicle Waste Disposal wells that will remain after proposed closure: 0
Number of entry p	points proposed for closure: 1 (1 floor drain that was previously removed).
Number of entry p	points that will remain after proposed closure: 0
Designer of UIC v	vell closure activities: Matthew Kissane, Fuss & O'Neill
Installer of UIC w	ell closure activities: Matthew Kissane, Fuss & O'Neill
Application prepa	red by: Matthew Kissane, Fuss & O'Neill

MassDEP concurs with the proposed UIC well closure activities as described in the Fuss & O'Neill letter dated October 25, 2022, that was included as a PDF attachment to the eDEP UIC registration application form.

This UIC well registration and pre-closure authorization is contingent upon satisfying the following requirements:

• You shall notify MassDEP's UIC Registration program of the date(s) selected to conduct the proposed UIC well closure activities at least two business days prior to that date to allow MassDEP to schedule staff to be present onsite to witness those activities. That notification may be sent via email or voice

message or text message to Joe Cerutti, MassDEP UIC program coordinator at 781-465-4123 (mobile) or by e-mail at <u>ioseph.cerutti@mass.gov</u> The well closure activities shall not be scheduled for November 11, 16, or 17, as MassDEP UIC program staff are unavailable to witness on those days. All other business days are acceptable at this time.

- You are required to provide the UIC ID# issued in this email on all future correspondence with MassDEP/DWP related to these registered UIC wells.
- All correspondence related to the UIC program that is not submitted through MassDEP's eDEP electronic filing system shall be emailed to <u>ask.UIC@mass.gov</u> or joseph.cerutti@mass.gov
- Within seven (7) days following the completion of the closure of the UIC wells you are required to submit to the MassDEP/DWP documentation of the closure with a UIC Class V Well Post-Closure Notification Form. The completion of UIC well closure activities date is the date of your receipt of the required laboratory analytical report for the soil samples collected during the closure activities. Due to an error that occurred on MassDEP's end of the eDEP UIC registration application system, you will not be able to submit the post-closure form through your eDEP account. Instead, please download the form at the following MassDEP web page: https://www.mass.gov/how-to/uic-class-v-well-post-closure-notification-form. That form may be submitted as an electronic attachment in an email to either ask.UIC@mass.gov or joseph.cerutti@mass.gov
- A narrative statement describing the well closure activities and information regarding sample collection locations shall be submitted electronically with the Post-Closure Notification Form.
- A copy of the complete laboratory analytical report(s) for all analytical results that are used to document the UIC well closure activities (may sent as a PDF document to to the above referenced email addresses).
- Since the building in which the floor drain was located has been demolished, MassDEP will **not** be requiring the submittal of a MassDEP *Form WS1, Notice of Plumbing Inspector Approval to Seal Floor Drain* for the sealing/removal of the floor drain.
- The applicant is required to maintain a copy of all documentation related to this permit application including but not limited to all the forms, correspondence and their respective noted attachments including site maps, and detail sheets for a period of three years following the submittal date of the UIC post closure notification form.

There may be other local permits, ordinances, or regulations that apply. The issuance of a UIC registration number by MassDEP does not supersede the requirements of any other state or local regulatory entity.

If you have questions, please contact me at 781-465-4123 or by e-mail at joseph.cerutti@mass.gov .

This email has been copied to the following: Matthew Kissane, Fuss & O'Neill Deirdre Cabral MassDEP/BWR/DWP Section Chief- Western Regional Office Motamedi Saadi, MassDEP - Western Regional Office Kim Longridge, MassDEP - Western Regional Office Mary Grover, MassDEP - Western Regional Office

This message was copied to the Drinking Water Program Director's email account for archiving purposes – UIC registration and pre-closure approval

Joe Cerutti MassDEP Drinking Water Program, UIC program coordinator mobile: 781-465-4123

Photo 1 Footprint of former garage within the work area.

Photo 2 Drainpipe partially collapsed by backhoe. Test pit 3.

Photo 3 Drainpipe and eastern boundary of work area. Test pit 2.

Photo 4 Drainpipe and eastern boundary of work area. Terminus of drainpipe underneath shovel. Test pit 2.

Photo 5 Beginning of drainpipe partially impacted by groundwater. Test pit 1.

Photo 6 Drainpipe in center of photo. Beginning of drainpipe in right portion of photo. Test pit 1.

Photo 7 Sample location 1708221118-01. Test pit 1.

Photo 8 Test pits covered with native material and straw/hay..

		TEST	PIT I	.OG	Locati	on ID:	TP-1
	FUSS&O'NEILL	Project Name: <1	Laboren MIC Sheet: 1 of 1				
		Project Location:	Shuter	bury MA	Weath	er: 30	s, chuds
Contract	or Shutesbury Public	Works	Test Pit	Location De	scription:	Min b	widzy footprint
Operator	r:		Date St	ime Complete	22 d: 1118/	2.2	7
F&O Representative: Even & Matt				o Saturated Z	one:C	.5"	
Sample # Prefix: 1708221118 -01.03				Observation: (lear, u	o ode	2
Photos T	aken? YES NO	weepin	g/ Motung/ 5	tanding			
FIIOTO IN	MITERIAL D			r	ANALY	FICAL SAMPLES	
DEPTH	MATERIAL D	ESCRIPTION	PID	LITHOLOGIC	SAMPLE	DEPTH	
(FT)	DESCRIPTION	1.1.1	PID	CODE	TIME	(FT)	JARS ET RESERVATIVES
0-3"	SaND, t-c; tace gro	vel, submuddi,	0.0	500	-01	11-13"	1 202]ar
	Drawn , no orr, net C	10.5		Cro	@1115		1 Vopt-meat
12-24	111-1 - Town			6			2 000 - 20-1
12-21	SLAD T- WIGHT G	me ; no our;	0.0	Sp	a and		PTAS BOZ TON
and a second	1 met						1402,101
and a		a made a second second way would		an a	-		1
1.10					8 3		
-	and a second	a care and the second sec	ann an Calaman	en process on the same the or a should be		1	and the second strange second s
			2.5			1 second	
		and all the second s					
		and the second second second					
		A TAKE AN			2.		
SKETCH	I (Include North arrow) SY' IR-1 BS	Prin Pipe	- (pri - T	Showdwall te has no contar op of du @ 13	er 7 1 solver, mustim sim pil	when sheen,	trom drivin , or evidence 11°, bottom
Coordin Obtain Yes / 1	ed? No	East/Longitude	REMA Field Ins If refusa	RKS strument ID = l is encounter	= ed, desc r ib	e all effort	s used to confirm.
Pit Dimens	ions 10×4×2	and the	Field De	con: Yes / 1	No / Dedic	ated Devi	65
PROPOR Trace (tr) Little (ltl)	Some (sm) 20 to 3 10 to 20%And 35 to 50%	5%	BACKFI Asphalt /	LL Concrete	1	To	<u></u>
EXAMPL SAND, F- Loose. N	. E DESCRIPTION: M; sm F angular gravel; ltl silt; tr clay; (0 odor.	10R 5/4), wet at 7 ft.	Fill Cuttings/ Other	Native	Ô	То То То	bittom
Reviewed 1	by Staff:	And and a second second		a star in	1		in the second second

Q:\EA&R Resources\04 - Field Operations\Field Data Sheets\TestPitFieldData.doc Revised 6/8/2017

Soil Sampling Field Data

Client/Project Name: Shutesbury	VIC	
Project Location: Shutesbury, MA	PROJECT #: 2009/032 .AZZ	FUSS & O'NEILL
3	Sample Location ID	TOSS&O NEILE
Sample#: 1705221118-02	Dripline	

Sample Location Description

Building Fortpant SY' estimate = 1 15.07:X	-' 1
29'	F
× '54.5'	

	2		
Sample Data	Container	Quantity	Preservative
Date: 11/18/22 Time: 1155	802	١	
Sampler:_EPKWeather: <u>30s</u> , cloudy	4.02	1	
Sampling Device: Auger / Geoprobe / Shovel / Split Spoon / Trowel (Other) While glove, nutre rock			
Field decon: Yes / No / Dedicated			
Type of Sample: Grab / Composite /			
Other 3 pt. grub composite	1		
Sample Depth: <u>4"-6"</u> PetroFLAG / OVM <u>O.O</u>	· · ·	-	1 m 1 2
	12 A		

Comments: Diplice location sampled for DFAS

Q:\EA&R Resources \04 - Field Operations \Field Data Sheets SoilSampling
FieldData.doc Revised 6/8/2017

TEST PIT LOG Location ID: FUSS&O'NEILL Sheet:_ Project Name: M Project #:__ 2009102 30s, chards Weather:___ Project Location: S Ma mterburg Test Pit Location Description: Comer, by Metland Work Contractor: Date Started: 1118 22 Operator: Date/Time Completed: 1118/22 Matt & Evan F&O Representative:____ Depth to Saturated Zone:_ Sampling Method: 3 (2026 Composite Water Observation: Clew, no odd Sample # Prefix: 17-38221118-0 Weeping/Mottling/Standing Photos Taken? YES NO Photo Numbers: MATERIAL DESCRIPTION ANALYTICAL SAMPLES DEPTH DEPTH SAMPLE LITHOLOGIC CODE JARS & PRESERVATIVES INTERVAL (FT) PID NO. & DESCRIPTION RANGE (FT) SAND F-C, trace silt; trace growel, subranded; brown; no other; not @ - 01 10-12" 1Soz Jor 0.0 @ 1229 1. UDA - Medy 2 WA-stir Q-15' SAND from; light brown; no oder; met 0.0 - Grandwetter = water from drain pipe hus us odor, sheen, or ordere of contamination land - Top of drain pipe @ 12". SKETCH (Include North arrow) 367' REMARKS North/Latitude East/Longitude Coordinates Field Instrument ID = **Obtained?** If refusal is encountered, describe all efforts used to confirm. Yes / No Pit z' × 15" Dimensions Field Decon: Yes / No / Dedicated Device **PROPORTIONS USED:** Trace (tr) 0 to 10% Some (sm) 20 to 35% BACKFILL Little (Itl) 10 to 20% And 35 to 50% Asphalt / Concrete To Fill To **EXAMPLE DESCRIPTION:** bottom SAND, F-M; sm F angular gravel; ltl silt; tr clay; (10R 5/4), wet at 7 ft. Cuttings/Native To_ Loose. No odor. Other_ To Reviewed by Staff:

Q:\EA&R Resources\04 - Field Operations\Field Data Sheets\TestPitFieldData.doc Revised 6/8/2017

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 2K21016 Client Project: 20091032.A22 - Shutesbury Library

Report Date: 02-December-2022

Prepared for:

Matt Kissane Fuss & O'Neill 317 Iron Horse Way Providence, RI 02908

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted :

The samples listed below were submitted to New England Testing Laboratory on 11/21/22. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 2K21016. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
2K21016-01	1708221118-01	Soil	11/18/2022	11/21/2022
2K21016-02	1708221118-04	Soil	11/18/2022	11/21/2022
2K21016-03	1708221118-TB	Soil	11/18/2022	11/21/2022

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

1708221118-01 (Lab Number: 2K21016-01)

Analysis	Method
Arsenic	EPA 6010C
Barium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Lead	EPA 6010C
MADEP EPH	MADEP EPH
MADEP VPH	MADEP VPH
Mercury	EPA 7471B
Nickel	EPA 6010C
PCBs	EPA 8082A
Selenium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C
1708221118-04 (Lab Number: 2K21016-02)	
Analysis	Method
Analysis Arsenic	<u>Method</u> EPA 6010C
Analysis Arsenic Barium	<u>Method</u> EPA 6010C EPA 6010C
Analysis Arsenic Barium Cadmium	<u>Method</u> EPA 6010C EPA 6010C EPA 6010C
Analysis Arsenic Barium Cadmium Chromium	<u>Method</u> EPA 6010C EPA 6010C EPA 6010C EPA 6010C
Analysis Arsenic Barium Cadmium Chromium Lead	<u>Method</u> EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH	<u>Method</u> EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 7471B
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury Nickel	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 7471B EPA 6010C
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury Nickel PCBs	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 7471B EPA 6010C EPA 8082A
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury Nickel PCBs Selenium	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 6010C EPA 7471B EPA 6010C EPA 6010C EPA 6010C
Analysis Arsenic Barium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury Nickel PCBs Selenium Volatile Organic Compounds	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 6010C EPA 7471B EPA 6010C EPA 6010C EPA 6010C EPA 8082A EPA 6010C EPA 8082A EPA 8260C
Analysis Arsenic Barium Cadmium Cadmium Chromium Lead MADEP EPH MADEP VPH Mercury Nickel PCBs Selenium Volatile Organic Compounds Zinc	Method EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 6010C MADEP EPH MADEP VPH EPA 6010C EPA 7471B EPA 6010C EPA 6010C EPA 6010C EPA 6010C EPA 8082A EPA 8010C EPA 8010C EPA 6010C EPA 6010C

<u>Analysis</u>	<u>Method</u>
Volatile Organic Compounds	EPA 8260C

Method References

Method for the Determination of Extractable Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2004

Method for the Determination of Volatile Petroleum Hydrocarbons, Rev. 2.1, Massachusetts Department of Environmental Protection, 2018

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt:

The samples associated with this work order were received in appropriately cooled and preserved containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Exceptions: None

Analysis:

All samples were prepared and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control requirements and allowances. Results for all soil samples, unless otherwise indicated, are reported on a dry weight basis.

Exceptions: None

Results: Total Metals

Sample: 1708221118-01 Lab Number: 2K21016-01 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Arsenic	1.62		1.37	mg/kg	11/22/22	11/30/22
Barium	44.8		0.45	mg/kg	11/22/22	11/30/22
Cadmium	1.26		0.69	mg/kg	11/22/22	11/30/22
Chromium	10.4		0.69	mg/kg	11/22/22	11/30/22
Lead	38.2		0.69	mg/kg	11/22/22	11/30/22
Mercury	ND		0.202	mg/kg	11/30/22	11/30/22
Nickel	10.5		0.69	mg/kg	11/22/22	11/30/22
Selenium	ND		1.37	mg/kg	11/22/22	11/30/22
Zinc	108		2.7	mg/kg	11/22/22	11/30/22

Results: Total Metals

Sample: 1708221118-04 Lab Number: 2K21016-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Arsenic	1.65		1.25	mg/kg	11/22/22	11/30/22
Barium	19.4		0.41	mg/kg	11/22/22	11/30/22
Cadmium	0.97		0.63	mg/kg	11/22/22	11/30/22
Chromium	7.87		0.63	mg/kg	11/22/22	11/30/22
Lead	36.9		0.63	mg/kg	11/22/22	11/30/22
Mercury	ND		0.197	mg/kg	11/30/22	11/30/22
Nickel	9.26		0.63	mg/kg	11/22/22	11/30/22
Selenium	ND		1.25	mg/kg	11/22/22	11/30/22
Zinc	50.5		2.5	mg/kg	11/22/22	11/30/22

Results: Volatile Organic Compounds

Sample: 1708221118-01 Lab Number: 2K21016-01 (Soil)

Reporting **Date Analyzed** Analyte Result Qual Limit Units **Date Prepared** 12/01/22 Acetone ND 8 ug/kg 12/01/22 Benzene ND 8 ug/kg 12/01/22 12/01/22 ND 8 12/01/22 12/01/22 Bromobenzene ug/kg Bromochloromethane ND 8 12/01/22 12/01/22 ug/kg 8 12/01/22 Bromodichloromethane ND 12/01/22 ug/kg Bromoform ND 8 ug/kg 12/01/22 12/01/22 Bromomethane ND 8 12/01/22 12/01/22 ug/kg 2-Butanone ND 8 ug/kg 12/01/22 12/01/22 tert-Butyl alcohol ND 8 ug/kg 12/01/22 12/01/22 sec-Butylbenzene ND 8 ug/kg 12/01/22 12/01/22 n-Butylbenzene ND 8 ug/kg 12/01/22 12/01/22 tert-Butylbenzene ND 8 ug/kg 12/01/22 12/01/22 Methyl t-butyl ether (MTBE) ND 8 ug/kg 12/01/22 12/01/22 Carbon Disulfide ND 8 ug/kg 12/01/22 12/01/22 Carbon Tetrachloride ND 8 ug/kg 12/01/22 12/01/22 Chlorobenzene ND 8 12/01/22 12/01/22 ug/kg 8 12/01/22 Chloroethane ND ug/kg 12/01/22 Chloroform ND 11 12/01/22 12/01/22 ug/kg Chloromethane ND 27 12/01/22 12/01/22 ug/kg 4-Chlorotoluene ND 8 12/01/22 12/01/22 ug/kg 2-Chlorotoluene ND 8 ug/kg 12/01/22 12/01/22 1,2-Dibromo-3-chloropropane (DBCP) ND 8 ug/kg 12/01/22 12/01/22 Dibromochloromethane ND 8 12/01/22 12/01/22 ug/kg 1,2-Dibromoethane (EDB) ND 8 12/01/22 12/01/22 ug/kg Dibromomethane ND 8 12/01/22 12/01/22 ug/kg 1,2-Dichlorobenzene ND 8 12/01/22 12/01/22 ug/kg 8 1,3-Dichlorobenzene ND ug/kg 12/01/22 12/01/22 1,4-Dichlorobenzene ND 8 ug/kg 12/01/22 12/01/22 1,1-Dichloroethane ND 8 ug/kg 12/01/22 12/01/22 1,2-Dichloroethane ND 8 ug/kg 12/01/22 12/01/22 8 ND 12/01/22 12/01/22 trans-1,2-Dichloroethene ug/kg 8 12/01/22 cis-1,2-Dichloroethene ND ug/kg 12/01/22 ND 8 12/01/22 12/01/22 1.1-Dichloroethene ug/kg 1,2-Dichloropropane ND 8 12/01/22 12/01/22 ug/kg 8 2,2-Dichloropropane ND ug/kg 12/01/22 12/01/22 cis-1,3-Dichloropropene ND 8 ug/kg 12/01/22 12/01/22 trans-1,3-Dichloropropene ND 8 12/01/22 12/01/22 ug/kg 1,1-Dichloropropene ND 8 12/01/22 12/01/22 ug/kg ND 8 12/01/22 1,3-Dichloropropene (cis + trans) 12/01/22 ug/kg Diethyl ether ND 13 ug/kg 12/01/22 12/01/22 1,4-Dioxane ND 156 12/01/22 12/01/22 ug/kg Ethylbenzene ND 8 ug/kg 12/01/22 12/01/22 Hexachlorobutadiene ND 8 ug/kg 12/01/22 12/01/22 2-Hexanone ND 8 ug/kg 12/01/22 12/01/22 Isopropylbenzene ND 8 ug/kg 12/01/22 12/01/22 8 12/01/22 p-Isopropyltoluene ND ug/kg 12/01/22 Methylene Chloride ND 108 ug/kg 12/01/22 12/01/22

8

ug/kg

12/01/22

ND

4-Methyl-2-pentanone

Page 7 of 38

12/0

Results: Volatile Organic Compounds (Continued)

Sample: 1708221118-01 (Continued)

Lab Number: 2K21016-01 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND		8	ug/kg	12/01/22	12/01/22
n-Propylbenzene	ND		8	ug/kg	12/01/22	12/01/22
Styrene	ND		8	ug/kg	12/01/22	12/01/22
1,1,1,2-Tetrachloroethane	ND		8	ug/kg	12/01/22	12/01/22
Tetrachloroethene	ND		8	ug/kg	12/01/22	12/01/22
Tetrahydrofuran	ND		8	ug/kg	12/01/22	12/01/22
Toluene	ND		8	ug/kg	12/01/22	12/01/22
1,2,4-Trichlorobenzene	ND		8	ug/kg	12/01/22	12/01/22
1,2,3-Trichlorobenzene	ND		8	ug/kg	12/01/22	12/01/22
1,1,2-Trichloroethane	ND		8	ug/kg	12/01/22	12/01/22
1,1,1-Trichloroethane	ND		8	ug/kg	12/01/22	12/01/22
Trichloroethene	ND		8	ug/kg	12/01/22	12/01/22
1,2,3-Trichloropropane	ND		8	ug/kg	12/01/22	12/01/22
1,3,5-Trimethylbenzene	ND		8	ug/kg	12/01/22	12/01/22
1,2,4-Trimethylbenzene	ND		8	ug/kg	12/01/22	12/01/22
Vinyl Chloride	ND		8	ug/kg	12/01/22	12/01/22
o-Xylene	ND		8	ug/kg	12/01/22	12/01/22
m&p-Xylene	ND		16	ug/kg	12/01/22	12/01/22
Total xylenes	ND		8	ug/kg	12/01/22	12/01/22
1,1,2,2-Tetrachloroethane	ND		8	ug/kg	12/01/22	12/01/22
tert-Amyl methyl ether	ND		8	ug/kg	12/01/22	12/01/22
1,3-Dichloropropane	ND		8	ug/kg	12/01/22	12/01/22
Ethyl tert-butyl ether	ND		8	ug/kg	12/01/22	12/01/22
Diisopropyl ether	ND		8	ug/kg	12/01/22	12/01/22
Trichlorofluoromethane	ND		8	ug/kg	12/01/22	12/01/22
Dichlorodifluoromethane	ND		8	ug/kg	12/01/22	12/01/22
Surrogate(s)	Recovery%		Limit	S		
4-Bromofluorobenzene	98.4%		70-13	20	12/01/22	12/01/22
1,2-Dichloroethane-d4	98.8%		70-13	0	12/01/22	12/01/22
Toluene-d8	102%		70-13	0	12/01/22	12/01/22

Results: Volatile Organic Compounds

Sample: 1708221118-04

Lab Number: 2K21016-02 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		7	ua/ka	12/01/22	12/01/22
Benzene	ND		7	ua/ka	12/01/22	12/01/22
Bromobenzene	ND		7	ua/ka	12/01/22	12/01/22
Bromochloromethane	ND		7	ua/ka	12/01/22	12/01/22
Bromodichloromethane	ND		7	ua/ka	12/01/22	12/01/22
Bromoform	ND		7	ua/ka	12/01/22	12/01/22
Bromomethane	ND		7	ua/ka	12/01/22	12/01/22
2-Butanone	ND		7	ua/ka	12/01/22	12/01/22
tert-Butyl alcohol	ND		7	ua/ka	12/01/22	12/01/22
sec-Butylbenzene	ND		7	ua/ka	12/01/22	12/01/22
n-Butylbenzene	ND		7	ua/ka	12/01/22	12/01/22
tert-Butylbenzene	ND		7	ua/ka	12/01/22	12/01/22
Methyl t-butyl ether (MTBE)	ND		7	ua/ka	12/01/22	12/01/22
Carbon Disulfide	ND		7	ua/ka	12/01/22	12/01/22
Carbon Tetrachloride	ND		7	ua/ka	12/01/22	12/01/22
Chlorobenzene	ND		7	ua/ka	12/01/22	12/01/22
Chloroethane	ND		7	ua/ka	12/01/22	12/01/22
Chloroform	ND		9	ua/ka	12/01/22	12/01/22
Chloromethane	ND		23	ua/ka	12/01/22	12/01/22
4-Chlorotoluene	ND		7	ua/ka	12/01/22	12/01/22
2-Chlorotoluene	ND		7	ua/ka	12/01/22	12/01/22
1.2-Dibromo-3-chloropropane (DBCP)	ND		7	ua/ka	12/01/22	12/01/22
Dibromochloromethane	ND		7	ua/ka	12/01/22	12/01/22
1.2-Dibromoethane (EDB)	ND		7	ua/ka	12/01/22	12/01/22
Dibromomethane	ND		7	ua/ka	12/01/22	12/01/22
1.2-Dichlorobenzene	ND		7	ua/ka	12/01/22	12/01/22
1,3-Dichlorobenzene	ND		7	ua/ka	12/01/22	12/01/22
1,4-Dichlorobenzene	ND		7	ug/kg	12/01/22	12/01/22
1.1-Dichloroethane	ND		7	ua/ka	12/01/22	12/01/22
1,2-Dichloroethane	ND		7	ug/kg	12/01/22	12/01/22
trans-1,2-Dichloroethene	ND		7	ug/kg	12/01/22	12/01/22
cis-1,2-Dichloroethene	ND		7	ug/kg	12/01/22	12/01/22
1,1-Dichloroethene	ND		7	ug/kg	12/01/22	12/01/22
1,2-Dichloropropane	ND		7	ug/kg	12/01/22	12/01/22
2,2-Dichloropropane	ND		7	ug/kg	12/01/22	12/01/22
cis-1,3-Dichloropropene	ND		7	ug/kg	12/01/22	12/01/22
trans-1,3-Dichloropropene	ND		7	ug/kg	12/01/22	12/01/22
1,1-Dichloropropene	ND		7	ug/kg	12/01/22	12/01/22
1,3-Dichloropropene (cis + trans)	ND		7	ug/kg	12/01/22	12/01/22
Diethyl ether	ND		11	ug/kg	12/01/22	12/01/22
1,4-Dioxane	ND		134	ug/kg	12/01/22	12/01/22
Ethylbenzene	ND		7	ug/kg	12/01/22	12/01/22
Hexachlorobutadiene	ND		7	ug/kg	12/01/22	12/01/22
2-Hexanone	ND		7	ug/kg	12/01/22	12/01/22
Isopropylbenzene	ND		7	ug/kg	12/01/22	12/01/22
p-Isopropyltoluene	ND		7	ug/kg	12/01/22	12/01/22
Methylene Chloride	ND		93	ug/kg	12/01/22	12/01/22
4-Methyl-2-pentanone	ND		7	ug/kg	12/01/22	12/0 Page 9 of 38

Results: Volatile Organic Compounds (Continued)

Sample: 1708221118-04 (Continued)

Lab Number: 2K21016-02 (Soil)

			Reporting		.	
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND		7	ug/kg	12/01/22	12/01/22
n-Propylbenzene	ND		7	ug/kg	12/01/22	12/01/22
Styrene	ND		7	ug/kg	12/01/22	12/01/22
1,1,1,2-Tetrachloroethane	ND		7	ug/kg	12/01/22	12/01/22
Tetrachloroethene	ND		7	ug/kg	12/01/22	12/01/22
Tetrahydrofuran	ND		7	ug/kg	12/01/22	12/01/22
Toluene	ND		7	ug/kg	12/01/22	12/01/22
1,2,4-Trichlorobenzene	ND		7	ug/kg	12/01/22	12/01/22
1,2,3-Trichlorobenzene	ND		7	ug/kg	12/01/22	12/01/22
1,1,2-Trichloroethane	ND		7	ug/kg	12/01/22	12/01/22
1,1,1-Trichloroethane	ND		7	ug/kg	12/01/22	12/01/22
Trichloroethene	ND		7	ug/kg	12/01/22	12/01/22
1,2,3-Trichloropropane	ND		7	ug/kg	12/01/22	12/01/22
1,3,5-Trimethylbenzene	ND		7	ug/kg	12/01/22	12/01/22
1,2,4-Trimethylbenzene	ND		7	ug/kg	12/01/22	12/01/22
Vinyl Chloride	ND		7	ug/kg	12/01/22	12/01/22
o-Xylene	ND		7	ug/kg	12/01/22	12/01/22
m&p-Xylene	ND		13	ug/kg	12/01/22	12/01/22
Total xylenes	ND		7	ug/kg	12/01/22	12/01/22
1,1,2,2-Tetrachloroethane	ND		7	ug/kg	12/01/22	12/01/22
tert-Amyl methyl ether	ND		7	ug/kg	12/01/22	12/01/22
1,3-Dichloropropane	ND		7	ug/kg	12/01/22	12/01/22
Ethyl tert-butyl ether	ND		7	ug/kg	12/01/22	12/01/22
Diisopropyl ether	ND		7	ug/kg	12/01/22	12/01/22
Trichlorofluoromethane	ND		7	ug/kg	12/01/22	12/01/22
Dichlorodifluoromethane	ND		7	ug/kg	12/01/22	12/01/22
Surrogate(s)	Recovery%		Limi	its		
4-Bromofluorobenzene	98.5%		70-1	30	12/01/22	12/01/22
1,2-Dichloroethane-d4	98.4%		70-1	30	12/01/22	12/01/22
Toluene-d8	103%		70-1	30	12/01/22	12/01/22

Results: Volatile Organic Compounds

Sample: 1708221118-TB

Lab Number: 2K21016-03 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Acetone	ND		1000	ug/kg	11/30/22	12/01/22
Benzene	ND		50	ug/kg	11/30/22	12/01/22
Bromobenzene	ND		50	ug/kg	11/30/22	12/01/22
Bromochloromethane	ND		50	ug/kg	11/30/22	12/01/22
Bromodichloromethane	ND		50	ug/kg	11/30/22	12/01/22
Bromoform	ND		50	ug/kg	11/30/22	12/01/22
Bromomethane	ND		50	ug/kg	11/30/22	12/01/22
2-Butanone	ND		250	ug/kg	11/30/22	12/01/22
tert-Butyl alcohol	ND		250	ug/kg	11/30/22	12/01/22
sec-Butylbenzene	ND		50	ug/kg	11/30/22	12/01/22
n-Butylbenzene	ND		50	ug/kg	11/30/22	12/01/22
tert-Butylbenzene	ND		50	ug/kg	11/30/22	12/01/22
Methyl t-butyl ether (MTBE)	ND		50	ug/kg	11/30/22	12/01/22
Carbon Disulfide	ND		50	ug/kg	11/30/22	12/01/22
Carbon Tetrachloride	ND		50	ug/kg	11/30/22	12/01/22
Chlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
Chloroethane	ND		50	ug/kg	11/30/22	12/01/22
Chloroform	ND		50	ug/kg	11/30/22	12/01/22
Chloromethane	ND		50	ug/kg	11/30/22	12/01/22
4-Chlorotoluene	ND		50	ug/kg	11/30/22	12/01/22
2-Chlorotoluene	ND		50	ug/kg	11/30/22	12/01/22
1,2-Dibromo-3-chloropropane (DBCP)	ND		50	ug/kg	11/30/22	12/01/22
Dibromochloromethane	ND		50	ug/kg	11/30/22	12/01/22
1,2-Dibromoethane (EDB)	ND		50	ug/kg	11/30/22	12/01/22
Dibromomethane	ND		50	ug/kg	11/30/22	12/01/22
1,2-Dichlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
1,3-Dichlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
1,4-Dichlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
1,1-Dichloroethane	ND		50	ug/kg	11/30/22	12/01/22
1,2-Dichloroethane	ND		50	ug/kg	11/30/22	12/01/22
trans-1,2-Dichloroethene	ND		50	ug/kg	11/30/22	12/01/22
cis-1,2-Dichloroethene	ND		50	ug/kg	11/30/22	12/01/22
1,1-Dichloroethene	ND		50	ug/kg	11/30/22	12/01/22
1,2-Dichloropropane	ND		50	ug/kg	11/30/22	12/01/22
2,2-Dichloropropane	ND		50	ug/kg	11/30/22	12/01/22
cis-1,3-Dichloropropene	ND		50	ug/kg	11/30/22	12/01/22
trans-1,3-Dichloropropene	ND		50	ug/kg	11/30/22	12/01/22
1,1-Dichloropropene	ND		50	ug/kg	11/30/22	12/01/22
1,3-Dichloropropene (cis + trans)	ND		100	ug/kg	11/30/22	12/01/22
Diethyl ether	ND		250	ug/kg	11/30/22	12/01/22
1,4-Dioxane	ND		5000	ug/kg	11/30/22	12/01/22
Ethylbenzene	ND		50	ug/kg	11/30/22	12/01/22
Hexachlorobutadiene	ND		50	ug/kg	11/30/22	12/01/22
2-Hexanone	ND		250	ug/kg	11/30/22	12/01/22
Isopropylbenzene	ND		50	ug/kg	11/30/22	12/01/22
p-Isopropyltoluene	ND		50	ug/kg	11/30/22	12/01/22
Methylene Chloride	ND		100	ug/kg	11/30/22	12/01/22
4-Methyl-2-pentanone	ND		250	ug/kg	11/30/22	^{12/0} Page 11 of 38

Results: Volatile Organic Compounds (Continued)

Sample: 1708221118-TB (Continued)

Lab Number: 2K21016-03 (Soil)

			Reporting			
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Naphthalene	ND		50	ug/kg	11/30/22	12/01/22
n-Propylbenzene	ND		50	ug/kg	11/30/22	12/01/22
Styrene	ND		50	ug/kg	11/30/22	12/01/22
1,1,1,2-Tetrachloroethane	ND		50	ug/kg	11/30/22	12/01/22
Tetrachloroethene	ND		50	ug/kg	11/30/22	12/01/22
Tetrahydrofuran	ND		250	ug/kg	11/30/22	12/01/22
Toluene	ND		50	ug/kg	11/30/22	12/01/22
1,2,4-Trichlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
1,2,3-Trichlorobenzene	ND		50	ug/kg	11/30/22	12/01/22
1,1,2-Trichloroethane	ND		50	ug/kg	11/30/22	12/01/22
1,1,1-Trichloroethane	ND		50	ug/kg	11/30/22	12/01/22
Trichloroethene	ND		50	ug/kg	11/30/22	12/01/22
1,2,3-Trichloropropane	ND		50	ug/kg	11/30/22	12/01/22
1,3,5-Trimethylbenzene	ND		50	ug/kg	11/30/22	12/01/22
1,2,4-Trimethylbenzene	ND		50	ug/kg	11/30/22	12/01/22
Vinyl Chloride	ND		50	ug/kg	11/30/22	12/01/22
o-Xylene	ND		50	ug/kg	11/30/22	12/01/22
m&p-Xylene	ND		100	ug/kg	11/30/22	12/01/22
Total xylenes	ND		50	ug/kg	11/30/22	12/01/22
1,1,2,2-Tetrachloroethane	ND		50	ug/kg	11/30/22	12/01/22
tert-Amyl methyl ether	ND		50	ug/kg	11/30/22	12/01/22
1,3-Dichloropropane	ND		50	ug/kg	11/30/22	12/01/22
Ethyl tert-butyl ether	ND		50	ug/kg	11/30/22	12/01/22
Diisopropyl ether	ND		50	ug/kg	11/30/22	12/01/22
Trichlorofluoromethane	ND		50	ug/kg	11/30/22	12/01/22
Dichlorodifluoromethane	ND		50	ug/kg	11/30/22	12/01/22
Surrogate(s)	Recovery%		Limit	S 		
4-Bromofluorobenzene	100%		70-13	0	11/30/22	12/01/22
1,2-Dichloroethane-d4	95.0%		70-13	0	11/30/22	12/01/22
Toluene-d8	97.7%		70-13	0	11/30/22	12/01/22

Volatile Petroleum Hydrocarbons Sample: 1708221118-01 (2K21016-01)

SAMPLE INFORMATION

Matrix	Soil				
Containers	Satisfactory				
	Aqueous	NA			
Sample	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol		
Fleseivation	Sediment	Methanol preserved (covering sample)	per gram soil:		
		Received in air-tight container			
Temperature	perature Received on Ice Received at: 4+/-2 C ^o				

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1	Client ID 1708221118-01					
Method for Target Analytes: EPA Method 8260C			L	ab ID	2K21016-01	
VPH Surrogate Standards:			Date Col	lected	11/18/22	
PID: 2,5-Dibromotoluene			Date Red	ceived	11/21/22	
FID: 2,5-Dibromotoluene			% M	oisture	21.50	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	7.7	mg/kg	<7.7	11/29/22 16:47
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	7.7	mg/kg	<7.7	11/29/22 16:47
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	7.7	mg/kg	<7.7	11/29/22 16:47
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	7.7	mg/kg	<7.7	11/29/22 16:47
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	7.7	mg/kg	<7.7	11/29/22 16:47
2,5-Dibromotoluene-PID				%	77.0	11/29/22 16:47
2,5-Dibromotoluene-FID				%	77.9	11/29/22 16:47
Surrogate Acceptance Range				%	70-130	

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Volatile Petroleum Hydrocarbons Sample: 1708221118-04 (2K21016-02)

SAMPLE INFORMATION

Matrix	Soil			
Containers	Satisfactory			
	Aqueous	NA		
Sample Preservation	Soil or	Preserved with methanol and/or in an air-tight container	ml methanol	
	Sediment	Methanol preserved (covering sample)	per gram soil: 1:1 +/- 25%	
		Received in air-tight container		
Temperature	Received on Ice Received at: 4+/-2 C°			

VPH ANALYTICAL RESULTS

Method for Ranges: MADEP VPH-18-2.1			Clie	nt ID	1708221118-04	
Method for Target Analytes: EPA Method 8260C			L	ab ID	2K21016-02	
VPH Surrogate Standards:			Date Col	lected	11/18/22	
PID: 2,5-Dibromotoluene			Date Red	ceived	11/21/22	
FID: 2,5-Dibromotoluene			% M	oisture	17.20	
RANGE/TARGET ANALYTE	Elution Range	Dilution	RL	Units	Result	Analyzed
Unadjusted C5-C8 Aliphatic Hydrocarbons [1]	NA	50X	7.1	mg/kg	<7.1	11/29/22 17:19
Unadjusted C9-C12 Aliphatic Hydrocarbons [1]	NA	50X	7.1	mg/kg	<7.1	11/29/22 17:19
C5-C8 Aliphatic Hydrocarbons [1,2]	NA	50X	7.1	mg/kg	<7.1	11/29/22 17:19
C9-C12 Aliphatic Hydrocarbons [1,3]	NA	50X	7.1	mg/kg	<7.1	11/29/22 17:19
C9-C10 Aromatic Hydrocarbons [1]	NA	50X	7.1	mg/kg	<7.1	11/29/22 17:19
2,5-Dibromotoluene-PID				%	77.5	11/29/22 17:19
2,5-Dibromotoluene-FID				%	76.9	11/29/22 17:19
Surrogate Acceptance Range				%	70-130	

[1] Hydrocarbon Range data excludes concentrations of any surrogate(s) and/or internal standards eluting in that range

[2] C5-C8 Aliphatic Hydrocarbons exclude the concentration of Target Analytes eluting in that range

[3] C9-C12 Aliphatic Hydrocarbons exclude conc of Target Analytes eluting in that range AND concentration of C9-C10 Aromatic Hydrocarbons

Results: Polychlorinated Biphenyls (PCBs)

Sample: 1708221118-01 Lab Number: 2K21016-01 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Aroclor-1016	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1221	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1232	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1242	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1248	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1254	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1260	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1262	ND		83	ug/kg	11/21/22	11/30/22
Aroclor-1268	ND		83	ug/kg	11/21/22	11/30/22
PCBs (Total)	ND		83	ug/kg	11/21/22	11/30/22
Surrogate(s)	Recovery%		Limit	5		
2,4,5,6-Tetrachloro-m-xylene (TCMX)	70.9%		36.2-1.	30	11/21/22	11/30/22
Decachlorobiphenyl (DCBP)	63.0%		43.3-1.	30	11/21/22	11/30/22

Results: Polychlorinated Biphenyls (PCBs)

Sample: 1708221118-04 Lab Number: 2K21016-02 (Soil)

Reporting						
Analyte	Result	Qual	Limit	Units	Date Prepared	Date Analyzed
Aroclor-1016	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1221	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1232	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1242	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1248	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1254	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1260	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1262	ND		78	ug/kg	11/21/22	11/30/22
Aroclor-1268	ND		78	ug/kg	11/21/22	11/30/22
PCBs (Total)	ND		78	ug/kg	11/21/22	11/30/22
Surrogate(s)	Recovery%		Limit	S		
2,4,5,6-Tetrachloro-m-xylene (TCMX)	59.0%		36.2-1	30	11/21/22	11/30/22
Decachlorobiphenyl (DCBP)	66.4%		43.3-130		11/21/22	11/30/22

Extractable Petroleum Hydrocarbons Sample: 1708221118-01 (2K21016-01)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP EPH 4-1.1				Client ID	1708221118-01		
Method for Target Analytes: MADEP EPH 4-1.1				Lab ID	2K21016-01		
EPH Surrogate Standards:			Dat	te Collected	11/18/22		
Aliphatic: Chlorooctadecane			Da	te Received	11/21/22		
Aromatic: o-Terphenyl			D	ate Thawed	NA		
			Dat	e Extracted	11/27/22		
EPH Fractionation Surrogates	:		Perce	nt Moisture	21.50		
(1) 2-Fluorobiphenyl (2) 2-Bromonaphthalene							
RANGE/TARGET ANALYTE	l l	Dilution	RL	Units	Result	Analyzed	
Unadjusted C11-C22 Arom	atic Hydrocarbons [1]	1X	8.44	mg/kg	67.7	12/02/22 02:17	
	Naphthalene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
Diesel PAH	2-Methylnaphthalene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
Analytes	Phenanthrene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Acenaphthene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Acenaphthylene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
1	Fluorene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Anthracene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Fluoranthene	1X	0.42	mg/kg	0.98	12/02/22 02:17	
	Pyrene	1X	0.42	mg/kg	0.89	12/02/22 02:17	
	Benzo(a)anthracene	1X	0.42	mg/kg	0.67	12/02/22 02:17	
Other	Chrysene	1X	0.42	mg/kg	0.78	12/02/22 02:17	
Target PAH	Benzo(b)fluoranthene	1X	0.42	mg/kg	0.66	12/02/22 02:17	
Analytes	Benzo(k)fluoranthene	1X	0.42	mg/kg	0.59	12/02/22 02:17	
	Benzo(a)pyrene	1X	0.42	mg/kg	0.61	12/02/22 02:17	
	Indeno(1,2,3-cd)pyrene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Dibenz(a,h)anthracene	1X	0.42	mg/kg	<0.42	12/02/22 02:17	
	Benzo(g,h,i)perylene	1X	0.42	mg/kg	0.42	12/02/22 02:17	
C9-C18 Aliphatic Hydrocar	bons [1]	1X	16.8	mg/kg	<16.8	12/01/22 14:20	
C19-C36 Aliphatic Hydrocarbons [1]		1X	16.8	mg/kg	165	12/01/22 14:20	
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	8.44	mg/kg	62.1	12/02/22 02:17	
Chlorooctadecane (Sample	e Surrogate)			%	64.4	12/01/22 14:20	
o-Terphenyl (Sample Surr	ogate)			%	65.1	12/02/22 02:17	
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	78.3	12/02/22 02:17	
2-Bromonaphthalene (Fra	ctionation Surrogate)			%	76.7	12/02/22 02:17	
Surrogate Acceptance Range [3]			%	40 - 140		

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Extractable Petroleum Hydrocarbons Sample: 1708221118-04 (2K21016-02)

SAMPLE INFORMATION

Matrix	Soil
Containers	Satisfactory
Aqueous Preservatives	NA
Temperature	Received on Ice Received at: 4+/-2 C°
Extraction Method	EPA Method 3546

EPH ANALYTICAL RESULTS

Method for Ranges: MADEP E	PH 4-1.1			Client ID	1708221118-04			
Method for Target Analytes: I	Madep EPH 4-1.1			Lab ID	2K21016-02			
EPH Surrogate Standards:			Dat	te Collected	11/18/22			
Aliphatic: Chlorooctadecane			Da	te Received	11/21/22			
Aromatic: o-Terphenyl			D	ate Thawed	NA			
			Dat	e Extracted	11/27/22			
EPH Fractionation Surrogates	:		Perce	nt Moisture	17.20			
(1) 2-Fluoropipnenyl (2) 2-Bromonaphthalene								
RANGE/TARGET ANALYTE	l l	Dilution	RL	Units	Result	Analyzed		
Unadjusted C11-C22 Arom	atic Hydrocarbons [1]	1X	8.00	mg/kg	26.5	12/02/22 01:32		
	Naphthalene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
Diesel PAH	2-Methylnaphthalene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
Analytes	Analytes Phenanthrene		0.40	mg/kg	<0.40	12/02/22 01:32		
	Acenaphthene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Acenaphthylene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Fluorene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Anthracene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Fluoranthene	1X	0.40	mg/kg	0.87	12/02/22 01:32		
	Pyrene	1X	0.40	mg/kg	0.78	12/02/22 01:32		
	Benzo(a)anthracene	1X	0.40	mg/kg	0.60	12/02/22 01:32		
Other	Chrysene	1X	0.40	mg/kg	0.67	12/02/22 01:32		
Target PAH	Benzo(b)fluoranthene	1X	0.40	mg/kg	0.49	12/02/22 01:32		
Analytes	Benzo(k)fluoranthene	1X	0.40	mg/kg	0.53	12/02/22 01:32		
	Benzo(a)pyrene	1X	0.40	mg/kg	0.54	12/02/22 01:32		
	Indeno(1,2,3-cd)pyrene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Dibenz(a,h)anthracene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
	Benzo(g,h,i)perylene	1X	0.40	mg/kg	<0.40	12/02/22 01:32		
C9-C18 Aliphatic Hydrocar	bons [1]	1X	15.9	mg/kg	<15.9	12/01/22 14:44		
C19-C36 Aliphatic Hydroca	arbons [1]	1X	15.9	mg/kg	<15.9	12/01/22 14:44		
C11-C22 Aromatic Hydroca	arbons [1,2]	1X	8.00	mg/kg	22.0	12/02/22 01:32		
Chlorooctadecane (Sample	e Surrogate)			%	46.5	12/01/22 14:44		
o-Terphenyl (Sample Surro	ogate)			%	41.5	12/02/22 01:32		
2-Fluorobiphenyl (Fraction	ation Surrogate)			%	62.2	12/02/22 01:32		
2-Bromonaphthalene (Frac	2-Bromonaphthalene (Fractionation Surrogate)			%	58.2	12/02/22 01:32		
Surrogate Acceptance Range [3]			%	40 - 140			

[1] Hydrocarbon range data excludes area counts of any surrogate(s) and/or internal standards eluting in that range.

[2] C11-C22 Aromatic Hydrocarbons excludes the concentration of Target PAH Analytes.

[3] See the case narrative in cases where a dash (-) is entered in the surrogate recovery block.

Quality Control

Total Metals

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1209 - Metals Di	aestion Soils									
Blank (B2K1209-BI K1)	J			F	Prenared: 11/2	2/22 Analyze	d. 11/29/22			
Selenium	ND		1.00	ma/ka		<i>2,22 7 (10)20</i>				
Arsenic	ND		1.00	ma/ka						
Barium	ND		0.33	ma/ka						
Zinc	ND		2.0	ma/ka						
Cadmium	ND		0.50	ma/ka						
Chromium	ND		0.50	ma/ka						
Lead	ND		0.50	ma/ka						
Nickel	ND		0.50	ma/ka						
	ND		0.50	ing/kg						
LCS (B2K1209-BS1)				F	Prepared: 11/2	2/22 Analyze	d: 11/29/22			
Zinc	91.0		2.0	mg/kg	100		91.0	85-115		
Lead	85.1		0.50	mg/kg	100		85.1	85-115		
Chromium	89.0		0.50	mg/kg	100		89.0	85-115		
Cadmium	88.0		0.50	mg/kg	100		88.0	85-115		
Barium	86.0		0.33	mg/kg	100		86.0	85-115		
Arsenic	17.6		1.00	mg/kg	20.0		88.2	85-115		
Nickel	87.0		0.50	mg/kg	100		87.0	85-112		
Selenium	17.4		1.00	mg/kg	20.0		87.1	85-115		
Batch: B2K1473 - Metals Co	old-Vapor Mercu	ry								
Blank (B2K1473-BLK1)	-	-			Prepared 8	Analyzed: 1	1/30/22			
Mercury	ND		0.140	mg/kg		·	-			
LCS (B2K1473-BS1)					Prepared 8	Analyzed: 1	1/30/22			
Mercury	0.510		0.140	mg/kg	0.500		102	93-114		

			Quality (Conti	Control						
Volatile Organic Compounds										
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0087 - EPA 5035										
Blank (B2L0087-BLK1)				Pr	epared: 12/0)1/22 Analyze	ed: 12/02/22			
Acetone	ND		5	ug/kg	· · · · · · ·	, ,				
Benzene	ND		5	ug/kg						
Bromobenzene	ND		5	ug/kg						
Bromochloromethane	ND		5	ug/kg						
Bromodichloromethane	ND		5	ug/kg						
Bromoform	ND		5	ug/kg						
Bromomethane	ND		5	ug/kg						
2-Butanone	ND		5	ug/kg						
tert-Butyl alcohol	ND		5	ug/kg						
sec-Butylbenzene	ND		5	ua/ka						
n-Butylbenzene	ND		5	ua/ka						
tert-Butylbenzene	ND		5	ua/ka						
Methyl t-hutyl ether (MTBE)	ND		5	ua/ka						
Carbon Disulfide	ND		5	ua/ka						
	ND		5	ua/ka						
Chlorobenzene			5	ug/kg						
Chloroothano			5	ug/kg						
Chloroform			5	ug/kg						
Chloromethana			5	ug/kg						
	ND		17	ug/kg						
			5	ug/kg						
2-Chlorotoluene	ND		5	ug/kg						
1,2-Dibromo-3-chioropropane (DBCP)	ND		5	ug/kg						
Dipromocnioromethane	ND		5	ug/kg						
1,2-Dibromoethane (EDB)	ND		5	ug/kg						
Dibromomethane	ND		5	ug/kg						
1,2-Dichlorobenzene	ND		5	ug/kg						
1,3-Dichlorobenzene	ND		5	ug/kg						
1,4-Dichlorobenzene	ND		5	ug/kg						
1,1-Dichloroethane	ND		5	ug/kg						
1,2-Dichloroethane	ND		5	ug/kg						
trans-1,2-Dichloroethene	ND		5	ug/kg						
cis-1,2-Dichloroethene	ND		5	ug/kg						
1,1-Dichloroethene	ND		5	ug/kg						
1,2-Dichloropropane	ND		5	ug/kg						
2,2-Dichloropropane	ND		5	ug/kg						
cis-1,3-Dichloropropene	ND		5	ug/kg						
trans-1,3-Dichloropropene	ND		5	ug/kg						
1,1-Dichloropropene	ND		5	ug/kg						
1,3-Dichloropropene (cis + trans)	ND		5	ug/kg						
Diethyl ether	ND		8	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		5	ug/kg						
Hexachlorobutadiene	ND		5	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		5	ug/kg						
p-Isopropyltoluene	ND		5	ug/kg						

ND

Methylene Chloride

Naphthalene

Styrene

Toluene

n-Propylbenzene

Tetrachloroethene

Tetrahydrofuran

4-Methyl-2-pentanone

1,1,1,2-Tetrachloroethane

1,2,4-Trichlorobenzene

1,2,3-Trichlorobenzene

69

5

5

5

5

5

5

5

5

5

5

ug/kg

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0087 - EPA 5035 (Contin	ued)									
Blank (B2L0087-BLK1)				Pr	epared: 12/0	1/22 Analyzed	1: 12/02/22			
1,1,2-Trichloroethane	ND		5	ug/kg						
1,1,1-Trichloroethane	ND		5	ug/kg						
Trichloroethene	ND		5	ug/kg						
1,2,3-Trichloropropane	ND		5	ug/kg						
1,3,5-Trimethylbenzene	ND		5	ug/kg						
1,2,4-Trimethylbenzene	ND		5	ug/kg						
Vinyl Chloride	ND		5	ug/kg						
o-Xylene	ND		5	ug/kg						
m&p-Xylene	ND		10	ug/kg						
Total xylenes	ND		5	ug/kg						
1,1,2,2-Tetrachloroethane	ND		5	ug/kg						
tert-Amyl methyl ether	ND		5	ug/kg						
1,3-Dichloropropane	ND		5	ug/kg						
Ethyl tert-butyl ether	ND		5	ug/kg						
Diisopropyl ether	ND		5	ug/kg						
Trichlorofluoromethane	ND		5	ug/kg						
Dichlorodifluoromethane	ND		5	ug/kg						
Surrogate: 4-Bromofluorobenzene			51.0	ug/kg	50.0		102	70-130		
Surrogate: 1,2-Dichloroethane-d4			49.4	ug/kg	50.0		98.8	70-130		
Surrogate: Toluene-d8			52.3	ug/kg	50.0		105	70-130		
LCS (B2I 0087-BS1)					Prenared 8	Analyzed: 12	/01/22			
Acetone	65			ua/ka	50.0	CAndiyzeu. 12	129	60-140		
Benzene	42			ua/ka	50.0		83.7	70-130		
Bromohenzene	44			ua/ka	50.0		89.0	70-130		
Bromochloromethane	40			ua/ka	50.0		79.3	70-130		
Bromodichloromethane	53			ua/ka	50.0		105	70-130		
Bromoform	50			ua/ka	50.0		101	70-130		
Bromomethane	11			ug/kg	50.0		21.9	60-140		
2-Butanone	56			ug/kg	50.0		112	60-140		
tert-Butyl alcohol	38			ug/kg	50.0		75.3	70-130		
sec-Butylbenzene	42			ug/kg	50.0		84.9	70-130		
n-Butylbenzene	40			ug/kg	50.0		80.0	70-130		
tert-Butylbenzene	43			ug/kg	50.0		86.0	70-130		
Methyl t-butyl ether (MTBE)	59			ug/kg	50.0		119	70-130		
Carbon Disulfide	48			ug/kg	50.0		95.2	50-150		
Carbon Tetrachloride	46			ug/kg	50.0		91.3	70-130		
Chlorobenzene	42			ug/kg	50.0		84.2	70-130		
Chloroethane	53			ug/kg	50.0		105	60-140		
Chloroform	49			ug/kg	50.0		97.4	70-130		
Chloromethane	75			ug/kg	50.0		150	60-140		
4-Chlorotoluene	44			ug/kg	50.0		87.1	70-130		
2-Chlorotoluene	44			ug/kg	50.0		87.1	70-130		
1,2-Dibromo-3-chloropropane (DBCP)	49			ug/kg	50.0		97.2	70-130		
Dibromochloromethane	53			ug/kg	50.0		107	70-130		
1,2-Dibromoethane (EDB)	49			ug/kg	50.0		98.8	70-130		
Dibromomethane	50			ug/kg	50.0		99.7	60-140		
1,2-Dichlorobenzene	42			ug/kg	50.0		84.6	70-130		
1,3-Dichlorobenzene	44			ug/kg	50.0		88.9	70-130		
1,4-Dichlorobenzene	41			ug/kg	50.0		82.3	70-130		
1,1-Dichloroethane	42			ug/kg	50.0		84.6	70-130		
1,2-Dichloroethane	50			ug/kg	50.0		101	70-130		
trans-1,2-Dichloroethene	41			ug/kg	50.0		81.9	70-130		
cis-1,2-Dichloroethene	44			ug/kg	50.0		87.8	70-130		
1,1-Dichloroethene	33			ug/kg	50.0		65.3	70-130		
1,2-Dichloropropane	45			ug/kg	50.0		90.7	70-130		
2,2-Dichloropropane	48			ug/kg	50.0		96.2	70-130		

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0087 - EPA 5035 (Contin	ued)									
LCS (B2L0087-BS1)	-				Prepared 8	Analyzed: 12	/01/22			
cis-1,3-Dichloropropene	48			ug/kg	50.0		96.3	70-130		
trans-1,3-Dichloropropene	53			ug/kg	50.0		106	70-130		
1,1-Dichloropropene	39			ug/kg	50.0		78.5	70-130		
Diethyl ether	58			ug/kg	50.0		116	60-140		
1,4-Dioxane	254			ug/kg	250		102	0-200		
Ethylbenzene	43			ug/kg	50.0		86.3	70-130		
Hexachlorobutadiene	38			ug/kg	50.0		75.1	70-130		
2-Hexanone	49			ug/kg	50.0		97.1	70-130		
Isopropylbenzene	43			ug/kg	50.0		86.5	70-130		
p-Isopropyltoluene	44			ug/kg	50.0		87.2	70-130		
Methylene Chloride	63			ug/kg	50.0		125	60-140		
4-Methyl-2-pentanone	46			ug/kg	50.0		92.1	70-130		
Naphthalene	41			ug/kg	50.0		82.4	70-130		
n-Propylbenzene	43			ug/kg	50.0		85.9	70-130		
Styrene	43			ug/kg	50.0		86.6	70-130		
1,1,1,2-Tetrachloroethane	48			ug/kg	50.0		95.4	70-130		
Tetrachloroethene	46			ug/kg	50.0		92.3	70-130		
Tetrahydrofuran	50			ug/kg	50.0		99.7	50-150		
Toluene	45			ug/kg	50.0		90.1	70-130		
1,2,4-Trichlorobenzene	41			ug/kg	50.0		82.4	70-130		
1,2,3-Trichlorobenzene	41			ug/kg	50.0		81.5	70-130		
1,1,2-Trichloroethane	49			ug/kg	50.0		98.9	70-130		
1,1,1-Trichloroethane	46			ug/kg	50.0		92.5	70-130		
Trichloroethene	45			ug/kg	50.0		90.8	70-130		
1,2,3-Trichloropropane	49			ug/kg	50.0		97.0	70-130		
1,3,5-Trimethylbenzene	45			ug/kg	50.0		89.5	70-130		
1,2,4-Trimethylbenzene	45			ug/kg	50.0		89.2	70-130		
Vinyl Chloride	39			ug/kg	50.0		78.4	60-140		
o-Xylene	43			ug/kg	50.0		85.6	70-130		
m&p-Xylene	86			ug/kg	100		85.6	70-130		
1,1,2,2-Tetrachloroethane	46			ug/kg	50.0		91.1	70-130		
tert-Amyl methyl ether	52			ug/kg	50.0		105	70-130		
1,3-Dichloropropane	49			ug/kg	50.0		98.0	70-130		
Ethyl tert-butyl ether	50			ug/kg	50.0		99.5	70-130		
Trichlorofluoromethane	48			ug/kg	50.0		95.7	70-130		
Dichlorodifluoromethane	51			ug/kg	50.0		103	60-140		
Surrogate: 4-Bromofluorobenzene			52.5	ug/kg	50.0		105	70-130		
Surrogate: 1,2-Dichloroethane-d4			44.9	ug/kg	50.0		89.8	70-130		
Surrogate: Toluene-d8			52.3	ug/kg	50.0		105	70-130		

		<u> </u>	Reporting		Spike	Source		%REC		RPD
Analyte	Result	Qual	Limit	Units	Level	Result	%REC	Limits	RPD	Limit
Batch: B2L0087 - EPA 5035 (Co	ontinued)					A	2/01/22			
LCS Dup (B2L0087-BSD1)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			110/110	Prepared 8	x Analyzed: 1	2/01/22	CO 110	2.40	20
Acetone	63			ug/kg	50.0		127	60-140	2.19	30
Benzene	43			ug/kg	50.0		86.3	/0-130	3.06	20
Bromobenzene	47			ug/kg	50.0		93.4	/0-130	4.82	20
Bromochloromethane	41			ug/kg	50.0		81.6	70-130	2.83	20
Bromodichloromethane	55			ug/kg	50.0		110	70-130	3.89	20
Bromoform	52			ug/kg	50.0		104	70-130	2.72	20
Bromomethane	9			ug/kg	50.0		18.4	60-140	17.5	30
2-Butanone	65			ug/kg	50.0		129	60-140	14.4	30
tert-Butyl alcohol	33			ug/kg	50.0		66.3	70-130	12.7	20
sec-Butylbenzene	45			ug/kg	50.0		89.1	70-130	4.85	20
n-Butylbenzene	43			ug/kg	50.0		85.4	70-130	6.51	20
tert-Butylbenzene	45			ug/kg	50.0		90.1	70-130	4.68	20
Methyl t-butyl ether (MTBE)	48			ug/kg	50.0		96.1	70-130	21.1	20
Carbon Disulfide	44			ug/kg	50.0		87.2	50-150	8.68	40
Carbon Tetrachloride	47			ug/kg	50.0		93.4	70-130	2.32	20
Chlorobenzene	45			ug/kg	50.0		89.5	70-130	6.15	20
Chloroethane	48			ug/kg	50.0		96.6	60-140	8.67	30
Chloroform	51			ug/kg	50.0		102	70-130	4.48	20
Chloromethane	80			ug/kg	50.0		159	60-140	6.05	30
4-Chlorotoluene	46			ug/kg	50.0		91.7	70-130	5.14	20
2-Chlorotoluene	46			ug/kg 	50.0		91.7	70-130	5.14	20
1,2-Dibromo-3-chloropropane (DBCP)	50			ug/kg	50.0		99.5	70-130	2.34	20
Dibromochloromethane	55			ug/kg	50.0		110	70-130	2.90	20
1,2-Dibromoethane (EDB)	50			ug/kg	50.0		100	70-130	1.65	20
Dibromomethane	52			ug/kg	50.0		103	60-140	3.43	30
1,2-Dichlorobenzene	45			ug/kg	50.0		90.2	70-130	6.48	20
1,3-Dichlorobenzene	46			ug/kg	50.0		93.0	70-130	4.51	20
1,4-Dichlorobenzene	44			ug/kg	50.0		87.8	70-130	6.49	20
1,1-Dichloroethane	40			ug/kg	50.0		80.9	70-130	4.49	20
1,2-Dichloroethane	53			ug/kg	50.0		106	70-130	4.76	20
trans-1,2-Dichloroethene	33			ug/kg	50.0		66.1	70-130	21.4	20
cis-1,2-Dichloroethene	45			ug/kg	50.0		89.9	70-130	2.32	20
1,1-Dichloroethene	30			ug/kg	50.0		59.9	70-130	8.63	20
1,2-Dichloropropane	46			ug/kg	50.0		91.2	70-130	0.528	20
2,2-Dichloropropane	49			ug/kg	50.0		97.7	70-130	1.49	20
cis-1,3-Dichloropropene	50			ug/kg	50.0		100	70-130	3.89	20
trans-1,3-Dichloropropene	54			ug/kg	50.0		108	70-130	2.05	20
1,1-Dichloropropene	41			ug/kg	50.0		82.2	70-130	4.63	20
Diethyl ether	54			ug/kg	50.0		109	60-140	6.46	30
1,4-Dioxane	259			ug/kg	250		104	0-200	2.03	50
Ethylbenzene	45			ug/kg	50.0		90.4	70-130	4.71	20
Hexachlorobutadiene	41			ug/kg	50.0		82.1	70-130	8.88	20
2-Hexanone	52			ug/kg	50.0		105	70-130	7.55	20
Isopropylbenzene	45			ug/kg	50.0		90.5	70-130	4.50	20
p-Isopropyltoluene	46			ug/kg	50.0		91.7	70-130	5.03	20
Methylene Chloride	47			ug/kg	50.0		93.3	60-140	29.2	30
4-Methyl-2-pentanone	48			ug/kg	50.0		95.2	70-130	3.31	20
Naphthalene	45			ug/kg	50.0		89.5	70-130	8.26	20
n-Propylbenzene	45			ug/kg	50.0		89.9	70-130	4.60	20
Styrene	45			ug/kg	50.0		90.9	70-130	4.87	20
1,1,1,2-Tetrachloroethane	49			ug/kg	50.0		98.9	70-130	3.54	20
Tetrachloroethene	47			ug/kg	50.0		94.9	70-130	2.86	20
Tetrahydrofuran	54			ug/kg	50.0		108	50-150	7.96	40
Toluene	47			ug/kg	50.0		93.4	70-130	3.57	20
1,2,4-Trichlorobenzene	45			ug/kg	50.0		89.9	70-130	8.66	20
1,2,3-Trichlorobenzene	43			ug/kg	50.0		86.4	70-130	5.79	20
1,1,2-Trichloroethane	49			ug/kg	50.0		98.9	70-130	<u> </u>	
••									Page	23 of 38

Volatile Organic Compounds (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0087 - EPA 5035 (Conti	nued)									
LCS Dup (B2L0087-BSD1)	-				Prepared 8	& Analyzed: 12	2/01/22			
1,1,1-Trichloroethane	48			ug/kg	50.0		95.4	70-130	3.09	20
Trichloroethene	48			ug/kg	50.0		95.1	70-130	4.58	20
1,2,3-Trichloropropane	50			ug/kg	50.0		99.4	70-130	2.42	20
1,3,5-Trimethylbenzene	47			ug/kg	50.0		93.9	70-130	4.82	20
1,2,4-Trimethylbenzene	47			ug/kg	50.0		94.1	70-130	5.34	20
Vinyl Chloride	41			ug/kg	50.0		82.8	60-140	5.49	30
o-Xylene	45			ug/kg	50.0		89.7	70-130	4.65	20
m&p-Xylene	89			ug/kg	100		88.5	70-130	3.32	20
1,1,2,2-Tetrachloroethane	47			ug/kg	50.0		93.4	70-130	2.58	20
tert-Amyl methyl ether	54			ug/kg	50.0		107	70-130	2.55	20
1,3-Dichloropropane	50			ug/kg	50.0		99.2	70-130	1.16	20
Ethyl tert-butyl ether	52			ug/kg	50.0		104	70-130	4.88	20
Trichlorofluoromethane	49			ug/kg	50.0		97.5	70-130	1.82	20
Dichlorodifluoromethane	55			ug/kg	50.0		111	60-140	7.56	30
Surrogate: 4-Bromofluorobenzene			51.9	ug/kg	50.0		104	70-130		
Surrogate: 1,2-Dichloroethane-d4			47.4	ug/kg	50.0		94.7	70-130		
Surrogate: Toluene-d8			52.7	ug/kg	50.0		105	70-130		

Batch: B2L0092 - Purge-Trap

Diank (BZLUU9Z-BLKI)			Fiepa
Acetone	ND	20	ug/kg
Benzene	ND	1	ug/kg
Bromobenzene	ND	1	ug/kg
Bromochloromethane	ND	1	ug/kg
Bromodichloromethane	ND	1	ug/kg
Bromoform	ND	1	ug/kg
Bromomethane	ND	1	ug/kg
2-Butanone	ND	5	ug/kg
tert-Butyl alcohol	ND	5	ug/kg
sec-Butylbenzene	ND	1	ug/kg
n-Butylbenzene	ND	1	ug/kg
tert-Butylbenzene	ND	1	ug/kg
Methyl t-butyl ether (MTBE)	ND	1	ug/kg
Carbon Disulfide	ND	1	ug/kg
Carbon Tetrachloride	ND	1	ug/kg
Chlorobenzene	ND	1	ug/kg
Chloroethane	ND	1	ug/kg
Chloroform	ND	1	ug/kg
Chloromethane	ND	1	ug/kg
4-Chlorotoluene	ND	1	ug/kg
2-Chlorotoluene	ND	1	ug/kg
1,2-Dibromo-3-chloropropane (DBCP)	ND	1	ug/kg
Dibromochloromethane	ND	1	ug/kg
1,2-Dibromoethane (EDB)	ND	1	ug/kg
Dibromomethane	ND	1	ug/kg
1,2-Dichlorobenzene	ND	1	ug/kg
1,3-Dichlorobenzene	ND	1	ug/kg
1,4-Dichlorobenzene	ND	1	ug/kg
1,1-Dichloroethane	ND	1	ug/kg
1,2-Dichloroethane	ND	1	ug/kg
trans-1,2-Dichloroethene	ND	1	ug/kg
cis-1,2-Dichloroethene	ND	1	ug/kg
1,1-Dichloroethene	ND	1	ug/kg
1,2-Dichloropropane	ND	1	ug/kg
2,2-Dichloropropane	ND	1	ug/kg
cis-1,3-Dichloropropene	ND	1	ug/kg
trans-1,3-Dichloropropene	ND	1	ug/kg

Prepared: 11/30/22 Analyzed: 12/01/22

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0092 - Purge-Trap (Cont.	inued)									
Blank (B2L0092-BLK1)	,			Pr	epared: 11/3	0/22 Analyze	d: 12/01/22			
1,1-Dichloropropene	ND		1	ug/kg		. ,				
1,3-Dichloropropene (cis + trans)	ND		2	ug/kg						
Diethyl ether	ND		5	ug/kg						
1,4-Dioxane	ND		100	ug/kg						
Ethylbenzene	ND		1	ug/kg						
Hexachlorobutadiene	ND		1	ug/kg						
2-Hexanone	ND		5	ug/kg						
Isopropylbenzene	ND		1	ug/kg						
p-Isopropyltoluene	ND		1	ug/kg						
Methylene Chloride	ND		2	ug/kg						
4-Methyl-2-pentanone	ND		5	ug/kg						
Naphthalene	ND		1	ug/kg						
n-Propylbenzene	ND		1	ug/kg						
Styrene	ND		1	ug/kg						
1,1,1,2-Tetrachloroethane	ND		1	ug/kg						
Tetrachloroethene	ND		1	ug/kg						
Tetrahydrofuran	ND		5	ug/kg						
Toluene	ND		1	ug/kg						
1,2,4-Trichlorobenzene	ND		1	ug/kg						
1,2,3-Trichlorobenzene	ND		1	ug/kg						
1,1,2-Trichloroethane	ND		1	ug/kg						
1,1,1-Trichloroethane	ND		1	ug/kg						
Trichloroethene	ND		1	ug/kg						
1,2,3-Trichloropropane	ND		1	ug/kg						
1,3,5-Trimethylbenzene	ND		1	ug/kg						
1,2,4-Trimethylbenzene	ND		1	ug/kg						
Vinyl Chloride	ND		1	ug/kg						
o-Xylene	ND		1	ug/kg						
m&p-Xylene	ND		2	ug/kg						
Total xylenes	ND		1	ug/kg						
1,1,2,2-Tetrachloroethane	ND		1	ug/kg						
tert-Amyl methyl ether	ND		1	ug/kg						
1,3-Dichloropropane	ND		1	ug/kg						
Ethyl tert-butyl ether	ND		1	ug/kg						
Diisopropyl ether	ND		1	ug/kg						
Trichlorofluoromethane	ND		1	ug/kg						
Dichlorodifluoromethane	ND		1	ug/kg						
Surrogate: 4-Bromofluorobenzene			52.2	ug/l	50.0		104	70-130		
Surrogate: 1.2-Dichloroethane-d4			49.0	ug/l	50.0		 98.0	70-130		
Surrogate: Toluene-d8			48.6	ug/l	50.0		97.3	70-130		

Batch: B2U092-Frag (Continued) Los (B2092-63) respect: 11/30/22 Action 50 117 70.18 Bauance 47 upl 50.0 9.7 70.18 Bouncethorme 13 upl 50.0 9.7 70.18 Bouncethormethore 13 upl 50.0 9.7 70.18 Bouncethormethore 13 upl 50.0 9.6 70.19 Bouncethormethore 13 upl 50.0 9.6 70.19 Bouncethormethore 13 upl 50.0 9.7 70.19 Bethormethore 13 upl 50.0 10.7 70.19 Rethol Hould Back (OTRE) 44 upl 50.0 10.8 70.19 Rethol Hould Back (OTRE) 44 upl 50.0 10.8 70.19 Calcen Dauline 45 upl 50.0 10.8 70.19 Calcen Dauline 46 upl 50.0 10.8 70.19<	Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Los (accordensity) represent 1/3922 Analyses 1/201/22 Sectars 47 104 50.0 17.7 7.10 Bergars 47 104 50.0 17.7 7.10 Bergars 47 104 50.0 17.10 1.00 Branchenver 47 104 50.0 17.10 1.00 Branchenver 12 104 50.0 17.10 1.00 Sectars 12 104 50.0 10.10 1.00 Sectars 12 104 50.0 10.10 1.00 Sectars 12 105 10.0 1.00 1.00 Sectars 12 105 10.0 1.00 1.00 Sectars 12 105 10.0	Batch: B2L0092 - Purge-Trap (Co	ontinued)									
Actor 99 97 90 90 90 90 90 900	LCS (B2L0092-BS1)	-			Pi	repared: 11/3	0/22 Analyzed	d: 12/01/22			
Benome474050.040.770.10Bronuchorientame4740.450.050.170.10Bronuchorientame5040.450.060.570.10Bronuchorientame5040.450.060.570.10Bronuchorientame5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Stronuchine5040.450.060.570.10Chronuchine5140.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.570.10Chronuchine5040.450.060.5 <td>Acetone</td> <td>59</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>117</td> <td>70-130</td> <td></td> <td></td>	Acetone	59			ug/l	50.0		117	70-130		
Bronchlansmein 94 950 107 77-33 Bronchlansmein 53 947 500 105 77-33 Bronchlansmein 52 947 500 105 77-33 Bronchlans 94 500 105 77-33 77-33 Bronchlansmein 92 947 500 108 77-33 Bronchlansmein 92 947 500 106 77-33 Bronchlansmein 92 947 500 106 77-33 Bronchlansmein 92 947 500 101 77-33 Predictional Matheman 93 947 500 101 77-33 Caton Mathéman 93 947 500 103 77-33 Caton Mathéman 94 900 931 77-33 Caton Mathéman 94 901 500 108 77-33 Caton Mathéman 94 901 500 108 77-33 Caton Mathéman	Benzene	47			ug/l	50.0		93.7	70-130		
Brondchormshame 97 901 500 91.1 Pr-10 Brondchormshme 92 901 500 105 71.3 Brondchormshme 92 901 500 105 71.3 Perkonshme 92 901 500 105 71.3 Perkonshme 92 901 500 106 71.3 Perkonshme 93 901 500 106 71.3 Perkonshme 93 901 500 101 77.33 Perkonshme 93 901 500 101 77.33 Perkonshme 93 901 500 101 77.33 Caster featalline 64 901 500 101 77.30 Caster featalline 93 901 500 101 77.30 Caster featalline 93 901 500 101 77.30 Caster featalline 93 901 500 101 77.30 <	Bromobenzene	54			ug/l	50.0		107	70-130		
soundorm 91 92 93 90 95 713 Bonnormine 40 94 500 60 713 713 Bonnormine 40 94 500 763 713 713 Bonnormine 91 441 500 763 713 713 Bonnormine 91 441 500 60 713 713 Bonnormine 91 441 930 50 610 713 Bonnormine 91 441 941 500 611 713 Bonnormine 91 910 500 613 713 713 Coton Dauline 91 90 500 102 713 713 Coton Dauline 91 90 50 103 713 713 Choordbare 91 50 103 713 713 713 Choordbare 91 50 103 713 713 713	Bromochloromethane	47			ug/l	50.0		93.1	70-130		
secondmin S2 up1 S00 R5 7-13 2-Burance 38 up1 S00 R5 7-13 2-Burance 38 up1 S00 R5 7-13 seconfederation S2 up1 S00 R5 7-13 seconfederation S3 up1 S00 R5 7-13 seconfederation S4 up1 S00 R5 7-13 Seconfederation S4 up1 S00 R5 R7-13 Carbon foractionsk S4 up1 S00 R5 R7-13 Carbon foractionsk S4 up1 S00 R5 R7-13 Chorotham S4 up1 S00 R6 R7-13 Chorotham <	Bromodichloromethane	53			ug/l	50.0		105	70-130		
score 40 40 50 87.3 7-10 Ert birghersne 51 401 50.0 1.2 7-10 erdbirghersne 53 401 50.0 1.67 7-10 erdbirghersne 53 401 50.0 1.67 7-10 erdbirghersne 53 401 50.0 1.63 7-10 erdbirghersne 53 401 50.0 1.63 7-10 Chordbersne 50 4.3 50.0 1.63 7-10 Chordbersne 50 4.01 50.0 1.63 7-10 Chordbran 68 4.01 50.0 1.63 7-10 Chordbran 52 4.01 50.0 1.63 7-10 Chordbrane 52 4.01 50.0 1.63 7-10 L2 Obbranchoneshane 53 4.01 50.0 1.63 7-10 L3 Obbranchoneshane 53 4.01 50.0 1.63 7-10	Bromoform	52			ug/l	50.0		105	70-130		
2-Barone 38 up1 500 7.3 7.10 sec Buddenzere 52 up1 500 1.45 7.13 sec Buddenzere 53 up1 500 1.65 7.13 sec Buddenzere 53 up1 500 1.65 7.13 Meth thulp offer (MTB) 44 up1 500 1.81 7.13 Carbon Buddenzere 51 up1 500 1.63 7.13 Chron trackholdenzere 50 up1 500 1.63 7.13 Chron trackholde 51 up1 500 1.63 7.13 Chronothane 52 up1 500 1.63 7.13 Chronothane 52 up1 500 1.63 7.13 Chronothane 52 up1 500 1.63 7.13 Chronothane 53 up1 500 1.7 7.13 L2 Obernort-Anter 53 up1 500 7.7 7.13	Bromomethane	40			ug/l	50.0		80.6	70-130		
International scale S1 up3 S2 S2 Up3 S2 S2 <ths2< th=""> S2 <ths2< th=""></ths2<></ths2<>	2-Butanone	38			ug/l	50.0		76.3	70-130		
sc-Sapishewane 52 491 50.0 105 70-10 bert-shuphemane 53 491 50.0 105 70-10 bert-shuphemane 53 491 50.0 61.1 70-10 bert-shuphemane 54 491 50.0 62.1 70-10 Cathon balling 45 491 50.0 62.0 70-10 Cathon balling 50 491 50.0 62.0 70-10 Chicotechane 60 491 50.0 104 70-10 Chicotechane 52 491 50.0 104 70-10 Chicotechane 52 491 50.0 104 70-10 2-Chicotechane 52 491 50.0 108 70-10 2-Chicotechane 53 491 50.0 108 70-10 2-Chicotechane 53 491 50.0 107 70-10 1_2-Chicotechane 54 491 50.0 60.7 70-10 </td <td>tert-Butyl alcohol</td> <td>91</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>182</td> <td>70-130</td> <td></td> <td></td>	tert-Butyl alcohol	91			ug/l	50.0		182	70-130		
p-Buy/service 53 up1 50.0 107 70.10 bet-fully/levene 53 up1 50.0 107 70.10 Carbon Daulific 44 up1 50.0 58.1 70.10 Carbon Terchroined 51 up1 50.0 103 70.10 Chronobarane 68 up1 50.0 136 70.10 Chronobarane 52 up3 50.0 104 70.10 Chronobarane 52 up3 50.0 104 70.10 Chronobarene 52 up3 50.0 104 70.10 1,2 Obronobarene 53 up3 50.0 108 70.13 1,2 Obronobarene 52 up3 50.0 108 70.130 1,2 Obronobarene 53 up3 50.0 108 70.130 1,2 Obronobarene 53 up3 50.0 107 70.130 1,2 Obronobarene 50 up3 50.0 50.7 <t< td=""><td>sec-Butylbenzene</td><td>52</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>104</td><td>70-130</td><td></td><td></td></t<>	sec-Butylbenzene	52			ug/l	50.0		104	70-130		
Int. Supplemente S3 ug1 S0.0 UD7 70.130 Methyl tehryl (MTRE) 44 ug1 S0.0 S0.1 70.130 Carbon Duffice 15 ug1 S0.0 S0.0 S0.0 S0.0 Chron Duffice 15 ug1 S0.0 S0.0 S0.0 S0.0 Chron Duffice 15 ug1 S0.0 S0.0 S0.0 S0.0 Chron Duffice 12 Ug1 S0.0 S0.0 S0.0 S0.0 Chronoteshane 52 Ug1 S0.0 S0.0 S0.0 S0.0 Chronoteshane (DDD) 54 Ug1 S0.0 S0.0 S0.0 S0.0 L/2-Obromoteshane (DDD) 54 Ug1 S0.0 S0.0 S0.0 S0.0 L/2-Obromoteshane (DDD) 54 Ug1 S0.0 S0.0 S0.0 S0.0 L/2-Obromoteshane (DDD) 54 Ug1 S0.0 S0.0 S0.0 S0.0 S0.0 S0.0 S0.0 S	n-Butylbenzene	53			ug/l	50.0		105	70-130		
Nether (NTEE) 44 491 50.0 85.1 70.13 Carbon Disalifie 51 491 50.0 89.1 70.13 Chiotochanne 50 491 50.0 103 70.13 Chiotochanne 50 491 50.0 136 70.13 Chiotochan 68 491 50.0 136 70.13 Chiotochan 51 491 50.0 104 70.13 4-Chiotochane 52 491 50.0 104 70.13 1.2 Obtron-3-chioropoane (DECP) 52 491 50.0 108 70.13 1.2 Obtron-3-chioropoane (DECP) 54 491 50.0 108 70.13 1.2 Obtron-3-chioropoane (DECP) 54 491 50.0 107 70.13 1.2 Obtron-3-chioropoane (DECP) 54 491 50.0 107 70.13 1.2 Obtron-3-chioropoane 53 491 50.0 91.1 70.13 1.3 Obtron-4-4-4 50.0 91	tert-Butylbenzene	53			ug/l	50.0		107	70-130		
Carbon Testachioné 45 ugit 50.0 80.1 70.130 Carbon Testachioné 51 ugit 50.0 92.2 79.130 Chlorothane 68 ugit 50.0 92.6 70.130 Chlorothane 68 ugit 50.0 135 70.130 Chlorothane 52 ugit 50.0 103 70.130 Chlorothane 52 ugit 50.0 104 70.130 2-Ohrotoblene 52 ugit 50.0 103 70.130 2-Ohrotoblene 52 ugit 50.0 103 70.130 1/2-Ohronochane(EBCY) 56 ugit 50.0 107 70.130 1/2-Ohronochane(EBCY) 53 ugit 50.0 107 70.130 1/2-Ohronochane 53 ugit 50.0 90.7 70.130 1/2-Ohronochane 53 ugit 50.0 97.1 70.130 1/2-Ohronochane 54 ugit 50.0	Methyl t-butyl ether (MTBE)	44			ug/l	50.0		88.1	70-130		
Garbon Tetrachlands 51 up1 50.0 103 70-130 Chlorobhanen 50 up4 50.0 156 70-130 Chlorobhane 68 up4 50.0 156 70-130 Chlorobhane 51 up4 50.0 104 70-130 4-Chlorobhane 52 up4 50.0 104 70-130 1-2 Obtromob-thoromethane 52 up4 50.0 103 70-130 1-2 Obtromob-thoromethane 52 up4 50.0 108 70-130 1-2 Obtromob-thoromethane 53 up4 50.0 107 70-130 1-2 Obtromob-thoromethane 53 up4 50.0 107 70-130 1-2 Obtromob-thoromethane 53 up4 50.0 107 70-130 1-3 Obtromob-thoromethane 53 up4 50.0 107 70-130 1-3 Obtromob-thoromethane 50 up4 50.0 96.0 70-130 1-3 Obtromob-thoromethane <t< td=""><td>Carbon Disulfide</td><td>45</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>89.1</td><td>70-130</td><td></td><td></td></t<>	Carbon Disulfide	45			ug/l	50.0		89.1	70-130		
Chickedenzane 50 upd 50.0 99.2 70.130 Chickedenne 68 upd 50.0 156 70.130 Chickerdenn 48 upd 50.0 133 70.130 Chickerdenneshane 51 upd 50.0 104 70.130 Chickerdenneshane 52 upd 50.0 104 70.130 Chickerdenneshane 52 upd 50.0 103 70.130 L/2-Obronochtane(DBCP) 56 upd 50.0 107 70.130 L/2-Obronochtane(DBCP) 51 upd 50.0 107 70.130 L/2-Obronochtane(DBCP) 53 upd 50.0 107 70.130 L/2-Obronochtane 53 upd 50.0 107 70.130 L/2-Obrichorebane 53 upd 50.0 90.7 70.130 L/2-Obrichorebane 45 upd 50.0 90.4 70.130 L/2-Obrichorebane 45 upd 50.0 97.4 70.130 L/2-Obrichorebane 46 upd	Carbon Tetrachloride	51			ug/l	50.0		103	70-130		
Ohreethane 68 upl 5.0 1.36 70-130 Chlorotom 48 upl 50.0 95.8 70-130 Chlorotome 51 upl 50.0 104 70-130 4-Chrotothere 52 upl 50.0 104 70-130 1.2-Dibrono-5-chloropropane (DICP) 56 upl 50.0 102 70-130 1.2-Dibrono-5-chloropropane (DICP) 56 upl 50.0 107 70-130 1.2-Dibrono-5-chloropropane (DICP) 56 upl 50.0 107 70-130 1.2-Dibrono-5-chloropropane (DICP) 54 upl 50.0 107 70-130 1.2-Dibrono-5-chloropropane (DICP) 54 upl 50.0 107 70-130 1.2-Dibrono-5-chloropropane (DICP) 54 upl 50.0 107 70-130 1.3-Dibrono-5-chloropropane 53 upl 50.0 90.7 70-130 1.3-Dibrono-5-chloropropane 50 upl 50.0 95.0 70-130	Chlorobenzene	50			ug/l	50.0		99.2	70-130		
Chlorodem 48 49,4 50.0 55.8 70-130 Chloromethane 51 49,4 50.0 103 70-130 2-Chlorotoluene 52 49,4 50.0 104 70-130 2-Chlorotoluene 52 49,4 50.0 103 70-130 2-Chlorotoluene 52 49,4 50.0 103 70-130 Dibromothane 53 49,4 50.0 108 70-130 1,2-Othorobechane 53 49,4 50.0 107 70-130 1,2-Othorobechane 53 49,4 50.0 107 70-130 1,2-Othorobechane 53 49,4 50.0 107 70-130 1,2-Othorobechane 53 49,4 50.0 90,7 70-130 1,2-Othorobechane 53 49,4 50.0 91,7 70-130 1,2-Othorobechane 45 49,4 50.0 97,7 70-130 1,2-Othorobechane 46 49,4 50.0	Chloroethane	68			ug/l	50.0		136	70-130		
Chicromethane 51 ug/l 50.0 103 20130 4-Chicrobulene 52 ug/l 50.0 104 70-130 1.2-Ditromol-Schloroprogne (DBCP) 56 ug/l 50.0 112 70-130 1.2-Ditromol-Schloroprogne (DBCP) 56 ug/l 50.0 103 70-130 1.2-Ditromol-Schloroprogne (DBCP) 56 ug/l 50.0 107 70-130 1.2-Ditromol-Schloroprogne (DBCP) 56 ug/l 50.0 107 70-130 1.2-Ditromol-Schloroprogne (DBCP) 54 ug/l 50.0 107 70-130 1.2-Ditromol-Schloroprogne 53 ug/l 50.0 107 70-130 1.3-Ditromol-Schloroprogne 45 ug/l 50.0 90.7 70-130 1.2-Dichioroprogne 48 ug/l 50.0 90.4 70-130 1.2-Dichioroprogne 49 ug/l 50.0 97.6 70-130 1.2-Dichioroprogne 49 ug/l 50.0 97.6 70-130	Chloroform	48			ug/l	50.0		95.8	70-130		
4 Charatoluene 52 ug/l 50.0 104 70.130 2 Chiorotoluene 52 ug/l 50.0 114 70.130 Dibromochloromethane 52 ug/l 50.0 113 70.130 Dibromochloromethane 53 ug/l 50.0 108 70.130 1,2 Obtionoberzene 54 ug/l 50.0 107 70.130 1,3 Dichtoroberzene 53 ug/l 50.0 107 70.130 1,4 Obtioroberzene 53 ug/l 50.0 107 70.130 1,4 Obtioroberzene 53 ug/l 50.0 107 70.130 1,2 Obtioroberzene 50 ug/l 50.0 90.7 70.130 1,2 Obtioroberzene 50 ug/l 50.0 91.8 70.130 1,2 Obtioroberzene 46 ug/l 50.0 91.8 70.130 1,2 Obtioropopane 41 ug/l 50.0 92.7 70.130 1,2 Obtioropopane 41 ug/l 50.0 92.7 70.130 1,2 Obtioropopane 41 <td>Chloromethane</td> <td>51</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>103</td> <td>70-130</td> <td></td> <td></td>	Chloromethane	51			ug/l	50.0		103	70-130		
2-Chiorosobare 52 ug/l 50.0 10.4 70-130 1,2-Dimono-3-chioropropane (DBCP) 56 ug/l 50.0 11.2 70-130 1,2-Dimonsthane 52 ug/l 50.0 10.8 70-130 1,2-Dimonsthane (CBS) 54 ug/l 50.0 108 70-130 1,2-Dichrotobarane 53 ug/l 50.0 107 70-130 1,3-Dichrotobarane 53 ug/l 50.0 107 70-130 1,4-Dichrotobarane 53 ug/l 50.0 107 70-130 1,4-Dichrotobarane 55 ug/l 50.0 90.8 70-130 1,2-Dichrotothane 45 ug/l 50.0 90.4 70-130 1,2-Dichrotothane 46 ug/l 50.0 90.4 70-130 1,2-Dichrotothane 48 ug/l 50.0 90.4 70-130 1,2-Dichrotothane 50 ug/l 50.0 90.7 70-130 1,2-Dichrotothane 49 <td>4-Chlorotoluene</td> <td>52</td> <td></td> <td></td> <td>ua/l</td> <td>50.0</td> <td></td> <td>104</td> <td>70-130</td> <td></td> <td></td>	4-Chlorotoluene	52			ua/l	50.0		104	70-130		
1,2.01brono-2-chloropropane (DBCP) 56 ug/l 50.0 11.2 70-130 Dbremachleomethane 52 ug/l 50.0 103 70-130 1,2.01brono-brane 53 ug/l 50.0 107 70-130 1,2.01brono-brane 53 ug/l 50.0 107 70-130 1,2.01brono-brane 53 ug/l 50.0 107 70-130 1,4.01brono-brane 53 ug/l 50.0 107 70-130 1,4.01brono-brane 53 ug/l 50.0 90.7 70-130 1,4.01brono-brane 50 ug/l 50.0 99.8 70-130 1,4.01brono-brane 50 ug/l 50.0 99.8 70-130 1,2.01brono-brane 46 ug/l 50.0 99.8 70-130 1,2.01brono-brane 48 ug/l 50.0 99.4 70-130 1,2.01brono-brane 49 ug/l 50.0 99.7 70-130 1,2.01brono-brane 49 ug/l 50.0 99.7 70-130 1,2.01brono-brane	2-Chlorotoluene	52			ua/l	50.0		104	70-130		
Laboration Schwarz (1997) S2 Wall S0.0 11.3 Provision Schwarz (1997) 1,2.01bromechane (1908) 54 Ugl 50.0 107 70-130 1,2.01bromechane (1908) 54 Ugl 50.0 107 70-130 1,2.01bromechane (1908) 54 Ugl 50.0 107 70-130 1,2.01bromechane (1908) 53 Ugl 50.0 107 70-130 1,3.01bromechane (1908) 53 Ugl 50.0 107 70-130 1,4.01bromechane (1908) 54 Ugl 50.0 90.7 70-130 1,1.01bromechane 53 Ugl 50.0 91.1 70-130 1,2.01bromechane 46 Ugl 50.0 95.0 70-130 1,2.01bromechane 47 Ugl 50.0 95.0 70-130 1,2.01bromechane 70 Ugl 50.0 95.0 70-130 1,2.01bromechane 49 Ugl 50.0 95.2 70-130 1,2.01bromecha	1 2-Dibromo-3-chloropropane (DBCP)	56			ua/l	50.0		112	70-130		
Lab. Holosoftware (DB) 54 up1 50.0 108 70-130 L2-Distromicethane (DB) 54 up1 50.0 108 70-130 L3-Distromicethane (DB) 53 up1 50.0 107 70-130 1,3-Dichloroberzene 53 up1 50.0 107 70-130 1,4-Dichloroberzene 53 up1 50.0 99.7 70-130 1,2-Dichlorobethane 46 up1 50.0 91.1 70-130 1,2-Dichlorobethane 46 up1 50.0 91.1 70-130 1,2-Dichlorobethane 45 up1 50.0 91.4 70-130 1,2-Dichloropropene 50 up1 50.0 91.4 70-130 1,2-Dichloropropene 50 up1 50.0 91.9 70-130 1,1-Dichloropropene 48 up1 50.0 97.7 70-130 1,1-Dichloropropene 49 up1 50.0 95.2 70-130 1,1-Dichloropropene <td< td=""><td>Dibromochloromethane</td><td>50</td><td></td><td></td><td>ua/l</td><td>50.0</td><td></td><td>103</td><td>70-130</td><td></td><td></td></td<>	Dibromochloromethane	50			ua/l	50.0		103	70-130		
1.1. Distribution 5.1 9.9 5.0 1.00 70-130 1.2. Dichloroberzene 54 10,4 50.0 107 70-130 1.3. Dichloroberzene 53 10,4 50.0 107 70-130 1.4. Dichloroberzene 53 10,4 50.0 107 70-130 1.4. Dichloroberzene 53 10,4 50.0 90,7 70-130 1.4. Dichloroberzene 50 10,4 50.0 90,8 70-130 1.2. Dichloroethane 45 10,4 50.0 90,4 70-130 trans-1,2. Dichloroethene 46 10,4 50.0 90,4 70-130 1.2. Dichloroethene 37 10,4 50.0 95.0 70-130 1.2. Dichloroptopane 41 10,4 50.0 95.7 70-130 1.3. Dichloroptopene 46 10,4 50.0 97.7 70-130 trans-1,3. Dichloroptopene 49 10,4 50.0 97.7 70-130 trans-1,3. Dichloroptopene 46 10,4 50.0 97.7 70-130	1 2-Dibromoethane (EDB)	52			ua/l	50.0		105	70-130		
Lab. Hole and the set of	Dibromomothano	53			ug/l	50.0		107	70-130		
1,2-Dichloroberzene 53 94 50.0 100 70-130 1,4-Dichloroberzene 53 94 50.0 107 70-130 1,1-Dichloroberzene 53 94 50.0 90.7 70-130 1,1-Dichloroethane 50 94 50.0 91.1 70-130 1,2-Dichloroethane 46 94 50.0 91.1 70-130 1,2-Dichloroethane 45 94 50.0 91.4 70-130 1,2-Dichloroethene 37 94 50.0 95.0 70-130 1,2-Dichloroethene 37 94 50.0 95.0 70-130 1,2-Dichloropropane 48 94 50.0 97.0 70-130 cs-1,3-Dichloropropene 49 94 50.0 97.0 70-130 1,1-Dichloropropene 46 94 50.0 95.2 70-130 1,1-Dichloropropene 46 94 50.0 95.2 70-130 1,4-Dickoropropene 49 94 50.0 95.5 70-130 1,4-Dickoropropene 49	1.2-Dichlerobonzono	54			ug/l	50.0		107	70-130		
JJ. Holminubulating J.J. Hol J. Hol J. Hol J. 1,4-Dehlorobersene 53 Ug/l 50.0 90.7 70-130 1,2-Dehlorobersene 45 Ug/l 50.0 99.8 70-130 1,2-Dehlorobersene 46 Ug/l 50.0 90.4 70-130 ds:1,2-Dehlorobersene 45 Ug/l 50.0 90.4 70-130 1,1-Dehlorobersene 37 Ug/l 50.0 97.4 70-130 1,1-Dehlorobersene 37 Ug/l 50.0 97.7 70-130 1,2-Dehloropropane 48 Ug/l 50.0 97.7 70-130 2,2-Dehloropropane 46 Ug/l 50.0 97.7 70-130 1,1-Dehloropropane 46 Ug/l 50.0 97.8 70-130 1,1-Dehloropropane 48 Ug/l 50.0 91.8 70-130 1,1-Dehloropropane 46 Ug/l 50.0 95.2 70-130 1,1-Dehloropropane 10 <	1,2-Dichlorobonzono	53			ug/l	50.0		100	70-130		
JDickhorosethane J.J. B.J. B.J. B.J. J.J. 1.JDickhorosethane 50 Ug/l 50.0 99.8 70-130 1.JDickhorosethane 46 Ug/l 50.0 91.1 70-130 65.1.2Dickhorosethane 45 Ug/l 50.0 91.4 70-130 1.JDickhorosethane 37 Ug/l 50.0 95.0 70-130 1.JDickhorosethane 37 Ug/l 50.0 95.0 70-130 1.JDickhorosethane 37 Ug/l 50.0 97.0 70-130 1.JDickhorosethane 48 Ug/l 50.0 97.0 70-130 1.JDickhorospropene 49 Ug/l 50.0 97.0 70-130 1.JDickhorospropene 48 Ug/l 50.0 97.0 70-130 1.JDickhorospropene 49 Ug/l 50.0 98.5 70-130 1.JDickhorospropene 49 Ug/l 50.0 106 70-130 1.JDickhorose	1,3-Dichlorobenzene	23			ug/l	50.0		107	70-130		
1. Johnbrockalne 1.5. 1.5.0 1.5.0 1.5.0 1. Johnbrockalne 50 ug/l 50.0 91.1 70-130 trans-1,2-Dichloroethene 45 ug/l 50.0 90.4 70-130 trans-1,2-Dichloroethene 37 ug/l 50.0 95.0 70-130 1,2-Dichloropthene 48 ug/l 50.0 95.0 70-130 1,2-Dichloroptopene 49 ug/l 50.0 97.0 70-130 1,2-Dichloroptopene 49 ug/l 50.0 97.0 70-130 trans-1,3-Dichloroptopene 49 ug/l 50.0 97.0 70-130 1,1-Dichloroptopene 46 ug/l 50.0 97.0 70-130 1,1-Dichloroptopene 48 ug/l 50.0 95.2 70-130 1,4-Dickloroptopene 49 ug/l 50.0 98.5 70-130 1,4-Dickloroptopene 10 ug/l 50.0 106 70-130 1,4-Dickloroptalene 53 <td>1 1-Dichloroethane</td> <td>45</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>90.7</td> <td>70-130</td> <td></td> <td></td>	1 1-Dichloroethane	45			ug/l	50.0		90.7	70-130		
1,2-Dichloroethene 50 0,9 50.0 91.1 70-130 trans-1,2-Dichloroethene 45 0,9 50.0 90.4 70-130 1,1-Dichloroethene 37 0,9 50.0 73.4 70-130 1,2-Dichloroethene 37 0,9 50.0 97.4 70-130 2,2-Dichloropropane 41 0,9 50.0 97.7 70-130 trans-1,2-Dichloropropene 50 0,9 50.0 97.0 70-130 trans-1,3-Dichloropropene 46 0,9 50.0 97.0 70-130 trans-1,3-Dichloropropene 46 0,9 50.0 95.2 70-130 Diethyl ether 48 0,9 50.0 95.2 70-130 1,4-Doxane 276 0,9 50.0 95.5 70-130 Ethylbenzene 49 0,9 50.0 95.5 70-130 Hexachlorobutadiene 53 0,9 50.0 106 70-130 Jsopropylbenzene 53 0,9 50.0 105 70-130 Pisopropylbenzene <td< td=""><td>1,2-Dichloroothana</td><td>50</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>00.9</td><td>70-130</td><td></td><td></td></td<>	1,2-Dichloroothana	50			ug/l	50.0		00.9	70-130		
Lans.1,2-bit. Involvement 40 40 50.0 91.1 70-130 cis.1,2-bit. Involvement 37 ug/l 50.0 95.0 70-130 1,1-Dick Involvement 37 ug/l 50.0 95.0 70-130 2,2-Dick Involvement 48 ug/l 50.0 97.7 70-130 cis.1,3-Dick Involvement 50 ug/l 50.0 97.7 70-130 trans.1,3-Dick Involvement 49 ug/l 50.0 97.0 70-130 trans.1,3-Dick Involvement 46 ug/l 50.0 91.8 70-130 Li,1-Dick Involvement 48 ug/l 50.0 91.8 70-130 Li,4-Dick and 276 ug/l 50.0 98.5 70-130 Li-Aboxane 276 ug/l 50.0 106 70-130 Li-Boxine 33 ug/l 50.0 106 70-130 Li-Boxine 53 ug/l 50.0 106 70-130 Isporopylenzene 53	1,2-Dichloroethane	30			ug/l	50.0		99.0	70-130		
Los 1, 2-bichloroptenen 4-3 4-9 50.0 50.4 70-130 1, 2-bichloroptenen 48 49/1 50.0 95.0 70-130 2, 2-bichloroptopane 41 49/1 50.0 97.0 70-130 2, 2-bichloroptopene 50 49/1 50.0 97.0 70-130 trans-1, 3-bichloroptopene 46 49/1 50.0 97.0 70-130 1, 1-bichloroptopene 46 49/1 50.0 91.8 70-130 1, 4-bioxane 276 49/1 50.0 98.5 70-130 1, 4-bioxane 276 49/1 50.0 98.5 70-130 1, 4-bioxane 52 49/1 50.0 98.5 70-130 1, 4-bioxane 52 49/1 50.0 106 70-130 1, 50-propylenzene 52 49/1 50.0 106 70-130 1 10/1 50.0 106 70-130 104 104 1, 1, 2-bickolorobtadiene	cis 1.2 Dichloroothono	40			ug/l	50.0		91.1	70-130		
1,2-Dickloropropane 37 94 30.0 73.4 70-130 1,2-Dickloropropane 48 94 50.0 81.9 70-130 2,2-Dickloropropane 41 94 50.0 97.7 70-130 trans-1,3-Dickloropropene 50 96 97.0 70-130 trans-1,3-Dickloropropene 49 94 50.0 95.2 70-130 1,1-Dickloropropene 46 94 50.0 95.2 70-130 1,4-Dioxane 276 94 50.0 95.2 70-130 Ethylbenzene 49 94 50.0 95.2 70-130 Hexachlorobutaleine 53 94 50.0 95.5 70-130 Isopropylbenzene 52 94 50.0 106 70-130 Isopropylbulene 53 94 50.0 106 70-130 Isopropylbulene 53 94 50.0 106 70-130 Naphthalene 54 94 50.0 107 70-130 Naphthalene 50 94 50.0 1	1 1 Dichleresthere	5F 27			ug/l	50.0		90.4 72.4	70-130		
1,2-Dickhoropropane 41 ug/l 50.0 93.0 70-130 cis-1,3-Dickhoropropane 50 ug/l 50.0 97.0 70-130 trans-1,3-Dickhoropropene 49 ug/l 50.0 97.0 70-130 1,1-Dichhoropropene 46 ug/l 50.0 91.8 70-130 1,4-Dioxane 276 ug/l 50.0 95.2 70-130 1,4-Dioxane 276 ug/l 50.0 95.2 70-130 1,4-Dioxane 276 ug/l 50.0 95.5 70-130 1,4-Dioxane 276 ug/l 50.0 98.5 70-130 1,4-Dioxane 276 ug/l 50.0 98.5 70-130 1,4-Dioxane 276 ug/l 50.0 106 70-130 1,4-Dioxane 10g/l 50.0 105 70-130 1 ug/l 50.0 106 70-130 1 ug/l 50.0 106 70-130 1 ug/l 50.0 107 70-130 1 ug/l	1,1-Dichloropropage	37			ug/l	50.0		73. 4 05.0	70-130		
2.2-Unlind phylame 41 ug/l 50.0 81.9 70-130 ici: 1,3-Dichloropropene 50 ug/l 50.0 97.0 70-130 1,1-Dichloropropene 46 ug/l 50.0 91.8 70-130 Diethyl ether 48 ug/l 50.0 95.2 70-130 1,4-Dioxane 276 ug/l 50.0 95.2 70-130 Hexachlorobutadiene 53 ug/l 50.0 96.5 70-130 Hexachlorobutadiene 53 ug/l 50.0 82.9 70-130 Jsoropylbenzene 41 ug/l 50.0 82.9 70-130 Isoropylbenzene 53 ug/l 50.0 106 70-130 p-Isopropylbenzene 52 ug/l 50.0 105 70-130 p-Isopropylbuene 53 ug/l 50.0 107 70-130 Methylene Choirde 46 ug/l 50.0 109 70-130 Naphtalene 54 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51	1,2-Dichloropropane	40			ug/l	50.0		95.0	70-130		
Lbs:1,5-bit Molphopene 50 491 50.0 95.7 70-130 trans:1,3-Dichloropropene 46 491 50.0 95.2 70-130 Diethyl ether 48 491 50.0 95.2 70-130 1,4-Dichloropropene 49 491 50.0 95.2 70-130 1,4-Dioxane 276 491 250 110 0-200 Ethylbenzene 49 491 50.0 98.5 70-130 Hexachlorobutaleine 53 491 50.0 106 70-130 J-Hochnone 51 491 50.0 105 70-130 J-Hochnone 53 491 50.0 106 70-130 J-Hochnone 53 491 50.0 105 70-130 J-Spropylbenzene 53 491 50.0 106 70-130 P-Isopropylbenzene 53 491 50.0 107 70-130 Naphthalene 54 491 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 491 50.0 <td></td> <td>71</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>01.9</td> <td>70-130</td> <td></td> <td></td>		71			ug/l	50.0		01.9	70-130		
Lanse Hors Light Solo <	trans-1,3-Dichloropropono	40			ug/l	50.0		99.7	70-130		
1,1-Dick indipidpende 43 ug/l 50.0 91.8 70-130 Diethyl ether 48 ug/l 50.0 95.2 70-130 1,4-Dioxane 276 ug/l 250 110 0-200 Ethyl benzene 49 ug/l 50.0 106 70-130 Hexachlorobutadiene 53 ug/l 50.0 82.9 70-130 Isopropylbenzene 52 ug/l 50.0 105 70-130 p-Isopropylbenzene 53 ug/l 50.0 106 70-130 Methylene Chloride 46 ug/l 50.0 106 70-130 Naphthalene 54 ug/l 50.0 107 70-130 Naphthalene 51 ug/l 50.0 107 70-130 1,1,2-Tetrachloroethane 51 ug/l 50.0 107 70-130 Styrene 53 ug/l 50.0 107 70-130 1,1,2-Tetrachloroethane 51 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l	1 1 Dichleropropene	49			ug/l	50.0		97.0	70-130		
Dietury teller 46 49 50.0 55.2 70-130 1,4-Dioxane 276 49/1 250 110 0-200 Ethylbenzene 49 49/1 50.0 98.5 70-130 Hexachlorobutadiene 53 49/1 50.0 106 70-130 2-Hexanone 41 49/1 50.0 105 70-130 Isopropylbenzene 52 49/1 50.0 105 70-130 p-Isopropylbenzene 53 49/1 50.0 106 70-130 Methylene Chloride 46 49/1 50.0 90.5 70-130 Naphthalene 54 49/1 50.0 107 70-130 n-Propylbenzene 53 49/1 50.0 107 70-130 styrene 53 49/1 50.0 107 70-130 1,1,2-Tetrachloroethane 51 49/1 50.0 103 70-130 Tetrahydrofuran 51 49/1 50.0 102 70-130 1,2,4-Trichlorobenzene 54 49/1 50.0 <td>1,1-Dictition opi opene</td> <td>40</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>91.0</td> <td>70-130</td> <td></td> <td></td>	1,1-Dictition opi opene	40			ug/l	50.0		91.0	70-130		
1,4-blockale 276 69/4 250 110 67200 Ethylbenzene 49 ug/l 50.0 98.5 70-130 Hexachlorobutadiene 53 ug/l 50.0 105 70-130 2-Hexanone 41 ug/l 50.0 105 70-130 Isopropylbenzene 52 ug/l 50.0 106 70-130 p-Isopropylbenzene 53 ug/l 50.0 106 70-130 Methylene Chloride 46 ug/l 50.0 91.4 60-140 4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 107 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 1,1,2-Tetrachloroethane 51 ug/l 50.0 107 70-130 1,1,2-Tetrachloroethane 51 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 u		-10 276			ug/l	250.0		95.2	0 200		
Linguenzarie 49 49 50.0 56.3 70-130 Hexachlorobutadiene 53 49/1 50.0 106 70-130 2-Hexanone 41 49/1 50.0 82.9 70-130 Isopropylbenzene 52 49/1 50.0 106 70-130 p-Isopropylbulene 53 49/1 50.0 106 70-130 Methylene Chloride 46 49/1 50.0 90.5 70-130 Methylene Chloride 46 49/1 50.0 109 70-130 Naphthalene 54 49/1 50.0 107 70-130 n-Propylbenzene 53 49/1 50.0 107 70-130 styrene 53 49/1 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 49/1 50.0 103 70-130 Tetrachloroethane 50 49/1 50.0 100 70-130 Tetrachlorobenzene 51 49/1 50.0 102 70-130 1,2,4-Trichlorobenzene 54 49/1	1,4-Dioxaile	270			ug/l	250		110 08 E	70 120		
nexatinorodulating 53 ug/l 50.0 106 70-130 2-Hexanone 41 ug/l 50.0 82.9 70-130 Isopropylbenzene 52 ug/l 50.0 106 70-130 p-Isopropylboluene 53 ug/l 50.0 106 70-130 Methylene Chloride 46 ug/l 50.0 91.4 60-140 4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 107 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethene 50 ug/l 50.0 102 70-130 Tetrachlorobenzene 51 ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 54 <td< td=""><td>Ethyldenzene</td><td>49</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>98.5</td><td>70-130</td><td></td><td></td></td<>	Ethyldenzene	49			ug/l	50.0		98.5	70-130		
2-nexaribite 41 ug/l 50.0 62.9 70-130 Isopropylbenzene 52 ug/l 50.0 105 70-130 p-Isopropylboluene 53 ug/l 50.0 106 70-130 Methylene Chloride 46 ug/l 50.0 90.5 70-130 4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 109 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 100 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l 50.0 100 70-130 Toluene 49 ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 54 ug/l		22			ug/l	50.0		100	70-130		
Isopropyloenzene 52 ug/i 50.0 105 70-130 p-Isopropyloenzene 53 ug/i 50.0 91.4 60-140 4-Methyl-2-pentanone 45 ug/i 50.0 90.5 70-130 Naphthalene 54 ug/i 50.0 107 70-130 n-Propylbenzene 53 ug/i 50.0 107 70-130 styrene 53 ug/i 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/i 50.0 103 70-130 Tetrachloroethane 51 ug/i 50.0 100 70-130 Toluene 51 ug/i 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/i 50.0 100 70-130 1,2,4-Trichlorobenzene 54 ug/i 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/i 50.0 102 70-130 1,2,3-Trichlorobenzene 54 ug/i 50.0 109 70-130 1,2,3-Trichlorobenzene 53		41			ug/i	50.0		82.9 10F	70-130		
p-isopropyriolitele 53 ug/l 50.0 106 70-130 Methylene Chloride 46 ug/l 50.0 91.4 60-140 4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 109 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethene 50 ug/l 50.0 100 70-130 Toluene 49 ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53	Isopropyidenzene	52			ug/i	50.0		105	70-130		
Methylene Chloride 46 ug/l 50.0 91.4 60-140 4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 109 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 105 70-130 1,1,2-Trichloroethane 53	p-isopropyitoluene	53			ug/i	50.0		106	/0-130		
4-Methyl-2-pentanone 45 ug/l 50.0 90.5 70-130 Naphthalene 54 ug/l 50.0 109 70-130 n-Propylbenzene 53 ug/l 50.0 107 70-130 Styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l 50.0 100 70-130 Toluene 49 ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 109 70-130 1,2,3-Trichloroethane 53 ug/l 50.0 105 70-130 1,1,2-Trichloroethane 53	Metnylene Chloride	46			ug/i	50.0		91.4	60-140		
Naphthalene 54 Ug/l 50.0 109 70-130 n-Propylbenzene 53 Ug/l 50.0 107 70-130 Styrene 53 Ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 Ug/l 50.0 103 70-130 Tetrachloroethene 50 Ug/l 50.0 100 70-130 Tetrachloroethene 50 Ug/l 50.0 100 70-130 Tetrachloroethene 51 Ug/l 50.0 102 70-130 Toluene 49 Ug/l 50.0 102 70-130 1,2,4-Trichlorobenzene 54 Ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 Ug/l 50.0 109 70-130 1,2,2-Trichloroethane 53 Ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 Ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 Ug/l 50.0 105 70-130	4-Methyl-2-pentanone	45			ug/i	50.0		90.5	/0-130		
n-Propylbenzene 53 Ug/l 50.0 107 70-130 Styrene 53 ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethane 50 ug/l 50.0 103 70-130 Tetrachloroethene 50 ug/l 50.0 100 70-130 Tetrahydrofuran 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 105 70-130	Naphthalene	54			ug/i	50.0		109	/0-130		
Styrene 53 Ug/l 50.0 107 70-130 1,1,1,2-Tetrachloroethane 51 ug/l 50.0 103 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethane 50 ug/l 50.0 100 70-130 Tetrachloroethane 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 109 70-130	n-Propylbenzene	53			ug/i	50.0		107	70-130		
1,1,1,2-1 etracnioroethane 51 Ug/l 50.0 103 70-130 Tetrachloroethene 50 ug/l 50.0 100 70-130 Tetrahydrofuran 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 53 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 105 Page 26 of 36	Styrene	53			ug/I	50.0		107	/0-130		
I etrachloroethene 50 ug/l 50.0 100 70-130 Tetrahydrofuran 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 105 Page 26 of 36	1,1,1,2-I etrachloroethane	51			ug/i	50.0		103	/0-130		
Tetrahydrofuran 51 ug/l 50.0 102 70-130 Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichlorobenzene 53 ug/l 50.0 109 70-130	Tetrachloroethene	50			ug/l	50.0		100	70-130		
Toluene 49 ug/l 50.0 98.1 70-130 1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichlorobenzene 53 ug/l 50.0 109 70-130	Tetrahydrofuran	51			ug/l	50.0		102	70-130		
1,2,4-Trichlorobenzene 54 ug/l 50.0 109 70-130 1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 105 70-130	Toluene	49			ug/l	50.0		98.1	70-130		
1,2,3-Trichlorobenzene 55 ug/l 50.0 109 70-130 1,1,2-Trichloroethane 53 ug/l 50.0 105 70-130	1,2,4-Trichlorobenzene	54			ug/l	50.0		109	70-130		
1,1,2-Trichloroethane 53 ug/l 50.0 105 70-130 Page 26 of 36	1,2,3-Trichlorobenzene	55			ug/l	50.0		109	70-130		
	1,1,2-Trichloroethane	53			ug/i	50.0		105	70-130	Page	26 of 38

Batch: Batch: Perpared: 11/30/22 Analysed: 12/01/22 LSS (BL092-851) 2 upl 50.0 66.7 72-130 Trichtorotheme 49 upl 50.0 66.7 72-130 J.3, Trichtoroppen 53 upl 50.0 100 72-130 J.3, Trichtoroppen 53 upl 50.0 100 72-130 J.4, Trinthylectorop 53 upl 50.0 100 72-130 J.2, Trinthomp 100 upl 50.0 100 72-130 J.2, Trinthomp 100 upl 50.0 72-130 11.12 J.2, Trinthomp 9 00.0 73-73 71-130 11.2 J.2, Trinthomp 9 00.0 72-130 11.2 11.2 J.2, Trinthomp 51 upl 50.0 72-130 11.2 J.2, Trinthomp 51 upl 50.0 72-130 11.2 J.2, Trinthomp 51 upl< 50	Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
LS (20092-85) Present 11/30/22 Analyzet 12/01/22 Tridmonthme 49 upf 50.0 97.13 Tridmonthme 49 upf 50.0 97.13 1,2,5-Trinkforgona 31 upf 50.0 106 77.13 1,2,5-Trinkforgona 32 upf 50.0 106 77.13 1,2,5-Trinkforgona 32 upf 50.0 106 77.13 Vinkfork 52 upf 50.0 106 77.13 1 Vinkfork 100 upf 50.0 100 97.7 77.13 L2,2-Triskforghame 49 upf 50.0 100 97.7 77.13 L2,2-Triskforghame 51 upf 50.0 100 77.13 1 Entyletchasi effer 40 upf 50.0 100 77.13 1 77.13 Entyletchasi effer 57.0 upf 50.0 100 100 77.13 1 20.2 20 Strang	Batch: B2L0092 - Purae-Trap (Co	ntinued)									
1.1.1-richlorechare524050.043.379.301.2.3-richlorechare544050.040.379.301.2.3-richlorechare534050.010.879.301.2.4-richlorechare534050.010.879.301.2.4-richlorechare504050.079.3079.301.2.4-richlorechare404050.079.3079.301.3.2-richlorechare404050.079.3079.301.3.2-richlorechare404050.070.3079.301.3.2-richlorechare404050.070.3079.301.3.2-richlorechare404050.070.3079.301.3.2-richlorechare504050.070.3079.301.3.2-richlorechare504050.070.3079.301.3.2-richlorechare504050.070.3079.301.3.2-richlorechare504050.070.3070.301.3.2-richlorechare504050.070.3070.301.3.2-richlorechare504050.070.3070.301.3.2-richlorechare504050.070.3070.301.3.2-richlorechare5060.070.3070.3070.301.3.2-richlorechare5060.070.3070.3070.301.3.2-richlorechare704050.070.3070.301.3.2-richlorechare <td< td=""><td>LCS (B2L0092-BS1)</td><td>,</td><td></td><td></td><td>Р</td><td>repared: 11/3</td><td>0/22 Analyzed</td><td>: 12/01/22</td><td></td><td></td><td></td></td<>	LCS (B2L0092-BS1)	,			Р	repared: 11/3	0/22 Analyzed	: 12/01/22			
Incidence 9 00 9.2 9.13 L3.5-Trinkopulataria 53 0.91 70-13 70-13 L3.5-Trinkopulataria 53 0.91 70-13 70-13 L3.5-Trinkopulataria 10 0.91 50.0 70-13 70-13 viper 100 0.91 50.0 70-13 70-13 70-13 L3.2-Trinkopulataria 100 0.97 70-13 70-13 70-13 L3.2-Trinkopulataria 10 0.91 50.0 70-13 70-13 L3.2-Trinkopulataria 10 97.0 70-13 70-13 70-13 L3.2-Trinkopulataria 10 97.0 97.0 </td <td>1,1,1-Trichloroethane</td> <td>52</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>103</td> <td>70-130</td> <td></td> <td></td>	1,1,1-Trichloroethane	52			ug/l	50.0		103	70-130		
1,2,3-rniardiylamsene54up150.010879.331,2,4-rniardiylamsene53up150.010679.3311,2,4-rniardiylamsene53up150.010879.331argaVates50up150.099.879.3311argaVates90up150.079.5370.33111,3 Ottopropose51up150.070.3370.33111,3 Ottopropose51up150.070.3370.3311Disorogit chtor63up150.070.3370.33111Chtopropose51up150.070.3370.3370.33111	Trichloroethene	49			ug/l	50.0		98.7	70-130		
1.3.5 1.3.6 96 0.0 166 70-130 Viny Choice 52 195 5.0 146 70-130 viny Choice 52 195 5.0 196 70-130 mitp Vytere 100 97 70-130 1 1 L1,2.3-Trinst Vytere 100 97.7 70-130 1 1 L1,2.3-Trinst Vytere 100 97.7 70-130 1 1 L1,2.3-Trinst Vytere 100 97.7 70-130 1 1 L1,2.3-Trinst Vytere 100 97.5 70-130 1 1 L1,2.3-Trinst Vytere 100 97.5 70-130 1 1 L1,2.3-Trinst Vytere 40 100 97.5 70-130 1 1 L1000000000000000000000000000000000000	1,2,3-Trichloropropane	54			ug/l	50.0		109	70-130		
1.2.4-finallybergene53upl50.010.470.30c-Xylenic504950.096.870.3011.1.2.7 Erackhonethune404050.097.570.1011.1.2.7 Erackhonethune404050.075.570.1011.3.0 Chlorpergene514050.070.370.1011.3.0 Chlorpergene514050.070.370.10170.10Erkanyl nethyl other634050.070.370.10170.101Erkanyl nethyl other534050.070.1370.10170.10 <t< td=""><td>1,3,5-Trimethylbenzene</td><td>53</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>106</td><td>70-130</td><td></td><td></td></t<>	1,3,5-Trimethylbenzene	53			ug/l	50.0		106	70-130		
Ymp1 Goode 52 up3 50.0 19.4 70.10 rskpring 100 9.7 70.130 ntkp-Vylaes 100 9.7 70.130 1,1,2,7-2rfastAloresthare 100 9.7 70.130 1,2,3-2rfastAloresthare 100 9.7 70.130 13.3 Octorogroppore 53 0.041 50.0 10.3 70.130 Environtalizacomethare 55 0.041 50.0 10.1 70.130 Samgate: - Acadone 72 0.041 50.0 10.1 70.130 Samgate: - Acadone 72 0.041 50.0 10.7 70.130 1.32 30 Branse 72 0.041 50.0 10.7 70.130 1.32 30 Branse 72 0.041 50.0 10.2 70.130 1.32 30 Branse 47	1,2,4-Trimethylbenzene	53			ug/l	50.0		105	70-130		
or Xylenc50wpl50.099.070.301,1,2,210099.070.3011,1,2,210095.097.370.1011,3.013.010099.070.3011,3.013.010099.070.3011,3.013.010099.070.3011.3.010095.011070.101Dispropriy chor510.0170.101Dispropriy chor530.0170.101Dispropriy chor510.0170.101Dispropriy chor510.0170.101Dispropriy chor510.0170.101Simgait: - Joundinoutchorement5090.070.10122Simgait: - Joundinoutchorement720.0150.011070.10Dispropriy720.0150.011070.1012230Branchinoutchorement740.0150.011070.1012230Branchinoutchorement540.0170.1010012330Branchinoutchorement540.0170.1010012330Branchinoutchorement530.0170.1010010030Branchinoutchorement540.0170.1010010030Branchinoutchorement540.0170.1010010030Branchinoutchorement54<	Vinyl Chloride	52			ug/l	50.0		104	70-130		
migh Xylen 100 99.7 70.130 Vert Xylen 70.130	o-Xylene	50			ug/l	50.0		99.9	70-130		
1,1,2,2,71stachlorozethane 99 0,91 50.0 75.0 70-130 1,3 Olchorozethane 51 0,91 50.0 13.0 70.130 70.130 1,3 Olchorozethane 51 0,91 50.0 85.0 70.130 70.130 Dispersynget the* 63 0,91 50.0 123 70-130 70.130 Surragett: - Alexandbuckettere 53 0,91 50.0 123 70-130 70.130 Surragett: - Alexandbuckettere 50.4 0,91 50.0 2.28 70.130 72.30 Surragett: - Alexandbuckettere 51.0 0,91 50.0 94.0 70.10 70.130 130 Surragett: - Alexandbuckettere 72 0,91 50.0 94.0 70.10 130 30 Surragett: - Alexandbuckettere 74 0,91 50.0 94.0 70.10 148 30 Surragett: - Alexandbuckettere 74 0,91 50.0 107 70.130 152 30 Surragett: - Alexandbuckettere 54 0,91 50.0 107 70.130 15	m&p-Xylene	100			ug/l	100		99.7	70-130		
brt-Amp 38 091 50.0 7.3 7-130 L3-Dichkoorghomp 51 091 50.0 103 71-30 Brty Intribunyi ther 40 091 50.0 85.3 70-30 Endy Intribunyi ther 53 091 50.0 113 70-30 Surragare: -Anonabiacaberane 53 091 50.0 123 70-30 Surragare: -Anonabiacaberane 50.4 091 50.0 102 70-130 Surragare: -Anonabiacaberane 50.4 091 50.0 102 70-130 1.32 30 Surragare: -Anonabiacaberane 72 091 50.0 104 70-130 1.32 30 Bromadichromethane 19 091 50.0 104 70-130 1.48 30 Bromadichromethane 19 091 50.0 1018 70-130 1.48 30 Bromadichromethane 19 091 50.0 107 70-130 1.48 30	1,1,2,2-Tetrachloroethane	49			ug/l	50.0		97.5	70-130		
1,3-04Chinopropane 51 091 50.0 103 70-130 Discorpoy ether 40 091 50.0 85.3 70-130 Discorpoy ether 55 091 50.0 111 70-130 Surrogate:	tert-Amyl methyl ether	38			ug/l	50.0		75.9	70-130		
Ethy terber 40 000 85.0 80.0 70-13 Disperpy (Herr 43 001 50.0 11.1 70-13 Sumgate: +Bronothancethane 51 001 123 70-13 Sumgate: -Bronothancethane 50.4 0.01 50.0 123 70-130 Sumgate: 12-Dichlorecthane-of 46.4 ugl 50.0 101 70-130 Sumgate: 12-Dichlorecthane-of 12.0 90.0 102 70-130 1.32 30 Remarker-30 72 001 50.0 107 70-130 1.32 30 Bername 72 001 50.0 107 70-130 1.32 30 Bronothancethane 64 0.0 97.7 70-130 4.88 30 Bronothancethane 53 0.01 50.0 112 70-130 6.64 30 Bronothancethane 53 0.01 50.0 112 70-130 6.11 30 50.0 102 70-130<	1,3-Dichloropropane	51			ug/l	50.0		103	70-130		
Description 43 49 5.0.0 8.3.3 7.1.30 Dichlorodhuoromehne 51 49 50.0 1.23 70.1.30 Surragate:	Ethyl tert-butyl ether	40			ug/i	50.0		80.0	70-130		
Inclination S3 Ugil SUU 111 //-130 Surgate: 4800 123 70-130 70-130 70-130 Surgate: 2.010 50.0 0.01 20.0 22.8 70-130 Surgate: 2.010 50.0 0.02 20.10 70-130 1.02 90.0 1.02 90.0 70.130 0.02 30.0 Bronchered/0 72 Ugil 50.0 97.7 70-130 0.130 30.0 Bronchonentame 64 Ugil 50.0 97.7 70-130 0.130 30.0 Bronchonentame 54 Ugil 50.0 107 70-130 4.88 30.0 Bronchonentame 54 Ugil 50.0 107 70-130 4.64 30.0 107.0 70.130 4.88 30.0 Bronchonentame 53 Ugil 50.0 107 70.130 4.61 30.0 107 70.130 6.64 30 Bronchorenta	Diisopropyl ether	43			ug/i	50.0		85.3	/0-130		
Lichmennennennen 61 400 50.0 123 7.213 7.213 Sarragster 4,2-0.chkonesthane.ed 56.4 409 50.0 122 70-130 Sarragster 1,2-0.chkonesthane.ed 51.0 40 50.0 122 70-130 Sarragster 1,2-0.chkonesthane.ed 72 409 50.0 144 70-130 0.22 30 Barane 72 409 50.0 144 70-130 0.130 30 Bromochoromethane 54 409 50.0 107 70-130 0.130 30 Bromochoromethane 54 409 50.0 108 70-130 0.52 30 Bromochoromethane 53 409 50.0 108 70-130 0.51 30 Chrone transo 33 409 50.0 105 70-130 0.511 30 Turt Budy lacinche 33 409 50.0 106 70-130 0.511 30 Unt Budy lacinche 33	l'richiorofiuoromethane	55			ug/i	50.0		111	70-130		
Surraget: St.0 Ug1 St.0	Dichlorodifiuoromethane	10			ug/i	50.0		123	/0-130		
Surraget: Line Data 16.4 upl 50.0 92.8 70-170 Surraget: SL0 upl S0.0 120 70-170 LCS Dup (B2L0092-BSD1) Prepared: 11/30/22. Analyzet: 12/01/22 Actione 72 upl 50.0 94.4 70-130 0.132 30 Bronnechomethane 49 upl 50.0 94.3 70-130 0.132 30 Bronnechormethane 49 upl 50.0 97.7 70-130 4.88 30 Bronnechormethane 53 upl 50.0 107 70-130 1.72 30 2-Butanone 1g4 50.0 106 70-130 1.77 30 2-Butanone 1g4 50.0 105 70-130 0.114 30 uet-Buty Atchol 99 upl 50.0 105 70-130 0.114 30 uet-Buty Atchol 99 upl 50.0 106 70-130 0.114 30<	Surrogate: 4-Bromofluorobenzene			50.4	ug/l	50.0		101	70-130		
Surrage/st: Tolkum-edb 51.0 ugl 50.0 102 79.130 LCS Dug (B2L0092-BSD1) Prepared: 11/30/22 Analyzed: 12/01/22 Actione 72 ugl 50.0 1.44 70.130 1.32 30 Berzene 47 ugl 50.0 94.9 70.130 1.32 30 Bromoberzene 54 ugl 50.0 97.7 70.130 6.84 30 Bromodchloromethane 59 ugl 50.0 112 70.130 6.64 30 Bromodchloromethane 53 ugl 50.0 1107 70.130 6.52 30 Bromodchloromethane 53 ugl 50.0 105 70.130 6.51 30 Bromodchloromethane 53 ugl 50.0 105 70.130 0.511 30 etabulyberzene 53 ugl 50.0 107 70.130 0.511 30 Carbon Deulinde 72 ugl 50.0 106 70.130	Surrogate: 1,2-Dichloroethane-d4			46.4	ug/l	50.0		92.8	70-130		
LCS Doug (B2L0092-BSD1) Prepared: 11/30/22 Analyzed: 12/01/22 Value	Surrogate: Toluene-d8			51.0	ug/l	50.0		102	70-130		
Acatore 72 491 50.0 144 70-130 20.2 30 Berance 47 491 50.0 167 70-130 1.32 30 Bromchenzere 54 491 50.0 107 70-130 1.32 30 Bromchinormethane 54 491 50.0 112 70-130 6.64 30 Bromchinormethane 55 491 50.0 77.2 70-130 6.64 30 Bromodelhonemethane 39 491 50.0 77.2 70-130 6.61 30 Bromodelhonemethane 33 491 50.0 77.2 70-130 6.61 30 Bromodelhane 33 491 50.0 106 70-130 6.11 30 Bromodelhane 53 491 50.0 106 70-130 6.11 30 Bromodelhonzene 53 491 50.0 683 70-130 6.11 30 Carhor Tarcho	LCS Dup (B2L0092-BSD1)				Р	repared: 11/3	0/22 Analyzed	: 12/01/22			
Benzene 47 ug/l 50.0 94.7 70-130 1.12 30 Bromochloromethane 54 ug/l 50.0 107 70-130 1.02 30 Bromochloromethane 54 ug/l 50.0 102 70-130 6.48 30 Bromochloromethane 53 ug/l 50.0 172 70-130 6.52 30 2-Butanone 39 ug/l 50.0 172 70-130 6.52 30 2-Butanone 53 ug/l 50.0 105 70-130 0.511 30 tert-But/lachol 99 ug/l 50.0 105 70-130 0.351 30 tert-But/lachol 99 ug/l 50.0 106 70-130 0.317 30 carbon Disulfie 44 ug/l 50.0 94.7 70-130 1.16 30 Carbon Disulfie 49 ug/l 50.0 94.7 70-130 1.16 30	Acetone	72			ug/l	50.0		144	70-130	20.2	30
Bromochiormethane 54 ug/l 50.0 177 70-130 4.48 30 Bromochiormethane 54 ug/l 50.0 102 70-130 4.48 30 Bromochiormethane 56 ug/l 50.0 112 70-130 4.78 30 Bromochiormethane 53 ug/l 50.0 107 70-130 4.78 30 Sec.ButyBenzene 53 ug/l 50.0 105 70-130 4.82 30 methutyIdenzene 53 ug/l 50.0 105 70-130 0.561 30 MethyIt-butyIdenzene 53 ug/l 50.0 107 70-130 0.611 30 Carbon Tetrachiorde 52 ug/l 50.0 107 70-130 0.611 30 Carbon Tetrachiorde 52 ug/l 50.0 104 70-130 1.16 30 Chiorothane 61 ug/l 50.0 104 70-130 1.17 30 Chiorothane 53 ug/l 50.0 107 70-130 <td< td=""><td>Benzene</td><td>47</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>94.9</td><td>70-130</td><td>1.32</td><td>30</td></td<>	Benzene	47			ug/l	50.0		94.9	70-130	1.32	30
Bromochkoromethane 49 49/l 50.0 97.7 70.30 4.88 30 Bromochkoromethane 56 ug/l 50.0 112 70-130 2.7.8 30 Bromochkine 53 ug/l 50.0 172 70-130 2.7.8 30 Bromochkine 53 ug/l 50.0 77.2 70-130 8.52 30 sec-Butylbenzene 53 ug/l 50.0 105 70-130 6.61 30 sec-Butylbenzene 53 ug/l 50.0 107 70-130 0.611 30 Methyl-butylether 53 ug/l 50.0 107 70-130 0.611 30 Carbon Disilifie 44 ug/l 50.0 88.3 70-130 0.511 30 Carbon Disilifie 47 ug/l 50.0 94.7 70-130 1.16 30 Chronotsenare 61 ug/l 50.0 104 70-130 1.17 30	Bromobenzene	54			ug/l	50.0		107	70-130	0.130	30
Bromodichloromethane 54 Ug/l 50.0 108 70-130 1.9.2 30 Bromormethane 53 Ug/l 50.0 117 70-130 2.7.8 30 2-btanone 39 Ug/l 50.0 172 70-130 6.64 30 2-btanone 39 Ug/l 50.0 105 70-130 0.611 30 sce-Butylbenzene 53 Ug/l 50.0 105 70-130 0.611 30 m-Butylbenzene 53 Ug/l 50.0 106 70-130 0.317 30 Methyl-butyl ether (MTBE) 44 Ug/l 50.0 104 70-130 6.11 30 Carbon Tetracholde 52 Ug/l 50.0 104 70-130 0.317 30 Charbon Tetracholde 52 Ug/l 50.0 104 70-130 1.16 30 Charbon Tetracholde 52 Ug/l 50.0 105 70-130 1.17 30 Charbon Tetracholde 52 Ug/l 50.0 105 70-130	Bromochloromethane	49			ug/l	50.0		97.7	70-130	4.88	30
Bromochame 56 ug/l 50.0 112 70-130 6.64 30 Bromonethame 39 ug/l 50.0 77.2 70-130 1.07 30 2-Butanone 39 ug/l 50.0 77.2 70-130 8.52 30 ce-Butylberzene 53 ug/l 50.0 106 70-130 0.611 30 n-Butylberzene 53 ug/l 50.0 106 70-130 0.611 30 ce-Butylberzene 53 ug/l 50.0 107 70-130 0.0561 30 dethyl-Butylether (MTBE) 44 ug/l 50.0 94.7 70-130 6.11 30 Carbon Tetrachloride 52 ug/l 50.0 104 70-130 1.10 30 Chioroberzene 49 ug/l 50.0 1021 70-130 1.17 30 Chioroberhane 51 ug/l 50.0 1017 70-130 3.44 30 Chioroberhane 52 ug/l 50.0 105 70-130 3.48	Bromodichloromethane	54			ug/l	50.0		108	70-130	1.92	30
Bromomethane 53 ugh 50.0 107 70-130 2.7.8 30 2-blurance 39 ugh 50.0 77.2 70-130 1.0.7 30 tert-Burylacohol 99 ugh 50.0 105 70-130 0.611 30 sec-Burylbenzene 53 ugh 50.0 107 70-130 0.611 30 tert-Burylbenzene 53 ugh 50.0 107 70-130 0.317 30 Carbon Disulfide 47 ugh 50.0 94.7 70-130 6.11 30 Carbon Disulfide 47 ugh 50.0 94.7 70-130 1.16 30 Chiorobenzene 61 ugh 50.0 96.6 70-130 1.17 30 Chiorobenzene 61 ugh 50.0 96.6 70-130 3.84 30 Chiorobenzene 52 ugh 50.0 105 70-130 3.84 30 Chiorobuene 52 ugh 50.0 107 70-130 3.84 30	Bromoform	56			ug/l	50.0		112	70-130	6.64	30
2-butchone 39 49/4 50.0 77.2 70-130 8.7 30 tert-butylachol 99 49/4 50.0 105 70-130 8.2 30 sec-Butylbenzene 53 49/4 50.0 106 70-130 0.611 30 tert-butylbenzene 53 49/4 50.0 107 70-130 0.0561 30 tert-butylbenzene 53 49/4 50.0 88.3 70-130 6.11 30 Carbon Disulfide 47 49/4 50.0 94.7 70-130 6.11 30 Chorobenzene 49 49/4 50.0 94.1 70-130 1.10 30 Chloroform 48 49/4 50.0 105 70-130 3.84 30 Chloroform 48 49/4 50.0 105 70-130 3.84 30 Chloroform 48 49/4 50.0 105 70-130 3.84 30 Lobro	Bromomethane	53			ug/l	50.0		107	70-130	27.8	30
tert-Buty/actional 99 99 94/4 50.0 198 70-130 8.52 30 see:Buty/benzene 53 94/4 50.0 105 70-130 0.114 30 n-Buty/benzene 53 94/7 50.0 107 70-130 0.056 30 tert-Buty/benzene 53 94/7 50.0 94.7 70-130 0.114 30 Carbon Disulfide 47 94/7 50.0 94.7 70-130 0.11 30 Carbon Tetrachloride 52 94/7 50.0 94.1 70-130 0.11.7 30 Chlorobenzene 61 94/7 50.0 96.6 70-130 0.17.7 30 Chloroform 48 94/7 50.0 107 70-130 0.875 30 2-Chlorotoluene 52 94/7 50.0 105 70-130 0.875 30 1/2-Dibromo-3-chloropropane (DBCP) 55 94/7 50.0 108 70-130 <t< td=""><td>2-Butanone</td><td>39</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>77.2</td><td>70-130</td><td>1.07</td><td>30</td></t<>	2-Butanone	39			ug/l	50.0		77.2	70-130	1.07	30
sec-supperizence 53 ug/l 50.0 105 70-130 10.611 30 n-Butylbenzene 53 ug/l 50.0 107 70-130 0.0561 30 Methyl bhutyl ether (MTBE) 44 ug/l 50.0 94.7 70-130 0.117 30 Carbon Disulfide 52 ug/l 50.0 104 70-130 1.16 30 Chlorobenzene 49 ug/l 50.0 98.1 70-130 1.16 30 Chlorobenzene 49 ug/l 50.0 98.1 70-130 1.16 30 Chlorobenzene 61 ug/l 50.0 98.1 70-130 1.17 30 Chlorobenzene 53 ug/l 50.0 107 70-130 3.84 30 Chlorobenzene 52 ug/l 50.0 105 70-130 3.84 30 Chlorobenzene 52 ug/l 50.0 105 70-130 3.48 30 1,2-Dibromochance 53 ug/l 50.0 108 70-130 3.48	tert-Butyl alcohol	99			ug/i	50.0		198	/0-130	8.52	30
h-butypenzene 53 ug/l 5.0 100 70-130 0.0561 30 Methyl t-butyl ether (MTBE) 44 ug/l 50.0 98.3 70-130 0.0317 30 Carbon Disulfide 47 ug/l 50.0 98.1 70-130 0.114 30 Carbon Tetrachloride 52 ug/l 50.0 104 70-130 0.110 30 Chlorobernzene 49 ug/l 50.0 98.1 70-130 0.117 30 Chlorobernzene 61 ug/l 50.0 121 70-130 0.873 30 Chloroberne 53 ug/l 50.0 105 70-130 0.873 30 Chlorobrid 48 ug/l 50.0 105 70-130 0.873 30 Chlorobrid 52 ug/l 50.0 111 70-130 0.575 30 1,2-0 bloromochane 53 ug/l 50.0 111 70-130 0.575 30 1,2-0 bloromochane 53 ug/l 50.0 108 70-130	sec-Butylbenzene	53			ug/i	50.0		105	70-130	0.611	30
let redultatelle 33 ug/l 50.0 10/l 70-130 0.0317 30 Carbon Disulfide 47 ug/l 50.0 94.7 70-130 6.11 30 Carbon Disulfide 52 ug/l 50.0 94.1 70-130 1.16 30 Chlorobenzene 49 ug/l 50.0 121 70-130 1.10 30 Chlorobenzene 49 ug/l 50.0 121 70-130 1.17 30 Chlorobenzene 61 ug/l 50.0 107 70-130 3.84 30 Chlorobenzene 52 ug/l 50.0 105 70-130 0.575 30 Chlorobromethane 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 111 70-130 0.203 30 Dibromochloromethane (EDB) 54 ug/l 50.0 108 70-130 0.203 30 1,4-Dichlorobenzene 53 ug/l 50.0 106 <t< td=""><td>n-Butylbenzene</td><td>53</td><td></td><td></td><td>ug/i</td><td>50.0</td><td></td><td>105</td><td>70-130</td><td>0.114</td><td>30</td></t<>	n-Butylbenzene	53			ug/i	50.0		105	70-130	0.114	30
neutry Euler (In B2) 44 ugl 50.0 36.3 70-130 0.31 30 Carbon Diguifide 47 ugl 50.0 94.7 70-130 1.16 30 Carbon Diguifide 52 ugl 50.0 98.1 70-130 1.10 30 Chlorobenzene 61 ugl 50.0 98.1 70-130 1.17 30 Chlorobertane 61 ugl 50.0 96.6 70-130 0.873 30 Chlorobertane 53 ugl 50.0 105 70-130 0.875 30 Chlorobuene 52 ugl 50.0 105 70-130 0.575 30 12-Olbromo-3-chloropopane (DBCP) 55 ugl 50.0 111 70-130 0.48 30 12-Olbromo-3-chloropopane (DBCP) 55 ugl 50.0 108 70-130 0.203 30 Dibromchloromethane 53 ugl 50.0 108 70-130 0.81 30 1,2-Dichorobenzene 53 ugl 50.0 108 7	Nethyd t hythd ether (MTRE)	53			ug/l	50.0		107	70-130	0.0501	20
Carbon Distance 47 ugh 50.0 94.7 70-130 0.11 30 Carbon Testachloride 52 ugh 50.0 98.1 70-130 1.16 30 Chlorobenzene 49 ugh 50.0 121 70-130 1.17 30 Chlorobenzene 61 ugh 50.0 96.6 70-130 0.873 30 Chlorobenzene 53 ugh 50.0 105 70-130 0.575 30 Chlorobure 52 ugh 50.0 105 70-130 0.575 30 2-Chlorotoluene 52 ugh 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropopane (DBCP) 55 ugh 50.0 108 70-130 0.203 30 Dibromchhane (EDB) 54 ugh 50.0 108 70-130 0.801 30 1,2-Dibromoethane (EDB) 54 ugh 50.0 106 70-130 0.801 30 1,3-Dichlorobenzene 53 ugh 50.0 106 70-130	Carbon Disulfido	47			ug/l	50.0		00.5	70-130	6.11	30
Chloroberzene 12 101 70-130 1.10 30 Chloroberzene 61 ug/l 50.0 98.1 70-130 1.10 30 Chlorobertane 61 ug/l 50.0 96.6 70-130 0.873 30 Chlorobrum 48 ug/l 50.0 107 70-130 0.873 30 Chlorobrutene 53 ug/l 50.0 105 70-130 0.873 30 4-Chlorobulene 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromo-thane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromo-thane (EDB) 54 ug/l 50.0 108 70-130 0.801 30 1,2-Dichlorobenzene 53 ug/l 50.0 108 70-130 0.81 30 1,2-Dichlorobenzene 52 ug/l 50.0 106 70-130 2.81 30 <td>Carbon Tetrachloride</td> <td>52</td> <td></td> <td></td> <td>ug/l</td> <td>50.0</td> <td></td> <td>104</td> <td>70-130</td> <td>1 16</td> <td>30</td>	Carbon Tetrachloride	52			ug/l	50.0		104	70-130	1 16	30
Chlorodatilicite 13 0 500 101 70-130 11.7 30 Chloroform 48 ug/l 50.0 107 70-130 0.873 30 Chloroform 53 ug/l 50.0 107 70-130 0.873 30 Chloroform 52 ug/l 50.0 105 70-130 0.575 30 2-Chlorofoluene 52 ug/l 50.0 111 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 107 70-130 0.575 30 1,2-Dibromo-thoromethane 53 ug/l 50.0 111 70-130 0.575 30 1,2-Dibromo-thoromethane (EDB) 54 ug/l 50.0 108 70-130 0.801 30 1,3-Dichlorobenzene 53 ug/l 50.0 108 70-130 2.81 30 1,4-Dichlorobenzene 52 ug/l 50.0 104 70-130 2.81 30 1,4-Dichlorobenzene 53 ug/l 50.0 104	Chlorobenzene	49			ug/l	50.0		98.1	70-130	1.10	30
Chloroform 48 ug/l 50.0 96.6 70.130 0.8.73 30 Chloroform 53 ug/l 50.0 107 70-130 3.84 30 4-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 2-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropopane (DBCP) 55 ug/l 50.0 107 70-130 3.84 30 1,2-Dibromo-thane 53 ug/l 50.0 107 70-130 3.84 30 1,2-Dibromo-thane (EDB) 54 ug/l 50.0 108 70-130 3.84 30 1,2-Dichlorobenzene 53 ug/l 50.0 108 70-130 3.84 30 1,3-Dichlorobenzene 53 ug/l 50.0 108 70-130 2.81 30 1,4-Dichlorobenzene 52 ug/l 50.0 106 70-130 2.81 30 1,4-Dichlorobenzene 53 ug/l 50.0 106 <t< td=""><td>Chloroethane</td><td>61</td><td></td><td></td><td>ug/l</td><td>50.0</td><td></td><td>121</td><td>70-130</td><td>11.7</td><td>30</td></t<>	Chloroethane	61			ug/l	50.0		121	70-130	11.7	30
Chloromethane 53 ug/l 50.0 107 70-130 3.84 30 4-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 2-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 111 70-130 3.48 30 Dibromochloromethane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromo-dthane (EDB) 54 ug/l 50.0 108 70-130 0.203 30 1,2-Dichlorobenzene 53 ug/l 50.0 108 70-130 0.201 30 1,2-Dichlorobenzene 53 ug/l 50.0 108 70-130 0.801 30 1,3-Dichlorobenzene 53 ug/l 50.0 106 70-130 2.39 30 1,3-Dichlorobenzene 52 ug/l 50.0 93.6 70-130 3.17 30 1,2-Dichloroethane 47 ug/l 50.0	Chloroform	48			ug/l	50.0		96.6	70-130	0.873	30
4-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 2-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 111 70-130 3.48 30 1,2-Dibromochlaromethane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromochane (EDB) 54 ug/l 50.0 108 70-130 0.801 30 Dibromomethane 53 ug/l 50.0 108 70-130 0.801 30 1,2-Dichlorobenzene 53 ug/l 50.0 106 70-130 2.81 30 1,3-Dichlorobenzene 53 ug/l 50.0 106 70-130 2.39 30 1,4-Dichlorobenzene 47 ug/l 50.0 93.6 70-130 3.17 30 1,2-Dichloroethane 49 ug/l 50.0 98.7 70-130 1.17 30 trans-1,2-Dichloroethene 47 ug/l 50.0	Chloromethane	53			ug/l	50.0		107	70-130	3.84	30
2-Chlorotoluene 52 ug/l 50.0 105 70-130 0.575 30 1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 111 70-130 3.48 30 Dibromochloromethane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromoethane (EDB) 54 ug/l 50.0 108 70-130 0.801 30 1,2-Dichlorobenzene 53 ug/l 50.0 108 70-130 2.81 30 1,3-Dichlorobenzene 53 ug/l 50.0 106 70-130 2.39 30 1,4-Dichlorobenzene 53 ug/l 50.0 106 70-130 2.39 30 1,4-Dichlorobenzene 52 ug/l 50.0 104 70-130 2.39 30 1,2-Dichloroethane 47 ug/l 50.0 93.6 70-130 3.17 30 1,2-Dichloroethene 47 ug/l 50.0 98.7 70-130 3.17 30 1,2-Dichloroethene 44 ug/l 50.0	4-Chlorotoluene	52			ug/l	50.0		105	70-130	0.575	30
1,2-Dibromo-3-chloropropane (DBCP) 55 ug/l 50.0 111 70-130 1.69 30 Dibromochloromethane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromoethane (EDB) 54 ug/l 50.0 108 70-130 0.203 30 Dibromomethane 54 ug/l 50.0 108 70-130 0.801 30 1,2-Dichlorobenzene 53 ug/l 50.0 105 70-130 2.81 30 1,3-Dichlorobenzene 53 ug/l 50.0 106 70-130 0.921 30 1,4-Dichlorobenzene 52 ug/l 50.0 104 70-130 2.39 30 1,2-Dichloroethane 47 ug/l 50.0 93.6 70-130 3.17 30 1,2-Dichloroethene 49 ug/l 50.0 88.7 70-130 2.71 30 cis-1,2-Dichloroethene 40 ug/l 50.0 80.0 70-130 2.71 30 1,2-Dichloroethene 40 ug/l 50.0	2-Chlorotoluene	52			ug/l	50.0		105	70-130	0.575	30
Dibromochloromethane 53 ug/l 50.0 107 70-130 3.48 30 1,2-Dibromoethane (EDB) 54 ug/l 50.0 108 70-130 0.203 30 Dibromoethane 54 ug/l 50.0 108 70-130 0.801 30 1,2-Dichlorobenzene 53 ug/l 50.0 105 70-130 2.81 30 1,3-Dichlorobenzene 53 ug/l 50.0 106 70-130 0.921 30 1,4-Dichlorobenzene 52 ug/l 50.0 104 70-130 3.17 30 1,2-Dichloroethane 47 ug/l 50.0 98.7 70-130 1.17 30 1,2-Dichloroethane 49 ug/l 50.0 88.7 70-130 3.46 30 1,1-Dichloroethene 40 ug/l 50.0 80.0 70-130 3.46 30 1,2-Dichloropthene 40 ug/l 50.0 80.0 70-130 8.63	1,2-Dibromo-3-chloropropane (DBCP)	55			ug/l	50.0		111	70-130	1.69	30
1,2-Dibromoethane (EDB)54ug/l50.010870-1300.20330Dibromomethane54ug/l50.010870-1300.801301,2-Dichlorobenzene53ug/l50.010570-1302.81301,3-Dichlorobenzene53ug/l50.010670-1300.921301,4-Dichlorobenzene52ug/l50.010470-1302.39301,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130i,1-Dichloroethene47ug/l50.088.770-1303.4630i,2-Dichloroethene47ug/l50.080.070-1308.6330i,2-Dichloroethene40ug/l50.080.070-1308.6330i,2-Dichloropane48ug/l50.082.070-1300.084230i,2-Dichloropropane41ug/l50.082.070-1300.14630i,3-Dichloropropene49ug/l50.097.370-1302.4430i,2-Dichloropropene49ug/l50.097.370-1305.9230i,2-Dichloropropene49ug/l50.097.370-1305.9230i,3-Dichloroprope	Dibromochloromethane	53			ug/l	50.0		107	70-130	3.48	30
Dibromomethane54ug/l50.010870-1300.801301,2-Dichlorobenzene53ug/l50.010570-1302.81301,3-Dichlorobenzene53ug/l50.010670-1300.921301,4-Dichlorobenzene52ug/l50.010470-1302.39301,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethane44ug/l50.088.770-1302.7130dis-1,2-Dichloroethane47ug/l50.088.770-1303.46301,1-Dichloroethane40ug/l50.080.070-1308.63301,2-Dichloroethane40ug/l50.080.070-1300.0842301,2-Dichloroptopane48ug/l50.082.070-1300.146302,2-Dichloropropane41ug/l50.082.070-1300.14630cis-1,3-Dichloropropane49ug/l50.097.370-1302.4430cis-1,3-Dichloropropane49ug/l50.097.370-1302.4430cis-1,3-Dichloropropane49ug/l50.097.370-1302.4430cis-1,3-Dichloropropane49ug/l50.097.370-1305.9230<	1,2-Dibromoethane (EDB)	54			ug/l	50.0		108	70-130	0.203	30
1,2-Dichlorobenzene53ug/l50.010570-1302.81301,3-Dichlorobenzene53ug/l50.010670-1300.921301,4-Dichlorobenzene52ug/l50.010470-1302.39301,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130cis-1,2-Dichloroethene47ug/l50.088.770-1303.46301,1-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloropropane48ug/l50.080.070-1300.0842302,2-Dichloropropane41ug/l50.082.070-1300.14630cis-1,3-Dichloropropene49ug/l50.097.370-1302.4430cis-1,3-Dichloropropene51ug/l50.097.370-1302.4430trans-1,3-Dichloropropene51ug/l50.097.370-1302.9230	Dibromomethane	54			ug/l	50.0		108	70-130	0.801	30
1,3-Dichlorobenzene53ug/l50.010670-1300.921301,4-Dichlorobenzene52ug/l50.010470-1302.39301,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130cis-1,2-Dichloroethene47ug/l50.088.770-1303.46301,1-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloroptopane48ug/l50.095.170-1300.0842302,2-Dichloroptopane41ug/l50.082.070-1300.14630cis-1,3-Dichloropropane49ug/l50.097.370-1302.4430cis-1,3-Dichloropropane51ug/l50.097.370-1302.4430	1,2-Dichlorobenzene	53			ug/l	50.0		105	70-130	2.81	30
1,4-Dichlorobenzene52ug/l50.010470-1302.39301,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130cis-1,2-Dichloroethene47ug/l50.093.670-1303.46301,1-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloropropane48ug/l50.095.170-1300.0842302,2-Dichloropropane41ug/l50.082.070-1300.14630cis-1,3-Dichloropropane49ug/l50.097.370-1302.4430trans-1,3-Dichloropropene51ug/l50.010370-1305.9230	1,3-Dichlorobenzene	53			ug/l	50.0		106	70-130	0.921	30
1,1-Dichloroethane47ug/l50.093.670-1303.17301,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130cis-1,2-Dichloroethene47ug/l50.093.670-1303.46301,1-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloropthene48ug/l50.095.170-1300.0842302,2-Dichloroptopane41ug/l50.082.070-1300.14630cis-1,3-Dichloroptopene49ug/l50.097.370-1302.4430trans-1,3-Dichloroptopene51ug/l50.010370-1305.9230	1,4-Dichlorobenzene	52			ug/l	50.0		104	70-130	2.39	30
1,2-Dichloroethane49ug/l50.098.770-1301.1730trans-1,2-Dichloroethene44ug/l50.088.770-1302.7130cis-1,2-Dichloroethene47ug/l50.093.670-1303.46301,1-Dichloroethene40ug/l50.080.070-1308.63301,2-Dichloropropane48ug/l50.095.170-1300.0842302,2-Dichloropropane41ug/l50.082.070-1300.14630cis-1,3-Dichloropropene49ug/l50.097.370-1302.4430trans-1,3-Dichloropropene51ug/l50.010370-1305.9230	1,1-Dichloroethane	47			ug/l	50.0		93.6	70-130	3.17	30
trans-1,2-Dichloroethene 44 ug/l 50.0 88.7 70-130 2.71 30 cis-1,2-Dichloroethene 47 ug/l 50.0 93.6 70-130 2.71 30 1,1-Dichloroethene 40 ug/l 50.0 93.6 70-130 3.46 30 1,2-Dichloropthene 40 ug/l 50.0 80.0 70-130 8.63 30 1,2-Dichloroptopane 48 ug/l 50.0 95.1 70-130 0.0842 30 2,2-Dichloroptopane 41 ug/l 50.0 82.0 70-130 0.146 30 cis-1,3-Dichloropropene 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	1,2-Dichloroethane	49			ug/l	50.0		98.7	70-130	1.17	30
cis-1,2-Dichloroethene 47 ug/l 50.0 93.6 70-130 3.46 30 1,1-Dichloroethene 40 ug/l 50.0 80.0 70-130 8.63 30 1,2-Dichloropropane 48 ug/l 50.0 95.1 70-130 0.0842 30 2,2-Dichloropropane 41 ug/l 50.0 82.0 70-130 0.146 30 cis-1,3-Dichloropropane 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	trans-1,2-Dichloroethene	44			ug/l	50.0		88.7	70-130	2.71	30
1,1-Dichloroethene 40 ug/l 50.0 80.0 70-130 8.63 30 1,2-Dichloropropane 48 ug/l 50.0 95.1 70-130 0.0842 30 2,2-Dichloropropane 41 ug/l 50.0 82.0 70-130 0.146 30 cis-1,3-Dichloropropene 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	cis-1,2-Dichloroethene	47			ug/l	50.0		93.6	70-130	3.46	30
1,2-Dichloropropane 48 ug/l 50.0 95.1 70-130 0.0842 30 2,2-Dichloropropane 41 ug/l 50.0 82.0 70-130 0.146 30 cis-1,3-Dichloropropene 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	1,1-Dichloroethene	40			ug/l	50.0		80.0	70-130	8.63	30
2,2-Dicnioropropane 41 ug/l 50.0 82.0 70-130 0.146 30 cis-1,3-Dichloropropene 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	1,2-Dichloropropane	48			ug/l	50.0		95.1	70-130	0.0842	30
cis-1,3-Dichloropropene 49 ug/l 50.0 97.3 70-130 2.44 30 trans-1,3-Dichloropropene 51 ug/l 50.0 103 70-130 5.92 30	2,2-Dichloropropane	41			ug/l	50.0		82.0	/0-130	0.146	30
uaris-1,3-Dicilioloproperie 51 ug/i 50.0 103 /0-130 5.92 30 Dago 27 of 28	cis-1,3-Dichloropropene	49			ug/i	50.0		97.3	/0-130	2.44	30
	u aus-1,3-Dichloropropene	51			ug/i	50.0		103	/0-130	Dane	<u></u> 27 of 29

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2L0092 - Purge-Trap (Co	ntinued)									
LCS Dup (B2L0092-BSD1)				F	Prepared: 11/30)/22 Analyzed	1: 12/01/22			
1,1-Dichloropropene	44			ug/l	50.0		87.1	70-130	5.32	30
Diethyl ether	49			ug/l	50.0		97.8	70-130	2.74	30
1,4-Dioxane	304			ug/l	250		121	0-200	9.52	40
Ethylbenzene	49			ug/l	50.0		99.0	70-130	0.466	30
Hexachlorobutadiene	54			ug/l	50.0		107	70-130	0.881	30
2-Hexanone	43			ug/l	50.0		85.2	70-130	2.78	30
Isopropylbenzene	53			ug/l	50.0		107	70-130	2.12	30
p-Isopropyltoluene	53			ug/l	50.0		106	70-130	0.208	30
Methylene Chloride	48			ug/l	50.0		95.1	60-140	3.95	30
4-Methyl-2-pentanone	45			ug/l	50.0		89.4	70-130	1.27	30
Naphthalene	53			ug/l	50.0		106	70-130	2.53	30
n-Propylbenzene	53			ug/l	50.0		107	70-130	0.131	30
Styrene	54			ug/l	50.0		107	70-130	0.728	30
1,1,1,2-Tetrachloroethane	51			ug/l	50.0		103	70-130	0.136	30
Tetrachloroethene	51			ug/l	50.0		103	70-130	2.29	30
Tetrahydrofuran	50			ug/l	50.0		101	70-130	1.46	30
Toluene	49			ug/l	50.0		97.6	70-130	0.490	30
1,2,4-Trichlorobenzene	54			ug/l	50.0		107	70-130	1.22	30
1,2,3-Trichlorobenzene	53			ug/l	50.0		106	70-130	2.86	30
1,1,2-Trichloroethane	53			ug/l	50.0		106	70-130	0.342	30
1,1,1-Trichloroethane	52			ug/l	50.0		105	70-130	1.50	30
Trichloroethene	49			ug/l	50.0		97.6	70-130	1.04	30
1,2,3-Trichloropropane	54			ug/l	50.0		108	70-130	0.793	30
1,3,5-Trimethylbenzene	53			ug/l	50.0		106	70-130	0.282	30
1,2,4-Trimethylbenzene	52			ug/l	50.0		105	70-130	0.304	30
Vinyl Chloride	53			ug/l	50.0		105	70-130	0.687	30
o-Xylene	51			ug/l	50.0		103	70-130	3.00	30
m&p-Xylene	100			ug/l	100		99.5	70-130	0.171	30
1,1,2,2-Tetrachloroethane	50			ug/l	50.0		99.5	70-130	2.05	30
tert-Amyl methyl ether	33			ug/l	50.0		66.8	70-130	12.8	30
1,3-Dichloropropane	49			ug/l	50.0		97.8	70-130	4.93	30
Ethyl tert-butyl ether	36			ug/l	50.0		72.4	70-130	9.94	30
Diisopropyl ether	44			ug/l	50.0		88.6	70-130	3.84	30
Trichlorofluoromethane	57			ug/l	50.0		113	70-130	2.46	30
Dichlorodifluoromethane	59			ug/l	50.0		119	70-130	3.15	30
Surrogate: 4-Bromofluorobenzene			51.5	ug/l	50.0		103	70-130		
Surrogate: 1,2-Dichloroethane-d4			47.0	ug/l	50.0		94.0	70-130		
Surrogate: Toluene-d8			49.2	ug/l	50.0		98.5	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH)

Analvte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1369 - MADEP VPH					Duamanad) Amelumodu 11	1/20/22			
LCS (B2K1369-BS1)	2.2		0.2	ma/ka	Prepared &	x Analyzed: 11	02.6	70 120		
Ethylhonzono	2.5		0.2	mg/kg	2.50		92.0	70-130		1
Methyl t-butyl ether (MTBE)	2.7		0.2	ma/ka	2.50		97.5	70-130		1
Nanhthalene	2.5		0.05	ma/ka	2.50		84.6	70-130		1
Toluene	2.1		0.5	ma/ka	2.50		95.5	70-130		1
m&n-Xylene	5.0		0.5	ma/ka	5.00		101	70-130		ľ
2-Methylpentane	2.4		250	ma/ka	2.50		94.4	70-130		
n-Nonane	2.7		250	ma/ka	2.50		87.9	70-130		
o-Xylene	2.2		0.5	ma/ka	2.50		100	70-130		ľ
Decane	2.3		250	ma/ka	2.50		88.0	70-130		
C5-C8 Aliphatic Hydrocarbons	ND		5.0	ma/ka	2.00		0010	70-130		
n-Butylcylohexane	2.3		250	mg/kg	2.50		91.0	70-130		
n-Pentane	2.3		250	mg/kg	2.50		91.9	70-130		
C9-C12 Aliphatic Hydrocarbons	ND		5.0	mg/kg				70-130		
1.2.4-Trimethylbenzene	2.7		0.5	mg/kg	2.50		109	70-130		
VPH LCS Aliphatic C5-C8	7.0		0.5	mg/kg	7.50		93.0	70-130		
C9-C10 Aromatic Hydrocarbons	ND		5.0	mg/kg	2.50			70-130		
VPH LCS Aliphatic C9-C12	4.5		0.5	mg/kg	5.00		89.5	70-130		
VPH LCS Aromatic C9-C10	2.7		0.5	mg/kg	2.50		109	70-130		
			27.0				72.0	70 1 20		
Surrogate: 2,5- Dibromotoluono-FID			37.0	ug/l	50.0		73.9	70-130		
			50.5	ugn	50.0		/3.1	70-150		
LCS Dup (B2K1369-BSD1)	2.2		0.2	malka	Prepared 8	& Analyzed: 11	1/29/22	70 1 20	0.020	25
Benzene	2.3		0.2	mg/kg	2.50		92.0	70-130	0.628	25
Ethyldenzene Mathadia hardi ath an (MTRE)	2.4		0.2	mg/kg	2.50		97.9	70-130	0.409	25
Methyl t-butyl ether (MTBE)	2.3		0.05	mg/kg	2.50		92.3	70-130	0.389	25
Naphthalene	2.2		0.5	mg/kg	2.50		86.9	70-130	2.68	25
I oluene	2.4		0.2	mg/kg	2.50		95.2	70-130	0.315	25
m&p-Xylene	5.1		0.5	mg/kg	5.00		101	70-130	0.554	25
2-Methylpentane	2.4		250	mg/kg	2.50		94.0 99. F	70-130	0.425	25
	2.2		250	mg/kg	2.50		00.0	70-130	0.771	25
0-xylene	2.5		0.5	mg/kg	2.50		101	70-130	0.714	25
CE C9 Aliphatic Hydrocarbons	2.4		250	mg/kg	2.50		94.2	70-130	0.74	25
C5-C8 Aliphatic Hydrocarbons	טא כר		5.0	mg/kg	2 50		90.7	70-130	1 20	25
CO C12 Aliphatic Hydrosarbons	2.2		250	mg/kg	2.50		09.7	70-130	1.59	25
C9-C12 Aliphatic Hydrocarbons	שאו בר		250	mg/kg	2 50		01.0	70-130	0.0971	25
1 2 4 Trimethylbonzono	2.5		250	mg/kg	2.50		111	70-130	1 00	25
Co-C10 Aromatic Hydrocarbons	2.0		5.0	mg/kg	2.50		111	70-130	1.99	25
VPH LCS Aliphatic C5-C9	7.0		5.0	mg/kg	2.50		02.7	70-130	0 366	25
VPH_LCS_Aliphatic_C3-C6	7.0		0.5	mg/kg	5.00		92.7	70-130	2.50	25
VPH LCS Aromatic C9-C12	7.0 2.8		0.5	ma/ka	2 50		111	70-130	1 99	25
	2.0				2.50					
Surrogate: 2,5- Dibromotoluene-PID			35.8	ug/l	50.0		71.6	70-130		
Surrogate: 2,5- Dibromotoluene-FID			37.2	ug/l	50.0		74.3	70-130		

Volatile Petroleum Hydrocarbons (MADEP-VPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1369 - MADEP VPH (C	Continued)									
Matrix Spike (B2K1369-MS1)	S	ource: 2K1	.8040-02		Prepared 8	& Analyzed: 11	/29/22			
Benzene	2.2		0.3	mg/kg dry	2.76	ND	79.8	70-130		
Ethylbenzene	2.4		0.3	mg/kg dry	2.76	ND	86.4	70-130		
Methyl t-butyl ether (MTBE)	2.3		0.06	mg/kg dry	2.76	ND	84.3	70-130		
Naphthalene	2.6		0.6	mg/kg dry	2.76	ND	92.6	70-130		
Toluene	2.2		0.3	mg/kg dry	2.76	ND	80.5	70-130		
m&p-Xylene	4.6		0.6	mg/kg dry	5.52	ND	83.7	70-130		
2-Methylpentane	2.6		302	mg/kg dry	2.76	ND	94.0	70-130		
n-Nonane	2.1		302	mg/kg dry	2.76	ND	77.5	70-130		
o-Xylene	2.4		0.6	mg/kg dry	2.76	ND	88.2	70-130		
Decane	2.3		302	mg/kg dry	2.76	ND	82.3	70-130		
C5-C8 Aliphatic Hydrocarbons	ND		6.0	mg/kg dry		ND		70-130		
n-Butylcylohexane	2.2		302	mg/kg dry	2.76	ND	79.1	70-130		
C9-C12 Aliphatic Hydrocarbons	ND		6.0	mg/kg dry		ND		70-130		
n-Pentane	2.3		302	mg/kg dry	2.76	ND	82.6	70-130		
1,2,4-Trimethylbenzene	3.0		0.6	mg/kg dry	2.76	ND	107	70-130		
C9-C10 Aromatic Hydrocarbons	ND		6.0	mg/kg dry	2.76	ND		70-130		
VPH_LCS_Aliphatic_C5-C8	6.8		0.6	mg/kg dry	8.28	ND	82.7	70-130		
VPH_LCS_Aliphatic_C9-C12	4.2		0.6	mg/kg dry	5.52	ND	76.5	70-130		
VPH_LCS_Aromatic_C9-C10	2.8		0.6	mg/kg dry	2.76	ND	100	70-130		
Surrogate: 2,5- Dibromotoluene-PID			37.4	ug/l	50.0		74.7	70-130		
Surrogate: 2,5- Dibromotoluene-FID			38.9	ug/l	50.0		77.8	70-130		
Matrix Spike Dup (B2K1369-MSD1)	S	ource: 2K1	.8040-02		Prepared 8	& Analyzed: 11	/29/22			
Benzene	2.2		0.3	mg/kg dry	2.76	ND	79.8	70-130	0.00	25
Ethylbenzene	2.2		0.3	mg/kg dry	2.76	ND	81.0	70-130	6.46	25
Methyl t-butyl ether (MTBE)	2.2		0.06	mg/kg dry	2.76	ND	81.5	70-130	3.43	25
Naphthalene	2.6		0.6	mg/kg dry	2.76	ND	92.6	70-130	0.00	25
Toluene	2.2		0.3	mg/kg dry	2.76	ND	80.5	70-130	0.00	25
m&p-Xylene	4.6		0.6	mg/kg dry	5.52	ND	83.7	70-130	0.00	25
2-Methylpentane	2.3		302	mg/kg dry	2.76	ND	84.4	70-130	10.8	25
n-Nonane	2.1		302	mg/kg dry	2.76	ND	77.5	70-130	0.00	25
o-Xylene	2.3		0.6	mg/kg ary	2.76	ND	83.2	70-130	5.87	25
Decane	2.0		302	mg/kg dry	2.76	ND	73.9	70-130	10.7	25
C5-C8 Aliphatic Hydrocarbons	ND		6.0	mg/kg ary		ND		70-130		25
n-Butylcylohexane	2.2		302	mg/kg dry	2.76	ND	79.1	70-130	0.00	25
n-Pentane	2.3		302	mg/kg dry	2.76	ND	82.6	70-130	0.00	25
C9-C12 Aliphatic Hydrocarbons	ND		6.0	mg/kg ary	2.76	ND	100	70-130	6.00	25
1,2,4- I rimetnyibenzene	2.8		0.6	mg/kg dry	2.76	ND	100	70-130	6.92	25
VPH_LCS_Aliphatic_C5-C8	6.8		0.6	mg/kg dry	8.28	ND	82.7	70-130	0.00	25
			0.0	mg/kg dn/	2.70		76 5	70-130	0.00	25
VPH LCS Aromatic C9-C10	4.2 2.8		0.0	ma/ka drv	5.52 2.76		100	70-130	0.00	25 25
				······································						
Surrogate: 2,5- Dibromotoluene-PID			3/.4	ug/i	50.0		/4./ 77 0	70-130 70-120		
			30.9	ugn	50.0		//.0	70-130		

Quality Control

(Continued)

Polychlorinated Biphenyls (PCBs)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1075 - EPA 3546										
Blank (B2K1075-BLK1)				Pi	repared: 11/2	1/22 Analyze	d: 11/30/22			
Aroclor-1016	ND		66	ug/kg						
Aroclor-1221	ND		66	ug/kg						
Aroclor-1232	ND		66	ug/kg						
Aroclor-1242	ND		66	ug/kg						
Aroclor-1248	ND		66	ug/kg						
Aroclor-1254	ND		66	ug/kg						
Aroclor-1260	ND		66	ug/kg						
Aroclor-1262	ND		66	ug/kg						
Aroclor-1268	ND		66	ug/kg						
PCBs (Total)	ND		66	ug/kg						
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			12.3	ug/kg	13.3		92.1	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			13.6	ug/kg	13.3		102	43.3-130		
LCS (B2K1075-BS1)				Pi	repared: 11/2	1/22 Analyze	d: 11/30/22			
Aroclor-1016	160		66	ug/kg	167		95.8	58.2-125		
Aroclor-1242	ND		66	ug/kg				58.2-125		
Aroclor-1260	156		66	ug/kg	167		93.8	65.5-130		
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			11.5	ug/kg	13.3		86.6	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			18.7	ug/kg	13.3		140	43.3-130		
LCS Dup (B2K1075-BSD1)				Pi	repared: 11/2	1/22 Analyze	d: 11/30/22			
Aroclor-1016	ND		66	ug/kg	167			58.2-125		20
Aroclor-1242	ND		66	ug/kg				58.2-125		20
Aroclor-1260	ND		66	ug/kg	167			65.5-130		20
Surrogate: 2,4,5,6-Tetrachloro-m-xylene (TCMX)			12.1	ug/kg	13.3		90.8	36.2-130		
Surrogate: Decachlorobiphenyl (DCBP)			12.8	ug/kg	13.3		95.9	43.3-130		

			Quality (Conti	Control						
Extractable Petroleum Hydrocarb	ons (MADE	EP-EPH))							
Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1298 - EPA 3546										
Blank (B2K1298-BLK1)				Pr	epared: 11/2	27/22 Analyze	ed: 11/29/22			
Unadjusted C11-C22 Aromatic	ND		6.67	mg/kg		. ,				
Hydrocarbons										
Naphthalene	ND		0.33	mg/kg						
2-Methylnaphthalene	ND		0.33	mg/kg						
Phenanthrene	ND		0.33	mg/kg						
Acenaphthene	ND		0.33	mg/kg						
Acenaphthylene	ND		0.33	mg/kg						
Fluorene	ND		0.33	mg/kg						
Anthracene	ND		0.33	mg/kg						
Fluoranthene	ND		0.33	mg/kg						
Pyrene	ND		0.33	mg/kg						
Benzo(a)anthracene	ND		0.33	mg/kg						
Chrysene	ND		0.33	mg/kg						

mg/kg

8.33

59.1

40-140

0.33

0.33

0.33

0.33

0.33

0.33

13.3

13.3

6.67

4.92

ND

ND

ND

ND

ND

ND

ND

ND

ND

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Indeno(1,2,3-cd)pyrene

Dibenz(a,h)anthracene

C9-C18 Aliphatic Hydrocarbons

C19-C36 Aliphatic Hydrocarbons

C11-C22 Aromatic Hydrocarbons

Surrogate: Chlorooctadecane

Benzo(g,h,i)perylene

Benzo(a)pyrene

Surrogate: o-Terphenyl		5.58	mg/kg	8.33	67.0 40-140	
Surrogate: 2-Fluorobiphenyl		2.86	mg/kg	3.33	85.8 40-140	
Surrogate: 2-Bromonaphthalene		2.81	mg/kg	3.33	84.2 40-140	
LCS (B2K1298-BS1)			Pre	epared: 11/27	/22 Analyzed: 11/29/22	
Naphthalene	1.52	0.33	mg/kg	2.67	57.0 40-140	
2-Methylnaphthalene	1.50	0.33	mg/kg	2.67	56.1 40-140	
Phenanthrene	1.53	0.33	mg/kg	2.67	57.3 40-140	
Acenaphthene	1.52	0.33	mg/kg	2.67	56.9 40-140	
Acenaphthylene	1.49	0.33	mg/kg	2.67	55.8 40-140	
Fluorene	1.45	0.33	mg/kg	2.67	54.3 40-140	
Anthracene	1.57	0.33	mg/kg	2.67	58.9 40-140	
Fluoranthene	1.64	0.33	mg/kg	2.67	61.6 40-140	
Pyrene	1.66	0.33	mg/kg	2.67	62.1 40-140	
Benzo(a)anthracene	1.66	0.33	mg/kg	2.67	62.2 40-140	
Chrysene	1.70	0.33	mg/kg	2.67	63.7 40-140	
Benzo(b)fluoranthene	1.66	0.33	mg/kg	2.67	62.1 40-140	
Benzo(k)fluoranthene	1.72	0.33	mg/kg	2.67	64.6 40-140	
Benzo(a)pyrene	1.62	0.33	mg/kg	2.67	60.7 40-140	
Indeno(1,2,3-cd)pyrene	1.55	0.33	mg/kg	2.67	58.3 40-140	
Dibenz(a,h)anthracene	1.57	0.33	mg/kg	2.67	59.0 40-140	
Benzo(g,h,i)perylene	1.70	0.33	mg/kg	2.67	63.9 40-140	
EPH_LCS_Aliphatic_C19-C36	16.0	0.00	mg/kg	21.3	74.9 40-140	
EPH_LCS_Aliphatic_C9-C18	8.69	0.00	mg/kg	16.0	54.3 40-140	
EPH_LCS_Aromatic_C11-C22	27.1	0.00	mg/kg	45.3	59.7 40-140	
Nonane	1.03	0.33	mg/kg	2.67	38.7 30-140	
Decane	1.36	0.33	mg/kg	2.67	50.8 40-140	
Dodecane	1.56	0.33	mg/kg	2.67	58.5 40-140	
Tetradecane	1.51	0.33	mg/kg	2.67	56.6 40-140	
Hexadecane	1.54	0.33	mg/kg	2.67	57.6 40-140	
Octadecane	1.70	0.33	mg/kg	2.67	63.7 40-140	
Nonadecane	1.76	0.33	mg/kg	2.67	65.8 40-140	
Eicosane	1.82	0.33	mg/kg	2.67	68.2 40-140	
Docosane	1.89	0.33	mg/kg	2.67	70.8 40-140	
Tetracosane	1.92	0.33	mg/kg	2.67	71.8 40-140	Page 32 of 38

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Ratale ROVIDOR ERA 2546 (Carti	nund)									
Batth: B2K1298 - EPA 3540 (Contil	nuea)			De	operade 11/7	17/22 Analyza	4. 11/20/22			
	1.02		0.22	Pi ma/ka	2 67	27/22 Analyze	u: 11/29/22	40 140		
Octacosano	1.95		0.33	mg/kg	2.07		72.5	40-140		
Triacontano	2.14		0.33	mg/kg	2.07		20 2	40-140		
Havatriacontano	2.14		0.33	mg/kg	2.07		00.5 0E 1	40-140		
	2.54		0.55		2.07		95.1			
Surrogate: Chlorooctadecane			5.43	mg/kg	8.33		65.2	40-140		
Surrogate: o-Terphenyl			5.31	mg/kg	8.33		63.7	40-140		
Surrogate: 2-Fluorobiphenyl			2.48	mg/kg	3.33		74.4	40-140		
Surrogate: 2-Bromonaphthalene			2.41	mg/kg	3.33		72.2	40-140		
LCS Dup (B2K1298-BSD1)				Pr	epared: 11/2	7/22 Analyze	d: 11/29/22			
Naphthalene	1.34		0.33	mg/kg	2.67		50.2	40-140	12.8	25
2-Methylnaphthalene	1.32		0.33	mg/kg	2.67		49.6	40-140	12.2	25
Phenanthrene	1.48		0.33	mg/kg	2.67		55.5	40-140	3.19	25
Acenaphthene	1.38		0.33	mg/kg	2.67		51.7	40-140	9.67	25
Acenaphthylene	1.34		0.33	mg/kg	2.67		50.2	40-140	10.6	25
Fluorene	1.35		0.33	mg/kg	2.67		50.7	40-140	6.95	25
Anthracene	1.54		0.33	mg/kg	2.67		57.7	40-140	2.14	25
Fluoranthene	1.60		0.33	mg/kg	2.67		59.8	40-140	2.88	25
Pyrene	1.61		0.33	mg/kg	2.67		60.4	40-140	2.69	25
Benzo(a)anthracene	1.63		0.33	mg/kg	2.67		60.9	40-140	2.03	25
Chrysene	1.72		0.33	mg/kg	2.67		64.3	40-140	0.976	25
Benzo(b)fluoranthene	1.64		0.33	mg/kg	2.67		61.3	40-140	1.30	25
Benzo(k)fluoranthene	1.69		0.33	mg/kg	2.67		63.6	40-140	1.60	25
Benzo(a)pyrene	1.62		0.33	mg/kg	2.67		60.6	40-140	0.0824	25
Indeno(1,2,3-cd)pyrene	1.54		0.33	mg/kg	2.67		57.6	40-140	1.08	25
Dibenz(a,h)anthracene	1.56		0.33	mg/kg	2.67		58.4	40-140	1.02	25
Benzo(g,h,i)perylene	1.69		0.33	mg/kg	2.67		63.2	40-140	1.14	25
EPH_LCS_Aliphatic_C19-C36	15.6		0.00	mg/kg	21.3		73.1	40-140	2.34	25
EPH_LCS_Aliphatic_C9-C18	7.74		0.00	mg/kg	16.0		48.4	40-140	11.5	25
EPH_LCS_Aromatic_C11-C22	26.0		0.00	mg/kg	45.3		57.4	40-140	3.90	25
Nonane	0.81		0.33	mg/kg	2.67		30.2	30-140	24.5	25
Decane	1.13		0.33	mg/kg	2.67		42.4	40-140	18.0	25
Dodecane	1.36		0.33	mg/kg	2.67		51.2	40-140	13.3	25
Tetradecane	1.38		0.33	mg/kg	2.67		51.6	40-140	9.24	25
Hexadecane	1.44		0.33	mg/kg	2.67		53.9	40-140	6.68	25
Octadecane	1.63		0.33	mg/kg	2.67		61.1	40-140	4.17	25
Nonadecane	1.69		0.33	mg/kg	2.67		63.6	40-140	3.52	25
Eicosane	1.77		0.33	mg/kg	2.67		66.5	40-140	2.63	25
Docosane	1.85		0.33	mg/kg	2.67		69.4	40-140	1.96	25
Tetracosane	1.87		0.33	mg/kg	2.67		70.3	40-140	2.18	25
Hexacosane	1.90		0.33	mg/kg	2.67		71.2	40-140	1.70	25
Octacosane	1.96		0.33	mg/kg	2.67		73.4	40-140	1.49	25
Triacontane	2.11		0.33	mg/kg	2.67		79.2	40-140	1.41	25
Hexatriacontane	2.44		0.33	mg/kg	2.67		91.6	40-140	3.69	25
Surrogate: Chlorooctadecane			5.19	mg/kg	8.33		62.3	40-140		
Surrogate: o-Terphenyl			5.06	mg/kg	8.33		60.7	40-140		
Surrogate: 2-Fluorobiphenyl			2.41	mg/kg	3.33		72.2	40-140		
Surrogate: 2-Bromonaphthalene			2.34	mg/kg	3.33		70.2	40-140		

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyte	Result	Qual	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit
Batch: B2K1298 - EPA 3546 (Contin	ued)									
Matrix Spike (B2K1298-MS1)	-	Source: 2K1	8040-02	Pre	pared: 11/2	7/22 Analyzed	d: 11/30/22			
Naphthalene	1.61		0.36	mg/kg dry	2.92	ND	55.0	40-140		
2-Methylnaphthalene	1.50		0.36	mg/kg dry	2.92	ND	51.2	40-140		
Phenanthrene	1.57		0.36	mg/kg dry	2.92	ND	53.8	40-140		
Acenaphthene	1.52		0.36	mg/kg dry	2.92	ND	52.0	40-140		
Acenaphthylene	1.72		0.36	mg/kg dry	2.92	ND	58.7	40-140		
Fluorene	1.54		0.36	mg/kg dry	2.92	ND	52.8	40-140		
Anthracene	1.49		0.36	mg/kg dry	2.92	ND	51.0	40-140		
Fluoranthene	1.72		0.36	mg/kg dry	2.92	ND	58.7	40-140		
Pyrene	1.61		0.36	mg/kg dry	2.92	ND	55.1	40-140		
Benzo(a)anthracene	1.83		0.36	mg/kg dry	2.92	ND	62.6	40-140		
Chrysene	1.91		0.36	mg/kg dry	2.92	ND	65.2	40-140		
Benzo(b)fluoranthene	1.69		0.36	mg/kg dry	2.92	ND	57.6	40-140		
Benzo(k)fluoranthene	1.81		0.36	mg/kg dry	2.92	ND	62.0	40-140		
Benzo(a)pyrene	1.66		0.36	mg/kg dry	2.92	ND	56.8	40-140		
Indeno(1,2,3-cd)pyrene	1.46		0.36	mg/kg dry	2.92	ND	50.1	40-140		
Dibenz(a,h)anthracene	1.46		0.36	mg/kg dry	2.92	ND	49.8	40-140		
Benzo(g,h,i)perylene	1.94		0.36	mg/kg dry	2.92	ND	66.4	40-140		
EPH_LCS_Aliphatic_C19-C36	12.2		0.00	mg/kg dry	23.4	ND	52.2	40-140		
EPH_LCS_Aliphatic_C9-C18	7.14		0.00	mg/kg dry	17.5	ND	40.7	40-140		
EPH_LCS_Aromatic_C11-C22	28.0		0.00	mg/kg dry	49.7	ND	56.4	40-140		
Nonane	0.95		0.36	mg/kg dry	2.92	ND	32.6	30-140		
Decane	1.20		0.36	mg/kg dry	2.92	ND	41.1	40-140		
Dodecane	1.28		0.36	mg/kg dry	2.92	ND	43.9	40-140		
Tetradecane	1.25		0.36	mg/kg dry	2.92	ND	42.7	40-140		
Hexadecane	1.19		0.36	mg/kg dry	2.92	ND	40.7	40-140		
Octadecane	1.27		0.36	mg/kg dry	2.92	ND	43.3	40-140		
Nonadecane	1.33		0.36	mg/kg dry	2.92	ND	45.5	40-140		
Eicosane	1.42		0.36	mg/kg dry	2.92	ND	48.5	40-140		
Docosane	1.49		0.36	mg/kg dry	2.92	ND	50.9	40-140		
Tetracosane	1.50		0.36	mg/kg dry	2.92	ND	51.4	40-140		
Hexacosane	1.52		0.36	mg/kg dry	2.92	ND	51.9	40-140		
Octacosane	1.56		0.36	mg/kg dry	2.92	ND	53.2	40-140		
Triacontane	1.66		0.36	mg/kg dry	2.92	ND	56.7	40-140		
Hexatriacontane	1.73		0.36	mg/kg dry	2.92	ND	59.2	40-140		
Surrogate: Chlorooctadecane			ND	mg/kg dry	9.14			40-140		
Surrogate: o-Terphenyl			3.74	mg/kg dry	9.14		40.9	40-140		
Surrogate: 2-Fluorobiphenyl			2.52	mg/kg dry	3.65		69.0	40-140		
Surrogate: 2-Bromonaphthalene			2.46	mg/kg dry	3.65		67.3	40-140		

Extractable Petroleum Hydrocarbons (MADEP-EPH) (Continued)

Analyta	Pocult	Qual	Reporting	Unite	Spike	Source	%PEC	%REC	PPD	RPD Limit
Analyte	Result	Quui	Linte	Units	Level	Result	JUNEC	LITIICS	Rib	Linit
Batch: B2K1298 - EPA 3546 (Contin	ued)									
Matrix Spike Dup (B2K1298-MSD1)	9	Source: 2K1	8040-02	Pre	pared: 11/2	7/22 Analyzed	d: 11/30/22			
Naphthalene	1.64		0.36	mg/kg dry	2.92	ND	56.1	40-140	2.03	25
2-Methylnaphthalene	1.65		0.36	mg/kg dry	2.92	ND	56.5	40-140	9.74	25
Phenanthrene	1.69		0.36	mg/kg dry	2.92	ND	57.7	40-140	7.09	25
Acenaphthene	1.70		0.36	mg/kg dry	2.92	ND	58.1	40-140	11.1	25
Acenaphthylene	1.66		0.36	mg/kg dry	2.92	ND	56.8	40-140	3.25	25
Fluorene	1.60		0.36	mg/kg dry	2.92	ND	54.6	40-140	3.40	25
Anthracene	1.80		0.36	mg/kg dry	2.92	ND	61.7	40-140	19.0	25
Fluoranthene	1.90		0.36	mg/kg dry	2.92	ND	65.1	40-140	10.2	25
Pyrene	1.93		0.36	mg/kg dry	2.92	ND	66.1	40-140	18.2	25
Benzo(a)anthracene	1.94		0.36	mg/kg dry	2.92	ND	66.5	40-140	6.16	25
Chrysene	2.05		0.36	mg/kg dry	2.92	ND	70.0	40-140	7.17	25
Benzo(b)fluoranthene	1.91		0.36	mg/kg dry	2.92	ND	65.5	40-140	12.7	25
Benzo(k)fluoranthene	2.00		0.36	mg/kg dry	2.92	ND	68.5	40-140	9.92	25
Benzo(a)pyrene	1.87		0.36	mg/kg dry	2.92	ND	64.1	40-140	12.1	25
Indeno(1,2,3-cd)pyrene	1.75		0.36	mg/kg dry	2.92	ND	59.7	40-140	17.6	25
Dibenz(a,h)anthracene	1.82		0.36	mg/kg dry	2.92	ND	62.3	40-140	22.3	25
Benzo(g,h,i)perylene	1.96		0.36	mg/kg dry	2.92	ND	67.0	40-140	0.900	25
EPH_LCS_Aliphatic_C19-C36	15.4		0.00	mg/kg dry	23.4	ND	65.7	40-140	22.9	25
EPH_LCS_Aliphatic_C9-C18	8.38		0.00	mg/kg dry	17.5	ND	47.8	40-140	15.9	25
EPH_LCS_Aromatic_C11-C22	30.9		0.00	mg/kg dry	49.7	ND	62.1	40-140	9.70	25
Nonane	1.11		0.36	mg/kg dry	2.92	ND	37.9	30-140	15.0	25
Decane	1.36		0.36	mg/kg dry	2.92	ND	46.4	40-140	12.1	25
Dodecane	1.49		0.36	mg/kg dry	2.92	ND	51.0	40-140	15.0	25
Tetradecane	1.45		0.36	mg/kg dry	2.92	ND	49.7	40-140	15.2	25
Hexadecane	1.42		0.36	mg/kg dry	2.92	ND	48.6	40-140	17.6	25
Octadecane	1.55		0.36	mg/kg dry	2.92	ND	53.0	40-140	20.2	25
Nonadecane	1.66		0.36	mg/kg dry	2.92	ND	56.8	40-140	22.1	25
Eicosane	1.77		0.36	mg/kg dry	2.92	ND	60.5	40-140	22.1	25
Docosane	1.87		0.36	mg/kg dry	2.92	ND	64.1	40-140	23.0	25
Tetracosane	1.90		0.36	mg/kg dry	2.92	ND	65.0	40-140	23.5	25
Hexacosane	1.92		0.36	mg/kg dry	2.92	ND	65.8	40-140	23.6	25
Octacosane	1.98		0.36	mg/kg dry	2.92	ND	67.6	40-140	23.7	25
Triacontane	2.09		0.36	mg/kg dry	2.92	ND	71.4	40-140	22.8	25
Hexatriacontane	2.16		0.36	mg/kg dry	2.92	ND	74.0	40-140	22.3	25
Surrogate: Chlorooctadecane			5.12	mg/kg dry	9.14		56.0	40-140		
Surrogate: o-Terphenyl			5.47	mg/kg dry	9.14		59.8	40-140		
Surrogate: 2-Fluorobiphenyl			2.86	mg/kg dry	3.65		78.2	40-140		
Surrogate: 2-Bromonaphthalene			2.82	mg/kg dry	3.65		77.1	40-140		

Item	Definition
Wet	Sample results reported on a wet weight basis.
ND	Analyte NOT DETECTED at or above the reporting limit.

Ţ				2	К 2	10	016 s		060 11 2920	040 [x 01 [] 78 In (108 I] 317 I	nterstat Myrtle Iron H	te Dri Stree Iorse V	ve, We t, #502 Way, St	est Sprin 2, North uite 204	gfield, 1 Quinc , Provid	MA 0 y, MA lence,	1089 0217: RI 02	908	□ 80 W	/ashingt er	on Stree	et, Suite	: 301, P	oughke	epsie, NY	
· ~	I		СТ	TATN	J-OF		ISTO	DV R	ECO	RD		42	22	6									Turn	around		()	
-																				-Hour* -Hour*		andard	(d	lays)	*Surcl	arge Applies	/5)
5	PR	ojec est	r Na Zuv		сŢ	nvesti	gatin	Project :	LOCATION	M	A			ć	Pro Zœ)јест 5¶ \ •	NUM	iber	Aa	12				\mathbf{r}	Labc	ratory Tab	
REPORT	г То	: N	Nat	r Ki	rsave		m	riss	aneQf	adorm	A	nalys	sis				/. a		37	7	7 /			· · · ·	Con	tainers	
INVOICI	e To):	~	(11			11	"(Re	eque	st		/	/ /	- Colored and the second secon	Z	\$7N	' /					/ /		
P.O. NO	0.:	1-	10	3200	910	32	Ada	<u>ک</u>			4					_ Ser	$^{z} \mathcal{L}$	ن مع م	Gy /					<u>د</u> / ک		0" (1)	/ \[] 5 ³
Sampler	r's Si	gnati	ire:	In	K	Tru	\geq	Ľ	Date:	8/22	1			/	4		/0° 2°7				 سی	<u>8/ /</u>	<u> 4</u>		/ Ž		s://
Source C	odes:	ng We			Water	T=Tre	atment Facility	v S=Soil	B=Se	diment			/		and the second	A		/ /			LA -	sv∕Ö	ř.				
SW=Surfa	ace W	ater	5	ST=Stormwa	ater	W=Wa	aste A=Air	C=Co	ncrete		}		/	\square		and the second second					$\langle / 9 \rangle$	5	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
X=Other					Jues	ns		······		·····			Ľ	37	J.Z.	5/	/ /					7 /	197	/ Q .5/		57/3 ⁷ /	
Item	Trans	sfer Cl	neck		Sample	Number		Source	Date	Time		51	17	$\sqrt{2}$		9/ /	/ /		5/10		57 54 S				ېکې لېکې نې کې		
No.	1 :	2 3	4					Code	Jampied	Sampled			2_	101	14	4				38 / 38	/3 ⁸ /.	\$ ^{\$6} ∕ &	× 22.45	22	2° 2°	Commen	ıts
$ \frac{1}{2} \rangle$	×		•	170	8521	118	<u>-01</u>	S	11/18/22	1115	X	X	X	X				1		2		+				112-1	
	× [•	1788	2211	18-	<u>04</u>	3	11/18/22	1225	K		\sim	× .	×			!	(8		+		_		18-0	<u> </u>
3/	x 		•	1400	2211	18-	IB				X			-+-			$-\ $	-+						_			
											-	$\left \right $						-+									
a stranger															_	+		_						_		<u></u>	
	_		+			<u>. </u>				ļ								-+		$\left \right $		-				· · · · · ·	
		_														-		-				-				- <u></u>	
		_																-		+		┼┤					
	_				··							$\left - \right $			_			_		+		┼╌╎					
			<u></u>							L	<u> </u>										<u> </u>						
Transfer Number			Re	linquished B	у		A	ccepted By		Dat	e	Tin	ne	Charge	e Excep	tions:	□ CT ′ I	Tax E Duplic	xempt ates	□ QA Blar	./QC 1ks (Ite	□ Ot m Nos:	her)	_
1	E	Nav	r	Joncowi	iz.	C	Diney	Fride	e	11/18	22	160	a	Repor	ting and	Detec	tion Li	mit R	equiren	ents: [Delivera	bles 🗆	мср	CAM	Cert.	
2			~ ~			_ X	he m			$ _{\lambda} $	22	103	2					/<	$\leq C$	5	- 1					<u> </u>	
3		Fe	, IM				1			MRN	92	161	$\frac{1}{2}$	Additi	ional Co	mment	s:								F	age 37 of 3	38
L4		<u>U</u>					<u>1 Minne</u>	1 ercer	mi	11/21	122	ιω _č	∞	-						<u></u>					C		

MassDEP Analytical Protocol Certification Form												
Laboratory Name: New England Testing Laboratory, Inc. Project #: 20091032.A22												
Proje	ect Locatio	on: Shutesbury, M	1A		RTN:							
This Form provides certifications for the following data set: list Laboratory Sample ID Number(s): 2K21016												
Matrio	Matrices: Groundwater/Surface Water Soil/Sediment Drinking Water Air Other:											
CAM	CAM Protocol (check all that apply below):											
8260 VOC CAM II A IM7470/7471 Hg CAM III B IMMassDEP VPH (GC/PID/FID) CAM IV A IM8082 PCB CAM V A IM9014 Total CAM V A IM6860 Perchlorate CAM VII B IM8082 PCB CAM VI A IM9014 Total CAM V A IM6860 Perchlorate CAM VII B IM6860 Perchlorate CAM VII B IM												
8270 CAM	8270 SVOC 7010 Metals MassDEP VPH (GC/MS) 8081 Pesticides 7196 Hex Cr MassDEP APH CAM II B □ CAM III C □ CAM IV C □ CAM V B □ CAM VI B □ CAM IX A □											
6010 CAM	6010 Metals CAM III A ⊠6020 Metals CAM III D □MassDEP EPH CAM IV B ⊠8151 Herbicides CAM V C □8330 Explosives CAM VIII A □TO-15 VOC CAM IX B □											
A	Affirmativ	ve Responses to	Questions A throug	gh F are required f	for "Presumptive Ce	rtainty" status						
Α	Were all Custody, prepared	samples received properly preserv I/analyzed within me	in a condition consis ved (including temp athod holding times?	stent with those des erature) in the fie	cribed on the Chain-of Id or laboratory, and	f- d ⊠Yes □No						
В	B Were the analytical method(s) and all associated QC requirements specified in the selected ⊠ Yes □ No											
с	C Were all required corrective actions and analytical response actions specified in the selected CAM protocol(s) implemented for all identified performance standard non-conformances? ⊠ Yes □ No											
D	Does the "Quality Analytica	e laboratory report Assurance and C al Data"?	comply with all the re Quality Control Guide	porting requirements lines for the Acquis	specified in CAM VII A ition and Reporting c	, of ⊠Yes □No						
E	VPH, EP a. VPH, modificat b. APH a	H, APH, and TO-15 EPH, and APH I tion(s)? (Refer to th and TO-15 Methods	only Methods only: Was e individual method(s) only: Was the complet	each method condu for a list of significant te analyte list reported	icted without significan modifications). I for each method?	t ⊠ Yes □ No □ Yes □ No						
F	Were all and eval	applicable CAM pruted in a laborator	otocol QC and perform y narrative (including a	mance standard non- Ill "No" responses to (-conformances identified Questions A through E)?	d ⊠ Yes □ No						
Res	sponses	to Questions G,	H and I below are re	equired for "Presu	mptive Certainty" st	tatus						
G	Were the protocol(e reporting limits at o s)?	or below all CAM repor	ting limits specified in	the selected CAM	⊠ Yes □ No¹						
<u>Da</u> re	ata User No presentati	<u>ote</u> : Data that achiev veness requirements	ve "Presumptive Certain s described in 310 CMR	nty" status may not ne 40. 1056 (2)(k) and WS	cessarily meet the data (SC-07-350.	usability and						
Н	Were all	QC performance st	andards specified in th	e CAM protocol(s) ac	chieved?	⊠ Yes □ No ¹						
Ι	Were res	sults reported for the	e complete analyte list	specified in the select	ted CAM protocol(s)?	⊠ Yes □ No ¹						
¹ All r	negative r	esponses must be	addressed in an attac	ched laboratory narra	ative.							
I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this analytical report is, to the best of my knowledge and belief, is accurate and complete.												
Sign	Signature: BACHAR Position: Laboratory Director											
Print	ted Name	E Richard Warila		Date:	12/2/2022							