Stormwater Management Report

Shutesbury Public Library

Town of Shutesbury

Shutesbury, MA

December 21, 2023

1550 Main Street, Suite 400 Springfield, MA 01089

Table of Contents

Stormwater Management Report Town of Shutesbury

1	Executive Summary	1
2	Project Description	1
	2.1 Existing Conditions	
	2.2 Proposed Conditions	
3	Hydrologic Analysis	2
	3.1 Site Soils	
	3.2 Existing Watershed Summary	3
	3.3 Proposed Watershed Summary	
4	Soil Erosion and Sedimentation Control	3
5	Construction Sequence	4
6	Massachusetts Stormwater Handbook Standards	4
7	Town of Shutesbury – Design Requirements	6
8	Summary	8

i

Table of Contents

Stormwater Management Report Town of Shutesbury

Tabl Tabl Tabl	e 1 – 2 Year Design Storm Peak Discharge Summary e 2 – 10 Year Design Storm Peak Discharge Summary e 3 – 25 Year Design Storm Peak Discharge Summary e 4 – 50 Year Design Storm Peak Discharge Summary e 5 – 100 Year Design Storm Peak Discharge Summary	End of Report
Figu	res	End of Report
1	Topographic Map	
2	Pre-Development Watershed Map	
3	Post-Development Watershed Map	
Арр	pendices	End of Report
А	Site Plans (under separate attachment)	
В	Rain Fall Data	
С	NRCS Web Soil Mapping	
D	Geotechnical Engineering Recommendations	
Е	Pre-Development Hydrologic Analysis	
F	Post Development Hydrologic Analysis	
G	Stormwater Management Checklist	
Н	Previous Project Design	
Ι	Water Quality Volume – Stormwater Treatment Structures	
J	TSS Treatment Worksheets	
K	Construction Operation and Maintenance Plan	

L Long-Term Operation and Maintenance Plan

1 Executive Summary

The Town of Shutesbury is looking to construct an approximately 4,400-square-foot library located at 66 Leverett Road in Shutesbury, Massachusetts. Proposed development includes the building, a paved driveway, paved parking and drop-off area, stormwater management systems, site utilities, on-site septic, a potable water supply well, as well as other site amenities.

The proposed stormwater management system is designed to meet the guidelines of the Massachusetts Stormwater Handbook (Stormwater Handbook), the Wetlands Protection Act Regulations 310 CMR 10.00, and the Town of Shutesbury Wetland Protection Bylaw Regulations. Existing and proposed hydrologic conditions for the developed area were evaluated to ensure stormwater peak discharges are maintained or reduced as a result of the proposed development for the 2-, 10-, 25-, 50, and 100-year storm events. Maintenance or reduction in stormwater peak discharges was achieved through the utilization of stormwater detention basins. Stormwater treatment is provided by stormwater treatment structures (hydrodynamic separators).

2 **Project Description**

2.1 Existing Conditions

The project is located within a 21.2-acre parcel of land located at 66 Leverett Road in Shutesbury, Massachusetts. There are no buildings currently present on the parcel. The northeast portion of the parcel has been regularly mowed and contains a gravel driveway accessed from Leverett Road. The remainder of the parcel is forested with mixed deciduous and coniferous species. A compacted, sandy access route generally aligned in a north-south direction provides access from the regularly maintained portion of the parcel to the interior of the parcel. The access route is approximately 12 feet wide, 1,300 feet long, and transitions into a narrower walking path at its southernmost extent. Additional access routes and walking paths are present within the parcel. Due to the past use of this site, there are multiple groundwater monitoring wells located primarily within the forested portion of the parcel. The approximate 2-acre project site is located in the northern portion of the project, along Leverett Road. The parcel is identified in *Figure 1* and the proposed site's existing conditions are shown on the Plan Sheets located in Appendix A.

The existing site does not contain any stormwater structures. Stormwater sheet flows to the east to the wetland located in the northeastern corner of the site, to the west to a small wetland and the western property line, and to the north into Leverett Road.

2.2 **Proposed Conditions**

The proposed limit of work for the project is primarily located within previously developed and degraded located within the northern portion of the parcel. The proposed project includes the construction of an approximately 4,400 square foot building, paved driveway, paved parking and drop-off area, stormwater management systems, site utilities, on-site septic, a potable water supply well, and

other site amenities. Proposed project site information and details are shown on the Site Plans located in *Appendix A*.

Proposed stormwater flow patterns generally follow existing conditions. Due to poor site soils and high groundwater, the stormwater systems have been designed to meet to the maximum extent practicable the requirements of the stormwater management standards outlined in the Stormwater Handbook. The proposed stormwater management systems have been designed to maintain or reduce peak flows and provide water quality of stormwater prior to entering a wetland or leaving the site. Mitigation of peak flows is achieved through stormwater storage provided by the proposed stormwater detention basins. Stormwater is treated by stormwater treatment structures that treat the stormwater prior to discharge into the stormwater detention basins.

3 Hydrologic Analysis

Peak flows for existing and proposed conditions were determined using the Natural Resources Conservation Service (NRCS) Technical Release 20 and Technical Release 55 (TR-55) hydrologic methods. The hydrologic analyses for existing and proposed conditions were completed using a computer software program, HydroCAD version 10.00-20, to determine peak runoff flow rates and total runoff volumes for each of the watersheds. Runoff curve numbers were developed based on a combination of land cover use and existing site soil types acquired from the NRCS website. The time of concentration runs was developed based on the methods in the NRCS TR55 manual.

Peak flows for the 2-, 10-, 25-, 50- and 100-year frequency storm events were determined by using a 24-hour type III storm, standard for the New England area. Rainfall depths were obtained from NOAA Atlas 14, Volume 10, Version 3 published rainfall records for Shutesbury, Massachusetts. Rainfall data can be found in *Appendix B*.

Three design points were developed for the project to evaluate pre-versus post-development hydrologic conditions. The location of the Design Points (DP) are shown in *Figure 2* and *Figure 3* and are described as follows:

- DP1 discharges to the western wetland and the western property line.
- DP2 discharges to the eastern wetland and the eastern property line.
- DP3 discharge to Leverett Road.

3.1 Site Soils

Soil mapping generated from the NRCS website is provided in *Appendix C*. The mapping shows site soils are comprised of Chichester fine sandy loam, having a hydrologic soil group (HSG) classification of A, Pillsbury fine sandy loam with an HSG classification of D, and Metacomet fine sandy loam with an HSG classification of B/D. For the purposes of the stormwater calculations, an HSG classification of D was used for the Metacomet fine sandy loam. This is a conservative approach using the saturated soil classification in the stormwater calculations.

Test pits and boring were completed by O'Reilly, Talbot & Okun on October 3, 2023. Soil conditions, including soil texture, color, horizon depths, and evidence of saturation were logged in the field. Soils observed on site were consistent with the NRCS classification. Evidence of seasonal high groundwater was observed to be between 2 to 4 feet below the existing grade depending on the location of the test pits. Test pit and boring information can be found in the Geotechnical Recommendation located in *Appendix D*.

3.2 Existing Watershed Summary

Three subcatchment areas have been established for pre-development, existing conditions, and watershed modeling. *Figure 2* illustrates existing conditions, pre-development watershed areas, time of concentration (Tc) paths, and ground cover characteristics. A schematic watershed diagram showing the discharge point and the breakdown of the ground cover characteristics for each watershed area can be found in the pre-development hydrological analysis provided in *Appendix E*.

3.3 Proposed Watershed Summary

The proposed development will maintain overall existing drainage patterns. The overall watershed boundary of the post-development, proposed conditions, and analysis are the same as the predevelopment model, however, the subcatchments have been further delineated to the size of proposed stormwater detention basins. Eleven subcatchment areas have been established for the postdevelopment watershed analysis. *Figure 3* illustrates proposed conditions, post-development watershed areas, Tc paths, and ground cover characteristics. A schematic watershed diagram showing discharge points and a breakdown of the ground cover characteristics for each watershed area can be found in the post-development hydrological analysis provided in *Appendix F*.

4 Soil Erosion and Sedimentation Control

Soil erosion and sedimentation control plans, including construction details and notes, are provided on the Site Plans located in *Appendix A*. Soil erosion and sedimentation control details and procedures are consistent with the "Massachusetts Erosion and Sediment Control Guideline for Urban and Suburban Areas," and with state, local, and federal requirements.

Erosion and sedimentation controls used on the site during construction will include construction entrance, silt fence, straw bales, inlet protection, temporary sedimentation traps, erosion control blankets, temporary soil stockpiles, tree protection, and water for dust control. Additional erosion and sediment controls will be utilized as required. Silt fences and straw bales will be placed down-gradient of disturbed areas and up-gradient of wetlands. A construction entrance will be installed at the entrance of the site at Leverett Road. Water will be applied to exposed soils to provide dust control as needed.

Prior to the start of construction, a formal Stormwater Pollution Prevention Plan (SWPPP), further specifying the details of construction phasing, limits of soil disturbance, erosion, and sediment controls and other stabilization measures, stockpile locations, construction waste management procedures, and hazardous materials storage procedures during construction activities. Inspections pertaining to the operation and maintenance of E&S controls will be maintained as part of the SWPPP. The SWPPP will

also be updated regularly throughout construction to address site conditions and incorporate any changes made during construction.

5 Construction Sequence

An anticipated general construction sequencing for the project is as follows, although subject to change by the contractor due to weather conditions, scheduling, site constraints, and other construction factors.

- Conduct pre-construction meeting
- Install erosion and sedimentation control measures
- Clear trees and grub within the limit of work as shown on Site Plans
- Layout temporary stockpile locations
- Perform demolition activities as shown on the Site Plans
- Rough grade driveway, parking areas, sidewalks, and building areas
- Install site utilities and stormwater management systems
- Construction stormwater detention basins
- Construct building
- Place and grade base materials for driveways, parking areas, and sidewalks
- Install curb
- Place top course material for driveway and parking areas
- Place concrete for sidewalks
- Place topsoil in disturbed areas to be landscaped, grade, and seed
- Install plantings and other landscape elements
- Clean all on-site stormwater drainage management components of collected sediment, including the stormwater detention basins
- Obtain the owner's approval to remove erosion and sediment controls once the site is stabilized

The Contractor will be responsible for registration under the EPA NPDES General Permit for Discharge from Construction Activities. Upon construction award, any changes to the proposed construction sequencing plan by the Contractor will be reviewed and approved by the City and included in the final SWPPP.

6 Massachusetts Stormwater Handbook Standards

The following is a description of how the proposed project conforms to the Standards outlined in the Stormwater Handbook. The Stormwater Management Checklist is included in *Appendix G*.

LID Measures

A reduction in the development scale of the project was reviewed as part of the development of this project. A previous design was developed, which included an approximately 7,220-square-foot building footprint and a longer driveway with more parking. The previous design required more tree clearing and disturbance of land. A copy of the previous design is provided in *Appendix H*. The current design proposes a reduction in the development scale which allows for a significant amount of the site to

remain undisturbed in its natural state and a reduction in the amount of proposed impervious by reducing the footprint of the building, the required length of the driveway, and the amount of parking.

Standard 1: No Untreated Discharge or Erosion to Wetlands

Perimeter erosion controls will be installed during construction to protect undisturbed wetland buffers and wetland resource areas from sedimentation until construction is completed and the site is stabilized.

There are no new untreated conveyances proposed. Proposed conveyances have been designed to ensure no erosion will occur to existing wetland buffers and wetland resource areas. Stormwater treatment will be provided by way of the proposed stormwater treatment structures.

Standard 2: Peak Rate Attenuation

Post-development discharge rates will not increase as a result of the proposed development. Stormwater Hydrologic Analyses that demonstrate the maintenance or reduction of peak discharge rates are provided in *Appendix E* and *Appendix F*. A summary of pre- versus post-development peak discharge rates is provided in Table 1, Table 2, Table 3, Table 4, and Table 5. Mitigation of peak flows is achieved through stormwater storage provided by the proposed stormwater detention basins.

Standard 3: Stormwater Recharge

Due to high seasonal groundwater and site soils having an HSG classification of D, providing infiltration BMPs sized to meet the required groundwater recharge and provide proper drawdown for the project is not feasible.

Standard 4: Water Quality

Due to high seasonal groundwater and site soils having an HSG classification of D, the project has been designed to provide the required water quality volume and 80% TSS removal to the maximum extent practicable. Proposed water quality measures include deep sump hooded catch basins and stormwater treatment structures. Stormwater collected will be treated by the stormwater treatment structures prior to discharge to each of the stormwater detention basins.

Each stormwater treatment structure has been designed to provide a volume equivalent to the 1-inch water quality volume for proposed impervious areas that contribute to each of the structures. Water quality calculations can be found in *Appendix I*.

TSS worksheets showing each treatment train provides a minimum of 80% TSS removal are located in *Appendix J.* TSS removal is provided by the stormwater treatment structures.

Standard 5: Land Uses with Higher Potential Pollutant Loads

The project is not classified as a LUHPP as defined by the Massachusetts Stormwater Handbook.

Standard 6: Critical Areas

This project does not contain any critical areas as defined by the Massachusetts Stormwater Handbook. Per the Town of Shutesbury General Wetland Protection Bylaw Regulations, the AURAs on site are considered critical areas. The stormwater treatment structures have been designed to provide a 1-inch water quality volume. The project does not propose any infiltration BMPs, therefor the 44%

pretreatment is not required. However, the deep sump hooded catch basins will provide 25% pretreatment prior to discharging into the stormwater treatment structures.

Standard 7: Redevelopment

This project is not classified as a redevelopment.

Standard 8: Construction Period Controls

It is anticipated that there will be no proposed pollution created during the construction of the proposed development. General erosion and sedimentation controls will be implemented and maintained in accordance with local, state, and federal requirements until construction is complete and disturbed areas have been stabilized. Details and notes for these erosion and sedimentation controls are provided on the Site Plan located in *Appendix A*. The contractor will be responsible for ensuring the correct implementation of the erosion and sedimentation controls.

The extent and schedule for the commencement or cessation of construction activities, grading, and soil stabilization measures will be recorded and maintained as part of the SWPPP. The SWPPP will be developed in accordance with the EPA NPDES General Permit for Discharge from Construction Activities. It will be completed and to be provided prior to the start of construction.

Standard 9: Operation and Maintenance Plan

A suggested Construction Operation and Maintenance (O&M) Plan has been developed for the development of the site and is included in *Appendix K*. The contractor shall be responsible for the construction operation and maintenance of the site.

A suggested Long-Term O&M Plan, which includes recommended maintenance activities and schedule of maintenance as outlined within the Stormwater Handbook, is included in *Appendix L*. The owner will be responsible for the long-term operation and maintenance of the site.

Standard #10 Illicit Discharge to Drainage System

The project does not include proposed illicit discharges to Stormwater Management Systems as defined in the Stormwater Handbook.

7 Town of Shutesbury – Design Requirements

The project has been designed to meet the requirements of the stormwater standards outlined in Section 7.2.4 of the Wetland Protection Bylaw Regulations.

7.2.4.1. Applicants for projects that generate stormwater runoff shall prioritize, to the maximum extent that is practicable, the use of Low Impact Design techniques as the primary approach in managing on-site stormwater.

As previously described in this report, a reduction in the development scale of the project was reviewed as part of this project. The reduction in scale allowed for a reduction in site disturbance and tree clearing. It also allowed for a reduction in impervious areas by reducing the length of the driveway and the number of parking spaces.

7.2.4.2. All stormwater management systems shall remove sediment, nutrients, hydrocarbons, and bacteria from stormwater flow to the maximum extent practicable.

Stormwater treatment is provided by stormwater treatment structures designed to provide a 1-inch water quality volume.

7.2.4.3. Applicants shall provide evidence that the proposed work or project shall not result in an exacerbation or creation of flooding conditions, including confirmation of no increase in the peak rate of stormwater runoff over existing conditions during storm events.

Post-development discharge rates will not increase as a result of the proposed development. Stormwater Hydrologic Analyses that demonstrate the maintenance or reduction of peak discharge rates are provided in *Appendix E* and *Appendix F*. A summary of pre- versus post-development peak discharge rates is provided in Table 1, Table 2, Table 3, Table 4, and Table 5. Mitigation of peak flows is achieved through stormwater storage provided by the proposed stormwater detention basins.

7.2.4.4. Rainfall amounts used for stormwater management design and analysis shall be based on NOAA Atlas 14, Volume 10 (or as it may be amended).

Rainfall depths were obtained from NOAA Atlas 14, Volume 10, Version 3 published rainfall records for Shutesbury, Massachusetts. Rainfall data can be found in *Appendix B*.

7.2.4.5. All stormwater management systems shall be designed and constructed to adequately control, contain, and recharge flow resulting from a 24-hour, 2-year, 10-year, and 100-year storm event. This requirement is designed to decrease the likelihood of downstream and off-site flooding, as well as to contribute to groundwater recharge.

Post-development discharge rates will not increase as a result of the proposed development. Stormwater Hydrologic Analyses that demonstrate the maintenance or reduction of peak discharge rates are provided in *Appendix E* and *Appendix F*.

Due to high seasonal groundwater and site soils having an HSG classification of D, providing infiltration BMPs sized to meet the required groundwater recharge and provide proper drawdown for the project is not feasible.

7.2.4.6. All footing drains and all stormwater outfalls must be, at a minimum, outside of the 50foot Inner AURA and must be shown on all plans. See 310 CMR 10.03(4).

Due to site constraints, it is not feasible to keep the pond outfalls outside the 50-foot inner aura.

8 Summary

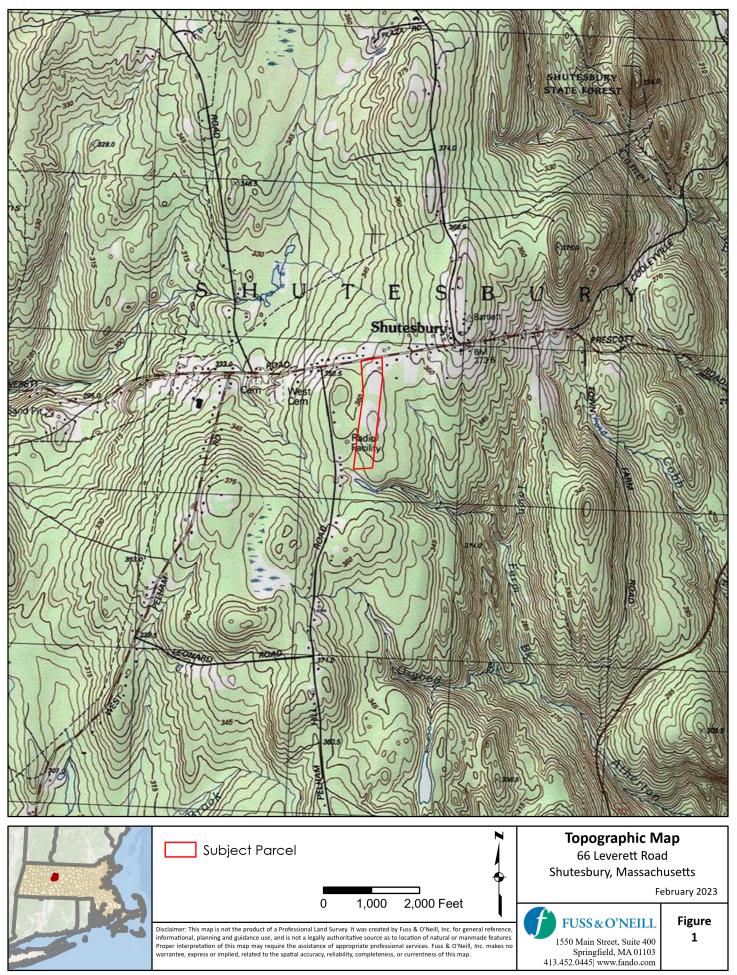
This Stormwater Management Report demonstrates the proposed project for the Shutesbury Public Library has been designed to meet the stormwater standards outlined in the Massachusetts Stormwater Handbook and the Town of Shutesbury Wetland Protection Bylaw Regulations.

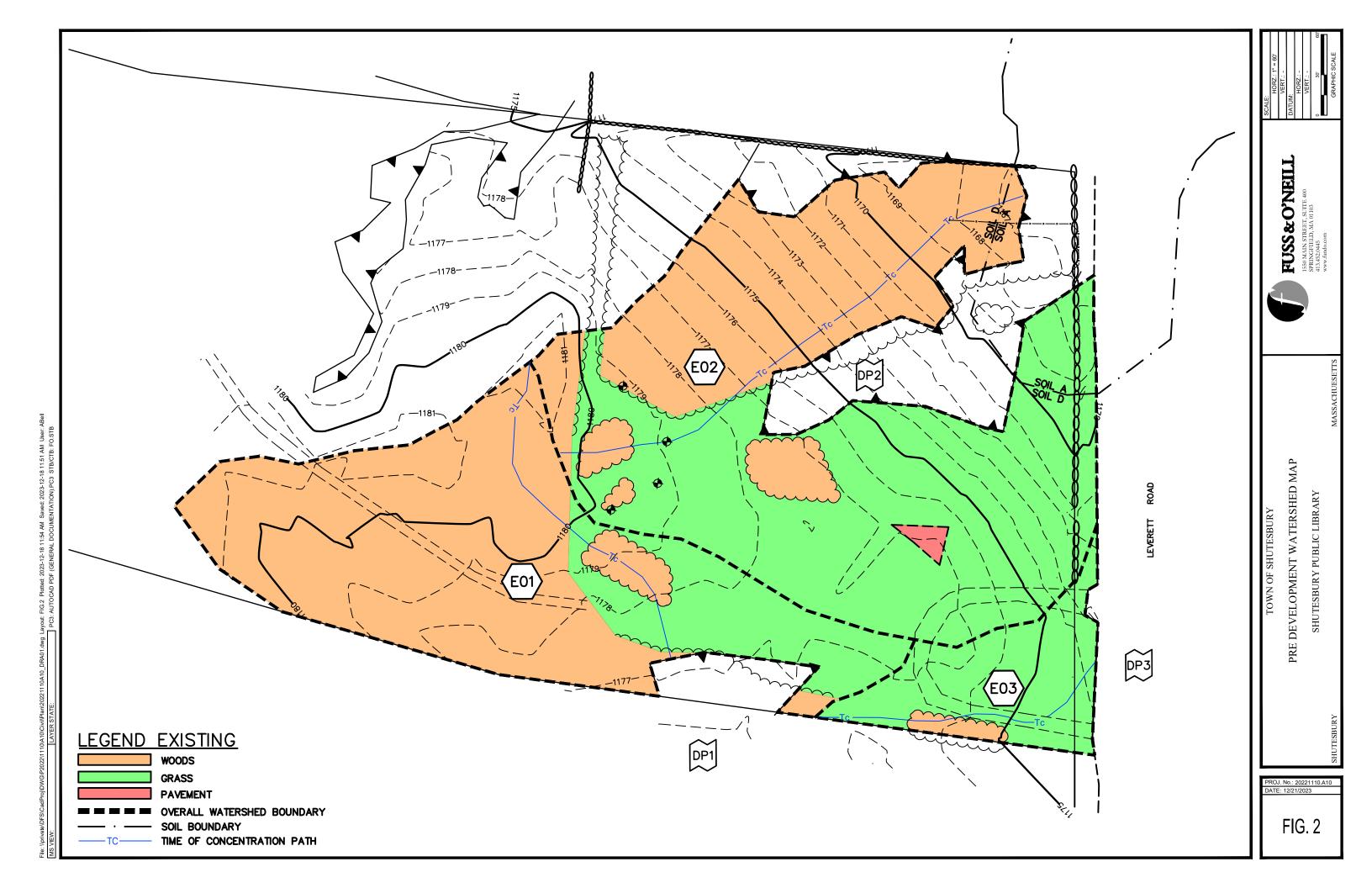
Tables

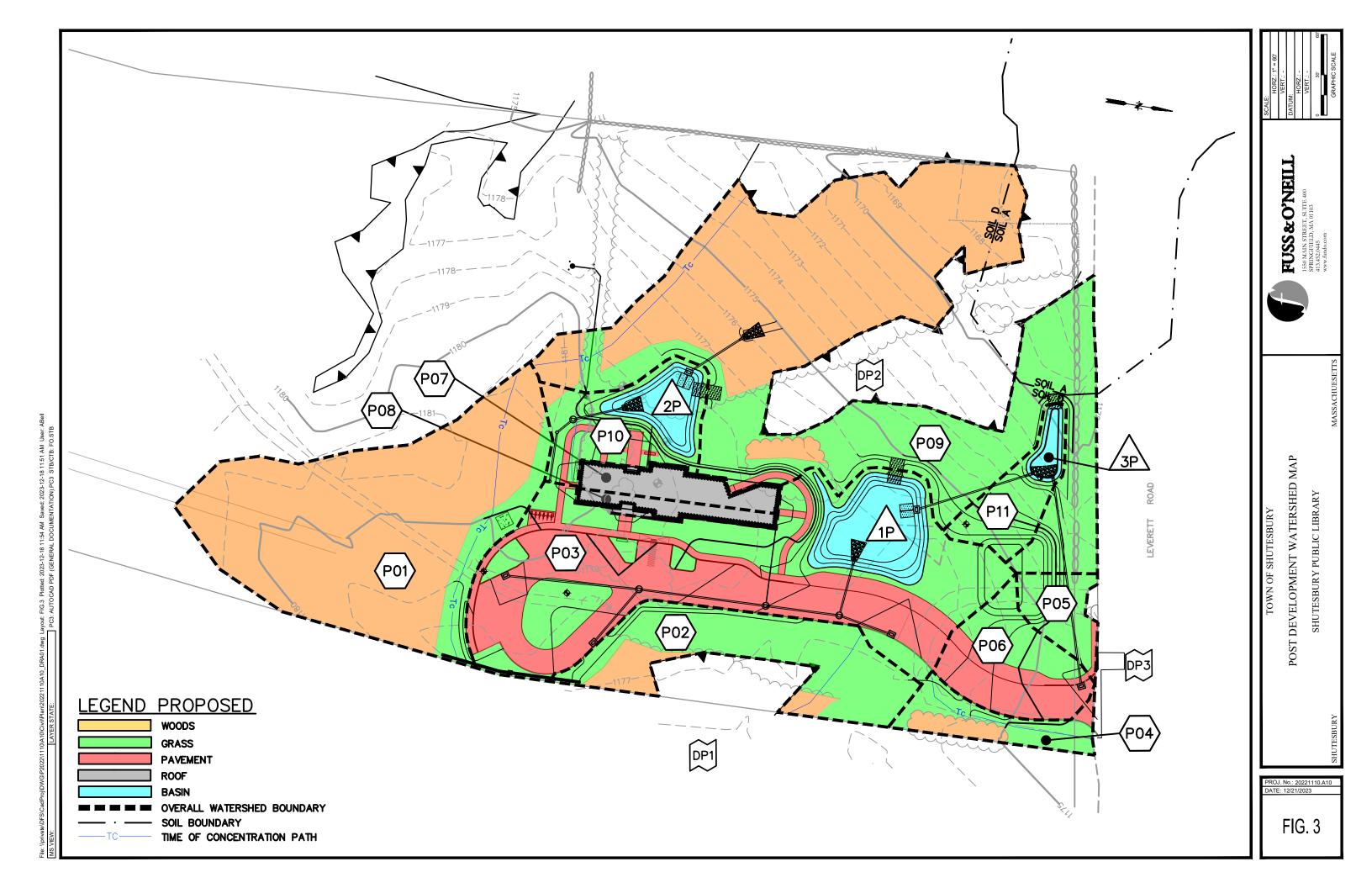
\\private\DFS\ProjectData\P2022\1110\A10\Drainage\SW Report\Shutesbury Library_Stormwater Management Report.docx

Table 1 - 2 Year Design Storm Peak Discharge Summary					
Existing Proposed Net Net				Net	
Design Point	Flow	Flow	Change	Change	
	(CFS)	(CFS)	(CFS)	(%)	
(1L)	1.1	0.8	-0.2	-23%	
(2L)	2.0	2.0	0.0	0%	
(3L)	0.3	0.3	0.0	-4%	

Table 2 - 10 Year Design Storm Peak Discharge Summary					
	Existing	Proposed	Net	Net	
Design Point	Flow	Flow	Change	Change	
	(CFS)	(CFS)	(CFS)	(%)	
(1L)	2.1	1.6	-0.5	-24%	
(2L)	3.9	3.7	-0.2	-5%	
(3L)	0.5	0.5	0.0	-4%	


Table 3- 25 Year Design Storm Peak Discharge Summary					
	Existing	Proposed	Net	Net	
Design Point	Flow	Flow	Change	Change	
	(CFS)	(CFS)	(CFS)	(%)	
(1L)	2.8	2.1	-0.7	-24%	
(2L)	5.2	4.8	-0.4	-8%	
(3L)	0.7	0.7	0.0	-4%	


Table 4 - 50 Year Design Storm Peak Discharge Summary					
	Existing	Proposed	Net	Net	
Design Point	Flow	Flow	Change	Change	
	(CFS)	(CFS)	(CFS)	(%)	
(1L)	3.3	2.5	-0.8	-24%	
(2L)	6.1	5.6	-0.5	-8%	
(3L)	0.8	0.8	0.0	0%	


Table 5 - 100 Year Design Storm Peak Discharge Summary					
	Existing	Proposed	Net	Net	
Design Point	Flow	Flow	Change	Change	
	(CFS)	(CFS)	(CFS)	(%)	
(1L)	3.8	2.9	-0.9	-24%	
(2L)	7.1	6.8	-0.3	-4%	
(3L)	0.9	0.9	0.0	-4%	

Figures

Appendix A

Site Plans (under separate attachment)

Appendix B

Rain Fall Data

\\private\DFS\ProjectData\P2022\1110\A10\Drainage\SW Report\Shutesbury Library_Stormwater Management Report.docx

NOAA Atlas 14, Volume 10, Version 3 Location name: Shutesbury, Massachusetts, USA* Latitude: 42.4507°, Longitude: -72.4158° Elevation: 1178 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

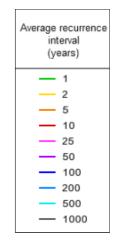
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

	b-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)									
Duration		2	5	10	25	50	100	200	500	1000
5-min	0.324 (0.248-0.421)	0.382 (0.292-0.496)	0.476 (0.363-0.621)	0.554 (0.420-0.728)	0.662 (0.487-0.906)	0.743 (0.537-1.04)	0.828 (0.582-1.20)	0.922 (0.618-1.37)	1.06 (0.682-1.62)	1.16 (0.736-1.82
10-min	0.459 (0.351-0.596)	0.541 (0.413-0.703)	0.675 (0.514-0.880)	0.785 (0.595-1.03)	0.938 (0.690-1.28)	1.05 (0.761-1.47)	1.17 (0.825-1.70)	1.31 (0.876-1.94)	1.50 (0.968-2.30)	1.65 (1.04-2.58)
15-min	0.540 (0.413-0.701)	0.636 (0.486-0.827)	0.793 (0.604-1.03)	0.924 (0.700-1.21)	1.10 (0.812-1.51)	1.24 (0.895-1.73)	1.38 (0.971-2.00)	1.54 (1.03-2.28)	1.76 (1.14-2.70)	1.94 (1.23-3.04)
30-min	0.745 (0.569-0.967)	0.877 (0.670-1.14)	1.09 (0.833-1.43)	1.28 (0.966-1.67)	1.52 (1.12-2.08)	1.71 (1.24-2.39)	1.90 (1.34-2.76)	2.12 (1.42-3.15)	2.43 (1.57-3.73)	2.68 (1.69-4.19)
60-min	0.949 (0.726-1.23)	1.12 (0.854-1.45)	1.40 (1.06-1.82)	1.62 (1.23-2.13)	1.94 (1.43-2.66)	2.18 (1.57-3.05)	2.43 (1.71-3.52)	2.71 (1.81-4.01)	3.10 (2.00-4.75)	3.41 (2.16-5.35)
2-hr	1.20 (0.927-1.56)	1.42 (1.09-1.83)	1.76 (1.35-2.28)	2.04 (1.56-2.66)	2.44 (1.80-3.32)	2.73 (1.99-3.80)	3.04 (2.16-4.40)	3.40 (2.28-5.01)	3.91 (2.54-5.98)	4.34 (2.75-6.77)
3-hr	1.37 (1.06-1.77)	1.62 (1.25-2.08)	2.02 (1.55-2.61)	2.35 (1.80-3.05)	2.81 (2.09-3.82)	3.15 (2.30-4.38)	3.51 (2.50-5.08)	3.94 (2.65-5.80)	4.57 (2.97-6.97)	5.10 (3.24-7.94)
6-hr	1.70 (1.32-2.17)	2.03 (1.58-2.60)	2.58 (2.00-3.31)	3.03 (2.33-3.90)	3.65 (2.73-4.94)	4.10 (3.02-5.70)	4.60 (3.32-6.68)	5.22 (3.52-7.65)	6.16 (4.02-9.36)	6.98 (4.45-10.8)
12-hr	2.07 (1.62-2.63)	2.53 (1.98-3.21)	3.28 (2.56-4.18)	3.90 (3.02-5.01)	4.76 (3.60-6.45)	5.39 (4.01-7.49)	6.09 (4.44-8.86)	6.98 (4.73-10.2)	8.40 (5.49-12.7)	9.64 (6.17-14.9)
24-hr	2.43 (1.92-3.07)	3.03 (2.38-3.82)	3.99 (3.13-5.06)	4.80 (3.74-6.11)	5.90 (4.49-7.96)	6.70 (5.02-9.30)	7.60 (5.59-11.1)	8.78 (5.97-12.8)	10.7 (7.00-16.1)	12.4 (7.94-19.0)
2-day	2.78 (2.21-3.48)	3.48 (2.76-4.36)	4.62 (3.65-5.82)	5.57 (4.37-7.05)	6.87 (5.26-9.22)	7.82 (5.89-10.8)	8.88 (6.57-12.9)	10.3 (7.02-14.9)	12.6 (8.26-18.8)	14.6 (9.38-22.3)
3-day	3.04 (2.42-3.79)	3.80 (3.02-4.74)	5.04 (3.99-6.32)	6.07 (4.78-7.66)	7.49 (5.76-10.0)	8.52 (6.44-11.7)	9.68 (7.19-14.0)	11.2 (7.67-16.2)	13.7 (9.03-20.5)	15.9 (10.3-24.3)
4-day	3.27 (2.61-4.07)	4.07 (3.25-5.08)	5.39 (4.28-6.74)	6.48 (5.12-8.16)	7.99 (6.16-10.7)	9.08 (6.88-12.5)	10.3 (7.67-14.9)	11.9 (8.18-17.2)	14.6 (9.62-21.8)	16.9 (10.9-25.8)
7-day	3.93 (3.15-4.86)	4.82 (3.87-5.98)	6.28 (5.02-7.82)	7.49 (5.95-9.38)	9.16 (7.08-12.1)	10.4 (7.89-14.1)	11.7 (8.74-16.8)	13.5 (9.29-19.4)	16.4 (10.8-24.3)	18.9 (12.2-28.7)
10-day	4.60 (3.70-5.67)	5.53 (4.45-6.83)	7.06 (5.66-8.76)	8.34 (6.64-10.4)	10.1 (7.81-13.3)	11.4 (8.65-15.4)	12.8 (9.51-18.2)	14.6 (10.1-20.9)	17.5 (11.6-25.9)	20.0 (13.0-30.3)
20-day	6.68 (5.42-8.18)	7.67 (6.21-9.41)	9.29 (7.49-11.4)	10.6 (8.53-13.2)	12.5 (9.69-16.2)	13.9 (10.5-18.5)	15.3 (11.3-21.3)	17.1 (11.9-24.2)	19.6 (13.1-29.0)	21.8 (14.2-32.9)
30-day	8.43 (6.86-10.3)	9.46 (7.69-11.6)	11.1 (9.02-13.7)	12.5 (10.1-15.5)	14.4 (11.2-18.6)	15.9 (12.1-20.9)	17.4 (12.8-23.8)	19.0 (13.3-26.9)	21.3 (14.3-31.3)	23.2 (15.1-34.8)
45-day	10.6 (8.68-12.9)	11.7 (9.55-14.2)	13.5 (10.9-16.4)	14.9 (12.1-18.4)	16.9 (13.2-21.7)	18.5 (14.1-24.2)	20.1 (14.7-27.1)	21.6 (15.1-30.4)	23.6 (15.9-34.6)	25.2 (16.4-37.7)
60-day	12.4 (10.2-15.1)	13.6 (11.1-16.5)	15.5 (12.6-18.8)	17.0 (13.8-20.8)	19.1 (14.9-24.4)	20.8 (15.8-27.0)	22.4 (16.4-30.1)	24.0 (16.8-33.6)	25.8 (17.4-37.7)	27.2 (17.8-40.7)


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

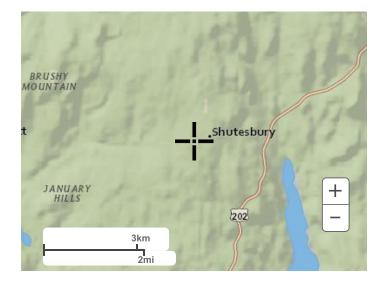
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

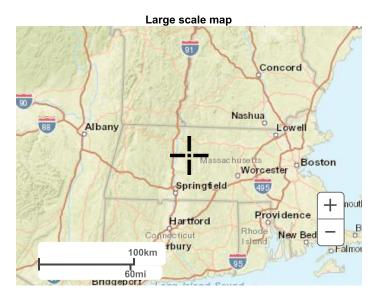
25 Precipitation depth (in) 20 15 10 5 0 5-min 10-min 15-min 30-min 60-min 2-hr 3-hr 0-pr Duration 24-hr 7-day 10-day 30-day 45-day 60-day 2-day 3-day 4-day 20-day 25 Precipitation depth (in) 20 15 10 5 0 1 2 5 10 25 50 100 200 500 1000 Average recurrence interval (years)

Duration					
5-min	2-day				
10-min	- 3-day				
15-min	— 4-day				
30-min	— 7-day				
60-min	— 10-day				
- 2-hr	- 20-day				
— 3-hr	— 30-day				
— 6-hr	— 45-day				
- 12-hr	- 60-day				
- 24-hr					


NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Wed Sep 6 14:43:36 2023

Back to Top


Maps & aerials

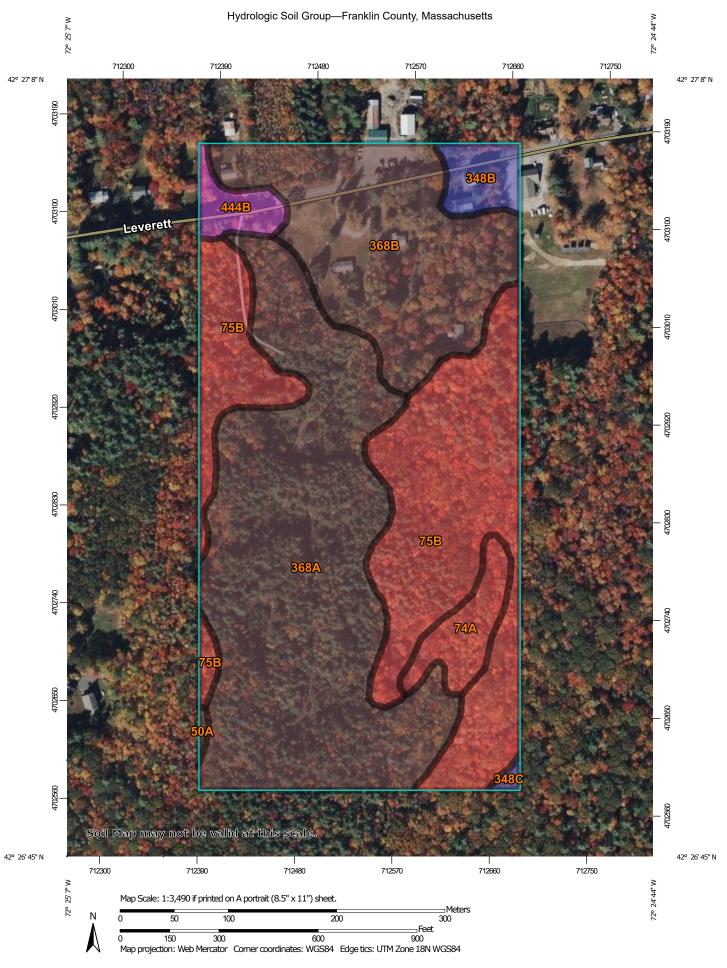
Small scale terrain

Large scale terrain

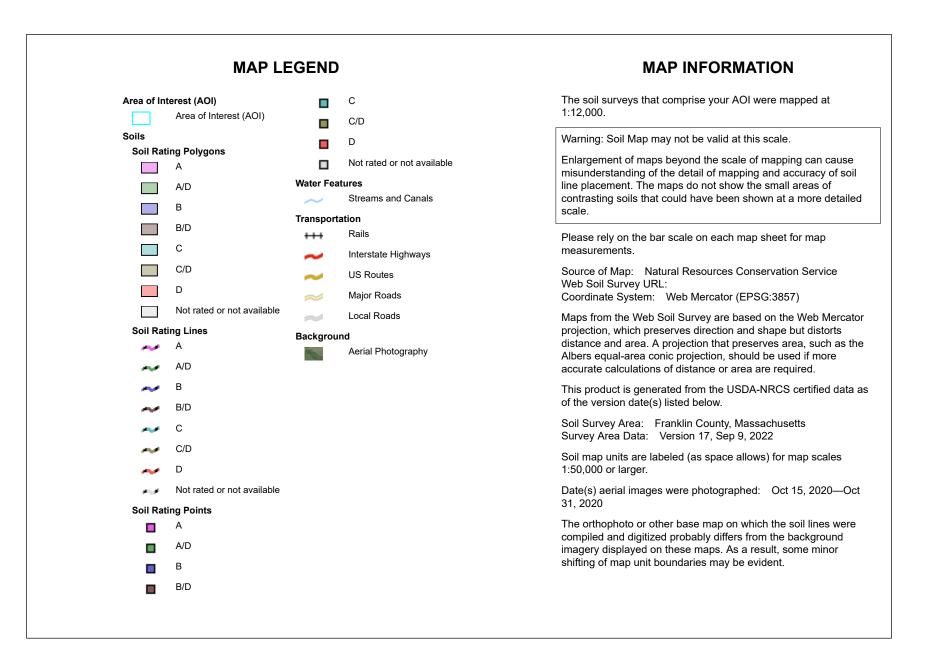
Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>


Disclaimer

Appendix C


NRCS Web Soil Mapping

\\private\DFS\ProjectData\P2022\1110\A10\Drainage\SW Report\Shutesbury Library_Stormwater Management Report.docx

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
50A	Wonsqueak muck, 0 to 2 percent slopes	B/D	0.1	0.2%
74A	Peacham mucky peat, 0 to 8 percent slopes, very stony	D	1.5	3.5%
75B	Pillsbury fine sandy loam, 0 to 8 percent slopes, very stony	D	12.8	29.3%
348B	Henniker sandy loam, 3 to 8 percent slopes	В	1.1	2.6%
348C	Henniker sandy loam, 8 to 15 percent slopes	В	0.1	0.3%
368A	Metacomet fine sandy loam, 0 to 3 percent slopes	B/D	18.1	41.3%
368B	Metacomet fine sandy loam, 3 to 8 percent slopes	B/D	9.1	20.7%
444B	Chichester fine sandy loam, 3 to 8 percent slopes	A	1.0	2.2%
Totals for Area of Inter	rest		43.9	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Appendix D

Geotechnical Engineering Recommendations

O'Reilly, Talbot & Okun

J2060-03-01 October 25, 2023

Ms. Mary Anne Antonellis, Director M.N. Spear Memorial Library 10 Cooleyville Road PO Box 256 Shutesbury, Massachusetts 01072

Re: Geotechnical Engineering Recommendations Shutesbury Public Library 66 Leverett Road Shutesbury, Massachusetts

Dear Ms. Antonellis,

O'Reilly, Talbot & Okun Associates, Inc. (OTO) is pleased to provide this letter report summarizing our geotechnical engineering recommendations for the proposed new public library in Shutesbury, Massachusetts. A Site Locus is provided as Figure 1. A Site Plan is provided as Figure 2.

Our geotechnical recommendations are based upon the investigations performed during this study, as well as information gathered by OTO during both a preliminary geotechnical study in 2010 and a Limited Environmental Site Assessment (ESA) in 2021. In addition, OTO reviewed an Underground Injection Control (UIC) Closure Report prepared by Fuss & O'Neill (F&O) in 2022.

Our services consisted of a review of published geologic information and the previous studies, observation of the soil borings and test pits performed for this study, engineering analyses, and preparation of this report. This report is subject to the attached limitations.

PROJECT DESCRIPTION

The project Site is located at 66 Leverett Road in Shutesbury, Massachusetts. The Site is bounded by a residential property to the east, Leverett Road followed by the Shutesbury Highway Department to the north, and wooded land to the west and south. The location of the Site is shown on Figure 1.

The Site currently consists of grass-covered areas with few trees. However, the western and southern portions of the Site are densely wooded. The ground surface of the grasscovered area slopes gently upward from approximate elevation 1,170 feet at Leverett Road to 1,180 feet near the southern tree line. We understand a former garage building (located to the northeast of the proposed building) with an approximate footprint of 1,500 square feet was demolished, and its slab removed, sometime in 2021. The floor drain and drain pipe components remained in place and were investigated under a UIC closure study by F&O in 2022. That study indicated that no further response actions regarding the UIC structure were warranted. Project plans call for construction of an approximately 4,400 square foot (footprint) library building with associated parking areas and access roads. In addition, a stormwater detention basin will be constructed to the north of the proposed library building and a stormwater infiltration gallery to the southeast. The locations of the former garage and the proposed structures are shown on Figure 2.

We assume that the proposed library building will be a single-story, wood-framed structure. We understand that the building will be slab on grade with a finish floor elevation near the existing ground surface at approximate elevation 1,177 feet. Therefore, we anticipate cuts on the order of five feet or less will be required to construct the building.

We expect structural loads will be supported on both isolated column and continuous strip footings. Structural loads are unknown at this time. However, it is expected that maximum column loads will be less than 50 kips and that bearing walls will carry a load of five kips per linear foot, or less. We have assumed that floor loads may be relatively high in stack areas. The design team should confirm these assumptions.

SUBSURFACE EXPLORATIONS

Geotechnical subsurface investigations consisted of four backhoe test pits and six soil borings. In addition, we reviewed soil borings that were performed as part of an environmental study in 2021. The conditions encountered in these borings (B-1 through B-10) were consistent with the geotechnical investigations. The location of each boring and test pit is shown on Figure 2. However, the environmental borings are not discussed in detail within this report. For additional details, please refer to our "Limited Subsurface Assessment" report, dated October 5, 2021.

Soil Borings

The six geotechnical soil borings were performed by Seaboard Environmental Drilling of Chicopee, Massachusetts. Each boring was performed using a truck mounted drill rig and advanced using hollow stem auger drilling techniques. After drilling, bore holes were backfilled with soil cuttings. Boring logs are attached.

Soil borings SL-101 and SL-102 were performed within the proposed building footprint on October 3, 2023. The borings were extended to refusal at a depth of 16 feet below ground surface, corresponding to elevations between 1,163 and 1,162 feet. The proposed boring locations were adjusted in the field due to uneven terrain and landscaping, as areas of the Site were inaccessible with the truck mounted drill rig.

Borings SL-1 through SL-4. were performed to the northwest of the current proposed library building during a preliminary geotechnical study on June 23, 2010. The borings were extended to refusal at a depth of between 18 and 21.5 feet below ground surface, corresponding to elevations between 1,153.5 and 1,155.5 feet.

An OTO field representative observed and logged each boring. Soil samples were described according to a modified version of the Burmister Soil Classification System.

Soil samples were collected using a two-inch diameter split spoon sampler, driven 24 inches with a 140-pound safety hammer falling 30 inches (American Society for Testing and Materials Test Method D1586 "Standard Test Method for Penetration Test and Split-

Barrel Sampling of Soils"). The number of blows required to drive the sampler each six inches was recorded. The standard penetration resistance, or N-value, is the number of blows required to drive the sampler the middle 12 inches. Soil properties, such as strength and density, are related to the N-value. We note that the N-value collected in the field is corrected to account for differing hammer efficiencies, sampler type, borehole diameter, and depth. Typically, the field N-values are corrected to a standard 60% hammer efficiency, known as N_{60} . The N-values presented on the boring logs are field values, which are not adjusted for hammer efficiency. However, adjusted N_{60} values were used in our engineering calculations and analysis.

Test Pits

Four test pits were performed on October 3, 2023 by the Shutesbury Department of Public Works. The test pits were performed using a CAT 420XE backhoe equipped with a 0.25 cubic yard bucket.

Test pits TP-1 and TP-2 were performed within or near the proposed stormwater infiltration gallery to the southeast of the proposed library. Test pits TP-3 and TP-4 were performed within or near the proposed stormwater detention basin to the north of the proposed library. The test pits were performed to observe the nature of near surface soils and examine historic groundwater levels. An OTO representative observed and logged each test pit. Test pit logs are attached.

SUBSURFACE CONDITIONS

Subsurface conditions were interpreted based upon the explorations performed for this study and conditions documented in our 2010 preliminary geotechnical report. Subsurface conditions consisted of a surface layer of topsoil underlain by fine to medium sand and silt. Soil conditions are generally favorable for the proposed development.

Soil Conditions

Approximately four to eight inches of topsoil was encountered at the ground surface in each of the borings and test pits. The topsoil consisted of brown, fine sand and silt with little medium sand, little organics (roots), and trace amounts of coarse sand and gravel.

Non-engineered fill was encountered in test pit TP-3 to an approximate depth of 6.5 feet below ground surface, corresponding to elevation 1,169.5 feet. The fill consisted of dark brown, fine to medium sand with trace amounts of gravel and little silt, coarse sand, and debris (brick, concrete, ash).

Sandy native soils were encountered immediately beneath the surficial topsoil and nonengineered fill layers. These soils generally consisted of medium dense to very dense, fine to medium sand with little silt and varying amounts of coarse sand and gravel.

Test pits TP-1 through TP-4 were terminated within this layer at a depth of 9.5 to 11 feet below ground surface, corresponding to approximate elevations 1169.5 to 1161.5 feet.

Borings SL-101 and SL-102 were terminated at a depth of 16 feet below ground surface, corresponding to approximate elevations 1,163 and 1,162 feet, respectively. Auger refusal

O'Reilly, Talbot & Okun

ENGINEERING ASSOCIATES

was encountered in borings SL-1 through SL-4 at a depth of between 18 and 21.5 feet below the ground surface, corresponding to approximate elevations 1,153.5 to 1,155.5 feet. Auger refusal was likely within the very dense soil layer.

Groundwater Conditions

Saturated soils were encountered in each of the soil borings and test pits at a depth of 2 to 15 feet below ground surface, corresponding to approximate elevations 1,177 to 1,161 feet. It is unclear whether the saturated soils are indicative of groundwater or a result of limited vertical infiltration (perched water). Regardless, wet soils may be encountered during construction and the building should be designed to control groundwater and surface water infiltration.

SIGNIFICANT GEOTECHNICAL ISSUES

The significant geotechnical issues for the proposed construction addressed in this report include the following: foundation bearing capacity and settlement; seismic design considerations; surface water and groundwater control; and the suitability of on-Site materials for use as engineered fill.

DESIGN RECOMMENDATIONS

The following recommendations are provided for the construction assumed in this report. These recommendations may need to be revised if the building location and/or slab elevations change during design.

The recommendations in this report refer to the 9th Edition of the Massachusetts State Building Code (MSBC), which includes amendments to the 2015 International Building Code (IBC). We note that the 10th Edition of the MSBC is expected to become effective in 2024. However, the effective date and the concurrency period have not been announced. We recommend that information provided in this report be reviewed and updated if the final version of the new building code is published and becomes effective, and if this project falls outside of the concurrency period.

Former Garage Building

We understand that the former garage building was removed in 2021 and that a remaining floor drain and drain pipe was investigation in 2022. Furthermore, we understand that no former utilities or structures were located with the footprint of the proposed building. However, we note that abandoned buried utilities containing asbestos (such as electrical conduit insulation or transite pipe) associated with the former garage building may be encountered during Site preparation and excavations. Furthermore, former structures (pipes, conduits, foundations walls) may contain or be covered with materials containing asbestos. Such materials should be handled in accordance with MassDEP's asbestos regulations (310 CMR 7.15). We recommend that suspect materials be managed appropriately and tested by a Department of Labor Standards (DLS) certified asbestos inspector prior to disturbances.

4

Non-Engineered Fill

No significant amounts of non-engineered fill was observed within the two borings performed within or near the footprint of the new building. Non-engineered fill was encountered to a depth of 6.5 feet below ground surface in test pit TP-3, which was located within the proposed stormwater detention basin (to the north of the proposed building footprint). Furthermore, non-engineered fill within the footprint of the proposed building (if encountered) should be removed and replaced with engineered fill.

Foundation Recommendations

The proposed building can be founded on normal spread footing foundations bearing on compacted native soils or engineered fill. Provided the recommendations presented in this section are followed, a maximum allowable bearing pressure of 4,500 pounds per square foot may be used for the design of exterior and isolated column footings. If wet soils are encountered at the footing level, the footing subgrade should be over-excavated by six inches and six inches of Crushed Stone should be placed to protect the footing subgrade from disturbance.

Any non-engineered fill, asphalt, and topsoil layers should be removed from beneath the building footprint. Any unsuitable soils should be replaced with compacted Sand and Gravel or Crushed Stone. In addition, we recommend that the entire building footprint be thoroughly proof compacted to treat any near surface loose areas. The Sand and Gravel fill beneath the footings should meet the grain size distribution characteristics outlined in Table 3.

We estimate that settlement of footings and slabs bearing on dense native soils or compacted engineered fill should be small and largely elastic in nature. Maximum settlements should be less than one half inch and should occur relatively quickly after load application (during construction).

Exterior footings should be embedded a minimum of 48 inches below the lowest adjacent grade for frost protection. Interior footings should bear at least two feet below the surrounding floor slab. Strip footings, beneath the load bearing walls, should be at least 18 inches wide. Isolated column footings should be at least 24 inches wide. All other applicable requirements of the Massachusetts State Building Code (MSBC) should be followed.

Footings should not be placed on frozen soils. Footing excavations should be free of loose or disturbed materials. Any boulders or cobbles larger than four inches in diameter should be removed from within one foot of the bottom of the footings and replaced with Sand and Gravel or Crushed Stone. The footing subgrades should be densified immediately prior to placement of footing concrete with at least three passes with a vibrating plate compactor. If loose materials are present in the excavations, they shall be recompacted to form a firm, dense bearing surface.

Concrete Slabs

We recommend that concrete floor slabs bear on at least 12 inches of compacted Sand and Gravel or Crushed Stone to provide uniform support and a capillary moisture break.

O'Reilly,Talbot & Okun

ENGINEERING ASSOCIATES

The subgrade should also be free of large boulders or cobbles, if encountered. The Sand and Gravel or Crushed Stone fill beneath the concrete slabs should meet the grain size distribution characteristics outlined in Table 3.

The subgrade within the footprint of the proposed building should be stripped of topsoil and any asphalt or non-engineered fill. Prior to the placement of any engineered fill, we recommend that the building footprint be thoroughly densified to treat any loose areas that may be present. If non-engineered fill, soft, or disturbed areas are present, these materials should be removed and recompacted or replaced with compacted Sand and Gravel or Crushed Stone. Fill supporting slabs should be placed in accordance with the recommendations presented on Sheet 1.

Groundwater and Surface Water Control

Wet soils were observed at a depth of 2 to 15 feet below ground surface, corresponding to approximate elevations 1,177 to 1,161 feet. Therefore, we recommend that the proposed building include perimeter drainage to control groundwater and surface water infiltration. The perimeter drainage system can consist of perforated PVC pipe installed in a Crushed Stone trench and wrapped in a non-woven geotextile fabric.

If wet soils are encountered during excavations for footings and utilities, it should be possible to dewater these excavations by trenching or using sump pumps. Furthermore, the contractor should establish and maintain proper drainage of soils during construction. The silty soils present at the Site are susceptible to moisture, due to the high percentage of fines within the soil mass. If these soils become wet during construction, they will become soft and easily disturbed.

Seismic Considerations

Earthquake loadings must be considered under requirements in Section 1613 and 1806 of the 9th Edition (October 2017) of the Massachusetts State Building Code (MSBC), which is based upon the International Building Code 2015 (IBC) with Massachusetts amendments. Note that the IBC refers to ASCE-7 (2010), *Minimum Design Loads for Buildings and Other Structures*.

Section 1613 of the IBC covers lateral forces imposed on structures from earthquake shaking and requires that every structure be designed and constructed to resist the effects of earthquake motions in accordance with ASCE-7. Lateral forces are dependent on the type and properties of soils present beneath the Site, along with the geographic location. Per Table 1604.11, the maximum considered earthquake spectral response acceleration at short periods (S_s) and at 1-sec (S_1) was determined for Shutesbury, Massachusetts.

Soil properties are represented through Site Classification. Procedures for the Site-specific determination of Site Classification are provided in Chapter 20 of ASCE-7. We evaluated Site Classification using one of the parameters allowed, Standard Penetration Resistance (N-value), using values obtained from the 2010 and 2023 soil borings. Furthermore, the Site coefficients F_a and F_v were determined according to Tables 1613.3.3(1) and 1613.3.3(2) of the IBC (2015), using both the S_s and S_1 values and the Site Class. Seismic design parameters are provided in Table 1.

Table	1
Seismic Design	Parameters

Parameter	Value
S₅	0.174
S 1	0.067
Site Class	С
Fa	1.2
Fv	1.7

Section 1806.4 relates to the liquefaction potential of the underlying soils. The liquefaction potential was evaluated for saturated Site soils. The liquefaction potential was evaluated for saturated Site soils, using Figure 1806.4b of the MSBC. Liquefiable layers were not identified in the soil borings. In addition, loose soil layers below the maximum depth explored are not anticipated.

Exterior Slabs and Pavements

This section provides recommendations for exterior entryways, slabs, and sidewalks, as well as flexible pavements.

Entryways and Sidewalks

Exterior concrete slabs, such as those at entryways and sidewalks adjacent to the building should be designed to mitigate differential frost movement between adjacent slabs, doorways, and pavements. To address this concern, we recommend that concrete slabs at entryways be underlain by four feet of non-frost susceptible Sand and Gravel fill. Where exterior slabs butt against hard surfaces, we recommend that for the area beyond the edges of the slab, the bottom of Sand and Gravel fill should transition gradually upward at a slope of 3H:1V or flatter (zone of influence). A typical detail (not for construction) showing an entryway fill area is shown on Sheet 2.

We recommend that concrete sidewalks that are outside the zone of influence of the building and entryways, as well as areas where differential frost movement would not cause a tripping hazard, bear on at least 12 inches of imported, compacted Sand and Gravel to provide uniform support and a capillary moisture break. Fill should be placed in accordance with the recommendations for compaction provided on Sheet 1. Subgrades should also be free of large boulders. We recommend that the entire subgrade of the sidewalk be proof compacted with a heavy vibrating roller to treat any loose areas. In addition, we recommend that the design team incorporate drainage into the sidewalk areas to remove water from the subgrade, in order to limit frost and the resulting vertical movement of sidewalks. The Sand and Gravel fill beneath the concrete slabs and sidewalks should meet the grain size distribution characteristics described in Table 3.

Flexible Pavement Design

We anticipate that the proposed pavements will likely experience loads from light passenger vehicles and occasional heavier vehicles. The proposed flexible asphalt design section is provided in Table 2.

D'Reilly, Talbot & Okun

ENGINEERING ASSOCIATES

Layer	Thickness
Asphalt Finish Course	1.5 inches
Asphalt Binder Course	1.5 inches
Gravel Base Course	12 inches

Table 2Pavement Design Sections

We recommend that the pavement subgrade be proof compacted to treat any loose areas. Table 3 presents recommendations for gradation requirements for the Gravel Base Course material. Please note that the Gravel Base Course matches the MassDOT Highway Division specification M1.03.1 for Processed Gravel for Subbase.

We note that the near surface silty soils present at the Site are poorly drained, are susceptible to disturbances during construction, and have the potential to cause frost heaves to occur in pavements. We recommend that pavements be pitched to promote surface water runoff. In addition, subsurface drainage should be provided to prevent water from accumulating on the surface during construction, and beneath pavement sections after installation.

Earthwork Considerations

We anticipate that earthwork for this project will include Site grading, excavations for footings; placement of compacted engineered fill beneath the building, floor slab, and pavements (as needed); and the treatment of the existing soils to address any localized loose areas that may be present.

Engineered Fill Recommendations

Four engineered fill types are recommended:

- Sand and Gravel for use immediately below slabs, pavements, and sidewalks
- Crushed Stone for use immediately below footings and slabs (if needed), in drainage systems, and as an alternative to Sand and Gravel
- Gravel Base Course for use beneath pavements
- Granular Fill for use in landscaped areas and as miscellaneous fill

Grain size distribution requirements are presented in Table 3. On-Site soils do not appear to meet requirements for reuse as engineered fill. If the contractor elects to use the on-Site material as fill, we recommend that representative samples be collected, and grain size distribution analyses be performed to obtain approval by the engineer.

Please note that the Sand and Gravel specification is approximately that for MassDOT Highway Division specification M1.03.0 for Type B Gravel Borrow.

O'Reilly,Talbot & Okun

ENGINEERING ASSOCIATES

Size	Sand and Gravel	Gravel Base Course	Granular Fill	Crushed Stone
		Percent Finer	by Weight	
3 inch	100	100	100	
1 1/2 inch		70-100		
1 inch				100
¾ inch		50-85		90-100
1∕₂ inch	50-85			10-50
¾ inch				0-20
No. 4	40-75	30-60		0-5
No. 10			30-90	
No. 40	10-35		10-70	
No. 200	0-10	0-10	0-15	

Table 3Grain Size Distribution Requirements

Compaction Recommendations

Fill, debris, and topsoil should be removed from beneath the building footprint and should not be reused as fill beneath structures. To avoid point loads, any cobbles or boulders larger than four inches in diameter encountered at the subgrade should also be removed. Prior to the placement of any engineered fill, we recommend that the entire building footprint be thoroughly proof compacted. Proof compaction should be accomplished by a minimum of six passes with a 6,000-pound vibratory roller. To facilitate compaction, the moisture content of the on-Site material should be maintained at or near the optimum moisture content as determined by ASTM D1557.

Compacted fill should be placed in lifts ranging in thickness between 6 and 12 inches depending on the size and type of equipment. Recommended degrees of compaction and compaction means and methods are presented on Sheet 1.

Compaction within five feet of foundation walls should be performed using a handoperated roller or vibratory plate compactor. If the new walls are to be backfilled on both sides, placement and compaction of engineered fill should proceed on both sides of the wall so that the difference in top of fill on either side does not exceed two feet.

Sloping and Earth Support

We do not anticipate that significant shoring, underpinning, or sloping will be necessary to construct the proposed building. Any temporary earth support or underpinning should be the responsibility of the contractor. Prior to construction, we recommend that the contractor evaluate the need for temporary earth support systems. The unconsolidated native soils encountered at the Site are estimated to be Type C soils for slope stability purposes. The maximum allowable slope for excavations of Type C soils is 1H:1V (45°). All excavations should conform to current OSHA requirements.

6.0 FINAL DESIGN AND CONSTRUCTION PHASE SERVICES

It is recommended that O'Reilly, Talbot & Okun Associates, Inc. (OTO) be retained during final design to prepare and/or review appropriate specification sections and drawings, if necessary. During construction phases, we recommend that OTO be retained to provide engineering support, including documentation of subgrade conditions and preparation.

Environmental Assessments have been completed for this Site. Any environmental conditions reported as part of those assessments should be evaluated regarding potential impacts to the proposed construction and recommendations in this report. Any impacted soil and/or groundwater that is encountered during construction will need to be managed in accordance with the appropriate regulations.

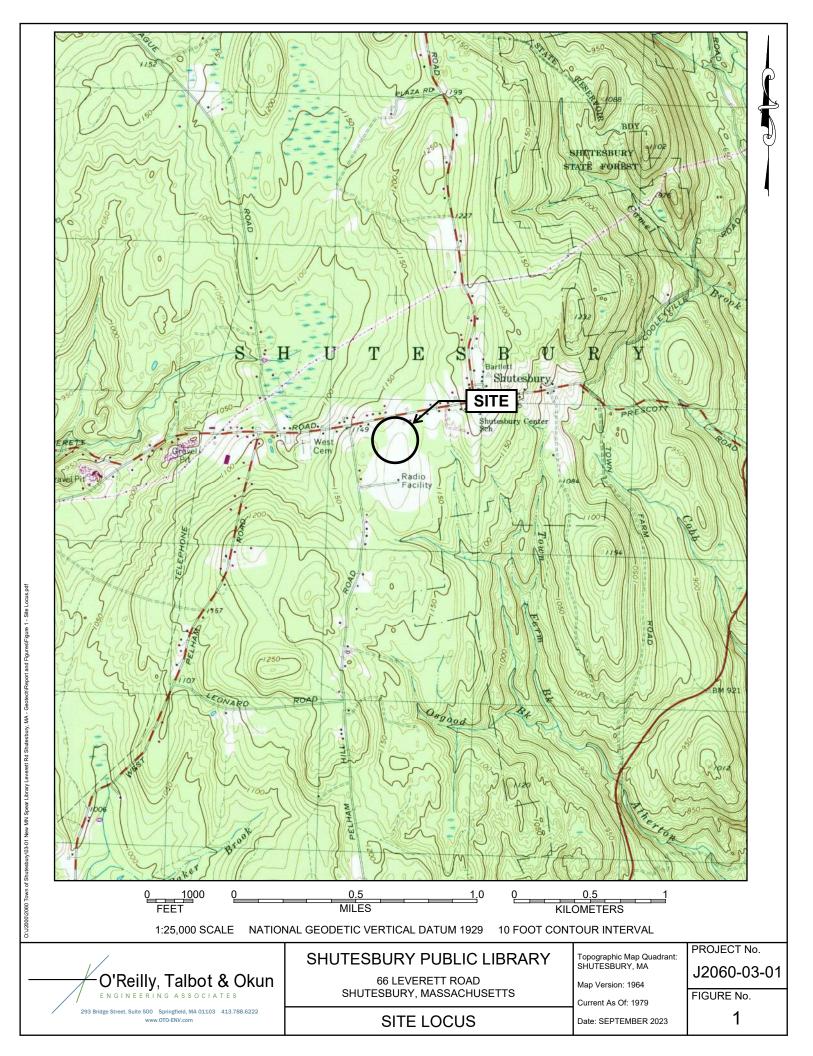
We appreciated the opportunity to be of service on this project. If you have any questions, please do not hesitate to contact the undersigned.

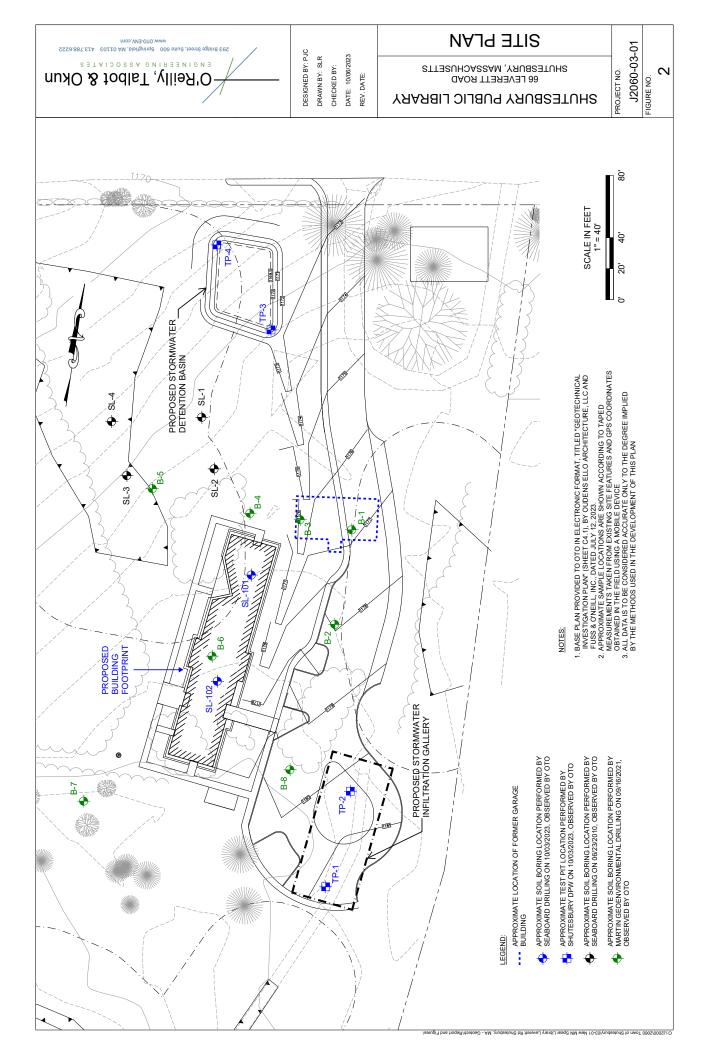
Sincerely yours, O'Reilly, Talbot & Okun Associates, Inc.

Dustin A. Humphrey, P.E. Sr. Project Manager

Ashley L. Sullivan, P.E.

Principal


Attachments: Limitations Figure 1: Site Locus Figure 2: Site Plan Sheet 1: General Compaction Guidelines Sheet 2: Typical Foundation Section 2023 Boring Logs 2010 Boring Logs Test Pit Logs Test Pit Photographs



10

LIMITATIONS

- 1. The observations presented in this report were made under the conditions described herein. The conclusions presented in this report were based solely upon the services described in the report and not on scientific tasks or procedures beyond the scope of the project or the time and budgetary constraints imposed by the client. The work described in this report was carried out in accordance with the Statement of Terms and Conditions attached to our proposal.
- 2. The analysis and recommendations submitted in this report are based in part upon the data obtained from widely spaced subsurface explorations. The nature and extent of variations between these explorations may not become evident until construction. If variations then appear evident, it may be necessary to reevaluate the recommendations of this report.
- 3. The generalized soil profile described in the text is intended to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized and have been developed by interpretations of widely spaced explorations and samples; actual soil transitions are probably more erratic. For specific information, refer to the boring logs.
- 4. In the event that any changes in the nature, design or location of the proposed structures are planned, the conclusions and recommendations contained in this report shall not be considered valid unless the changes are reviewed and conclusions of this report modified or verified in writing by O'Reilly, Talbot & Okun Associates Inc. It is recommended that we be retained to provide a general review of final plans and specifications.
- 5. Our report was prepared for the exclusive benefit of our client. Reliance upon the report and its conclusions is not made to third parties or future property owners.

Location	Minimum Compaction					
Below Structures (Foundations and Slabs)	95%					
Below Pavements/Sidewalks/Exterior Slabs	95%					
Against Basement Walls/Retaining Walls	92%					
Utility Trenches	95%					
General Landscaped Areas	90%					
Notes.						

Table 1-1 **Degree of Compaction Recommendations**

1. Percentage of the maximum dry density as determined by Modified Proctor ASTM D1557, Method C.

2. When location falls into two or more categories, the engineer should be notified to determine appropriate compaction efforts and/or methods.

3. Crushed stone should be compacted in lifts of 12 inches to form a dense matrix using either traditional compaction methods (vibratory plate and/or roller) or tamping with an excavator bucket in deep excavations. It is generally not necessary to perform laboratory or field density testing on crushed stone.

Table 1-2 **General Guidelines for Compaction Means and Methods**

	Maximum Stone Size	Maximum L Thickness (Inc		Minimum Number of Passes		
Compaction Method	(Inches Diameter)	Below Structures & Pavement	Non- Critical Areas	Below Structures & Pavement	Non- Critical Areas	
Hand-operated Vibratory Plate and confined spaces	3	6	8	6	4	
Hand-operated vibratory drum roller (less than 1000 pounds)	3	6	8	6	4	
Hand-operated vibratory drum roller (at least 1,000 pounds)	6	8	10	6	4	
Light vibratory drum roller (minimum 3000 pounds)	6	10	14	6	4	
Heavy vibratory drum roller (minimum 6000 pounds)	6	12	18	6	4	
Note: The contractor should reduce	or stop drum vibr	ation if pumping of the subg	rade is obser	ved.		

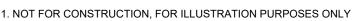
www.OTO-ENV.com

SHUTESBURY PUBLIC LIBRARY

66 LEVERETT ROAD SHUTESBURY, MASSACHUSETTS

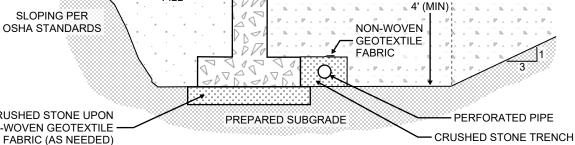
GENERAL COMPACTION GUIDELINES

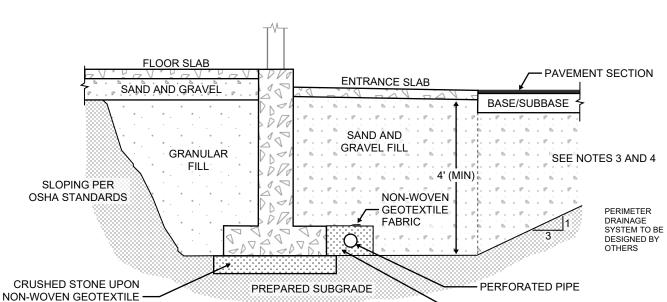
DESIGNED BY: ALS DRAWN BY: DAH CHECKED BY: MJT DATE: 11/09/2016 REV. DATE: 07/11/2022


PROJECT No. J2060-03-01 SHEET No. 1

3. UNPAVED AREAS SHALL INCLUDE LOAM CAP AND SHOULD BE GRADED TO DIRECT SURFACE FLOW AWAY FROM BUILDING								
4. PERMEABLE BACKFILL SHALL BE USED IN AREAS WITH UNDERDRAIN SYSTEMS								
/	SHUTESBURY PUBLIC LIBRARY	DESIGNED BY: ALS	PROJECT No.					
O'Reilly, Talbot & Okun	66 LEVERETT ROAD	DRAWN BY: DAH	J2060-03-01					
ENGINEERING ASSOCIATES 293 Bridge Street, Suite 500, Springfield, MA 01103, 413,788,6222	SHUTESBURY, MASSACHUSETTS	CHECKED BY: MJT DATE: 11/9/2016	SHEET No.					
www.OTO-ENV.com	TYPICAL FOUNDATION SECTION	REV. DATE:	2					

1. NOT FOR CONSTRUCTION, FOR ILLUSTRATION PURPOSES ONLY





NOTES:

MA

NW New I

TYPICAL FOUNDATION SECTION SLAB ON GRADE FOOTING WITH ENTRANCE SLAB

BORING LOGS

O'Reilly, Talbot & Okun

ENGINEERING ASSOCIATES

SUMMARY OF THE BURMISTER SOIL CLASSIFICATION SYSTEM (MODIFIED)

RELATIVE DENSITY (of non-plastic soils) OR CONSISTENCY (of plastic soils)

STANDARD PENETRATION TEST (SPT)

Method: Samples were collected in accordance with ASTM D1586, using a 2" diameter split spoon sampler driven 24 inches. If samples were collected using direct push methodology (Geoprobe), SPTs were not performed and relative density/consistency were not reported. N-Value: The number of blows with a 140 lb. hammer required to drive the sampler the middle 12 inches.

WOR: Weight Of Rod (depth dependent) WOH: Weight Of Hammer (140 lbs.)

COHES	IONLESS SOILS	COHES	IVE SOILS
BLOWS/FOC	T RELATIVE	BLOWS/FOOT	CONSISTENCY
(SPT N-Value	e) DENSITY	(SPT N-Value)	CONSISTENCT
0-4	Very loose	<2	Very soft
4-10	Loose	2-4	Soft
10-30	10-30 Medium dense		Medium Stiff
30-50	30-50 Dense		Stiff
>50	>50 Very dense		Very stiff
*Based upon ur	ncorrected field N-values	>30	Hard

MATERIAL: (major constituent identified in CAPITAL letters)

	COHESIONL	ESS SOILS			COHESIVE SO	ILS
MATERIAL	FRACTION GRAIN SIZE RANGE SMALLEST		PLASTICITY	IDENTITY		
GRAVEL	Coarse	3/4" to 3"		DIAMETER	FLASHCITT	
GRAVEL	Fine	1/4" to 3/4"		None	Non-plastic	SILT
	Coarse 1/16" to 1/4"			1/4" (pencil)	Slight	Clayey SILT
SAND	Medium	1/64" to 1/16"		1/8"	Low	SILT & CLAY
	Fine	Finest visible & distinguishable particles	ble & distinguishable particles		Medium	CLAY & SILT
SILT/CLAY	see adjacent table Cannot distinguish individual particles			1/32"	High	Silty CLAY
COBBLES	:	3" to 6" in diameter		1/64"	Very High	CLAY
BOULDERS		> 6" in diameter		Wetted sample	is rolled in hands to s	smallest possible
Note: Boulders and cobbles are observed in test pits and/or auger cuttings. diameter before breaking.						

ORGANIC SILT: Typically gray to dark gray, often has strong H2S odor. May contain shells or shell fragments. Light weight. Fibrous PEAT: Light weight, spongy, mostly visible organic matter, water squeezed readily from sample. Typically near top of layer. Fine grained PEAT: Light weight, spongy, little visible organic matter, water squeezed from sample. Typically below fibrous peat.

DEBRIS: Detailed contents described in parentheses (wood, glass, ash, crushed brick, metal, etc.)

BEDROCK: Underlying rock beneath loose soil, can be weathered (easily crushed) or competent (difficult to crush).

ADDITIONAL CONSTITUENTS

TERM	% OF TOTAL
and	35-50%
some	20-35%
little	10-20%
trace	1-10%

COMMON TERMS

Glacial till: Very dense/hard, heterogeneous mixture of sand, silt, clay, sub-angular gravel. Deposited at base of glaciers, which covered all of New England.
Varved clay: Fine-grained, post-glacial lake sediments characterized by alternating layers (or varves) of silt, sand and clay.
Fill: Material used to raise ground, can be engineered or non-engineered.

COMMON FIELD MEASUREMENTS

Torvane: Undrained shear strength is estimated using an E285 Pocket Torvane (TV). Values in tons/ft2.

Penetrometer: Unconfined compressive strength is estimated using a Pocket Penetrometer (PP). Values in tons/ft2.

RQD: Rock Quality Designation is determined by measuring total length of pieces of core 4" or greater and dividing by the total length of the run, expressed as %. 100-90% excellent; 90-75% good; 75-50% fair; 50-25% poor; 25-0% very poor.

PID: Soil screened for volatile organic compounds (VOCs) using a photoionization detector (PID) referenced to benzene in air. Readings in parts per million by volume.

O'Reilly, Talbot & Okun

LOG OF BORING SL-101

Page 1 of 1

PROJECT		Proposed Shutesbury Library				CONTRACTOR	Seaboard Environmental Drilling		
JOB NUMBER		2060-03-01	FINAL DEF	FINAL DEPTH (ft) 16.0		DRILLING EQUIPMENT	T B-53 Truck Mounted Rig		
LOCATION		Shutesbury, MA	SURFACE ELEV (ft) 1179.0		FOREMAN	Mike	CASING		
START DATE		10/03/2023	DISTURBEI	D SAMPLES	6	HELPER	Louie	CASE DIAMETER	N/A
FINISH DATE		10/03/2023	UNDISTURBED SAMPLES 0		BIT TYPE	Hollow Stem Auger	HAMMER WGT	N/A	
ENGINEER/SCIE	NTIST	Shannon Raymond		WATER LE	EVEL	ROD TYPE	A (1 5/8" O.D.) HAMMER DROP N/A		N/A
RODINO				FIRST (ft)	N/E	SAMPLER	2" O.D. Split Spoon	ROCK CORING	NFORMATION
BORING LOCATION		Northern Portion of Proposed Building		LAST (ft)	N/A	HAMMER TYPE	Safety	TYPE	N/A
				TIME (hr)	N/A	HAMMER WGT/DROP	140 lb / 30" Wire Line	SIZE	N/A

r		SAMP	LES				
DEPTH (ft)/ SAMPLES	PENETR. RESIST. (bl / 6 in)	REC. (in)	TYPE/ NO.	FIELD TEST DATA	SAMPLE DESCRIPTION (MODIFIED BURMISTER)	PROFILE DEPTH (ft) ELE	V. REMARKS
	1/8/6/6 10/16/30/46	16/24 18/24	S-1 (0'-2') S-2 (2'-4')		Top 5" : Medium dense, dark brown, fine SAND, some silt, little medium sand, trace coarse sand, little organics (roots), moist (TOPSOIL) Middle 3" : Medium dense, dark brown, fine SAND, some to little silt, little medium sand, trace coarse sand, trace gravel, trace organics (roots), moist Bottom 8" : Medium dense, brown, fine to medium SAND, little to trace silt, trace coarse sand, trace gravel, moist (wet in bottom 2" ; trace rust staining throughout) Dense, light grey brown, fine to medium SAND, little to trace coarse sand, trace (+) silt, trace gravel, wet (trace rust staining throughout)	TOPSOIL FINE SAND FINE TO MEDIUM SAND	1. , 2.
	16/18/20/17	15/24	S-3 (5'-7')		Dense, grey, fine to medium SAND, little silt, little to trace coarse sand, trace gravel, damp	5.0 ¥ 1174. TILL	05.
							4.
	50 for 3"	0/3	S-4 (10'-10.2')		No Recovery ; upon likely gravel		
	14/50 for 5"	8/11	S-5 (12'-12.9')		Very dense, grey, fine to medium SAND, little silt, little to trace coarse sand, trace gravel, moist		
	31/50 for 5"	8/11	S-6 (15'-15.9')		Very dense, grey, fine to medium SAND, little silt, little to trace coarse sand, trace gravel, moist End of Exploration at 16', upon dense soils	16.0 ▼ 1163.	0 6.,7.
20'							
2. F 3. /	Perched groundv Auger significant	vater obse ly grinding	erved at 2 fee g between 4 a	t. Ind 4.5 feet	surface, upon likely gravel and cobbles. , upon likely cobble or gravel. ,et, and 15 and 16 feet, upon likely gravel and dense soils.		DJECT NO. 060-03-01

 Auger grinding between 9 and 10 feet, 10 and 15 feet, and 15 and 16 feet, upon likely gravel and dense soils. Slow drilling occurred between 5 and 15 feet, due to dense soils. 	LOG OF BORING
6. Auger significantly grinding at 16 feet, upon likely dense soils.	SL-101
7. Auger refusal at 16 feet, upon likely dense soils.	. <u></u>

O'Reilly, Talbot & Okun

LOG OF BORING SL-102

Page 1 of 1

<u>SL-102</u>

PROJECT		Proposed Shutesbury Library				CONTRACTOR	Seaboard Environmental Drilling		
JOB NUMBER		2060-03-01	FINAL DEF	FINAL DEPTH (ft)		DRILLING EQUIPMENT	B-53 Truck Mounted Rig		
LOCATION		Shutesbury, MA	SURFACE ELEV (ft)		1178.0	FOREMAN	Mike CASING		
START DATE		10/03/2023	DISTURBE	D SAMPLES	6	HELPER	Louie	CASE DIAMETER	N/A
FINISH DATE		10/03/2023	UNDISTUR	BED SAMPLES	0	BIT TYPE	Hollow Stem Auger	HAMMER WGT	N/A
ENGINEER/SCIE	NTIST	Shannon Raymond		WATER LE	VEL	ROD TYPE	A (1 5/8" O.D.)	HAMMER DROP	N/A
DODINO				FIRST (ft)	N/E	SAMPLER	2" O.D. Split Spoon	ROCK CORING	INFORMATION
LOCATION	ORING Southern Portion of Proposed Building		ng	LAST (ft)	N/A	HAMMER TYPE	Safety	TYPE	N/A
LOGATION				TIME (hr)	N/A	HAMMER WGT/DROP	140 lb / 30" Wire Line	SIZE	N/A

<u> </u>		SAMP	LES					
DEPTH (ft)/ SAMPLES	PENETR. RESIST. (bl / 6 in)	REC. (in)	TYPE/ NO.	FIELD TEST DATA	SAMPLE DESCRIPTION (MODIFIED BURMISTER)		OFILE (ft) ELEV.	REMARKS
	1/3/4/11	15/24	S-1 (0'-2')		Top 4" : Loose, dark brown, fine SAND, some silt, little medium sand, trace coarse sand trace (-) gravel, little organics (roots), moist (TOPSOIL) Middle 4" : Loose, dark brown, fine to medium SAND, some to little silt, trace coarse sand, trace organics (roots), damp	FINE TO	PSOIL D MEDIUM AND	
=X=	18/30/36/37	18/24	S-2 (2'-4')		Bottom 7" : Loose, brown, fine to medium SAND, little to trace coarse sand, trace (+) silt, moist (wet in bottom 2"; trace rust staining throughout) Very dense, light grey brown, fine to medium SAND, little to trace coarse sand, trace silt, trace fine gravel, wet (little rust staining throughout)			1. , 2.
	14/27/28/37	15/24	S-3 (5'-7')		Very dense, grey, fine to medium SAND, little silt, little to trace coarse sand, trace (-) fine gravel, moist (trace rust staining throughout)	5.0 ר	▼ 1173.0 TILL	3. , 5.
	25/30/36/31	12/24	S-4 (8'-10')		Very dense, grey, fine to medium SAND, little silt, little coarse sand, trace (+) gravel, moist (trace rust staining throughout)			4.
	32/40/50 for 5"	14/17	S-5 (10'-11.4')		Very dense, grey, fine to medium SAND, little silt, little coarse sand, trace (+) gravel, moist			
	49/50 for 2"	8/8	S-6 (15'-15.7')		Very dense, grey, fine to medium SAND, little silt, little coarse sand, trace (+) gravel, moist	16.0	▼ 1162.0	6. , 7.
					End of Exploration at 16', upon dense soils			
<u></u>								
2.	Perched groundv	vater obse	erved at 2 fee	t.	surface, upon likely gravel and cobbles. , upon likely gravel and dense soils.			JECT NO. 10-03-01
4. 5.		ly grinding Irred betw	g at 8 feet, 9 f /een 5 and 15	eet, and be feet, due t	tween 14 and 14.5 feet, upon likely gravel and dense soils. o dense soils.	ľ		F BORING

Slow drilling occurred between 5 and 15 feet, due to dense soils.
 Auger significantly grinding at 16 feet, upon likely dense soils.
 Auger refusal at 16 feet, upon likely dense soils.

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING SL-1

	M.N. Spear Libra	ry, Leverett Ro	oad	FORE		LOCATION: Shutesbury, MA		PROJEC		0762-02-01	
RILLING CON		ina				DATE STARTED		DATE FI			
Seaboard Er RILLING EQUI	nvironmental Drill	IIIG		HELPER	Ronnie	06/23/2010 COMPLETION DEPTH	20.5'		3/2010 D SURFAC		
B-53 Truck N	Nounted Rig						20.0	DATUM	JUNFAL	Approx. 11	76 feet
YPE BIT	Hollow Stem	Auger	SIZE 8	TYPE OF C	ORE BARREL	No. Samples	6			UNDIST.	
		MEIOUT	<u> </u>					-	RST	COMPL.	4 HR
CASING HAMM. SAMPLER: 2" O		WEIGHT Rod A 1 5/8"	0.0		DROP	WATER LEVEL (FT.) BORING		I	-	1	4
	Safety	WEIGHT	U.U.	DROP			orth of proposed bu	uilding			
IAMMER		140 lbs.		30" (Wire Li	ine)	ENGINEER/GEOLOGIST	Sean Carr				
SAMPLES	DEPTH FT.	PENETR. RESIST.	AMPLE REC. IN.	S TYPE/ NO.	D	ESCRIPTION			DIL RIPTION	RE	MARKS
		BL/6 IN.	10/04	C 1	Tan (")) (any logge brown Cll T and fi	no CAND little fibrous ergenies	traca graval	тог			
	<u> </u>	1/1/2/3	12/24	S-1 (0'-2')	Top 6": Very loose, brown, SILT and fi moist (TOPSOIL) Bottom 6": Loose, light brown, SILT, so	-	-		SOIL SAND	-	
-		7/13/13/13	15/24	S-2 (2'-4')	Medium dense, white-brown, fine SAN	ID, some to little silt, little to trac	ce gravel, moist				
	5	14/21/20/19	18/24		Dense, light gray, fine SAND, little silt, fine gravel, moist	little to trace medium to coarse	sand, trace			1.	
-		- - -		(5-7)	nne gravel, moist						
	10 	23/38/39/ 50 for 3"	20/24	S-4 (10'-12')	Very dense, light gray, fine SAND, sor sand, trace (-) gravel, trace (-) cobbles		to coarse			2.	
	15	45/ 50 for 4"	6/12	S-5 (15'-15.5')	Very dense, light gray with rust mottlin gravel, trace (-) medium sand, moist	g, fine SAND, some to little silt,	trace (+)				
	20	59/	4/12	S-6	Very dense, light gray, fine SAND, little gravel, trace (-) cobbles, moist	e silt, trace (+) medium to coars	e sand, trace (-)		,		
		50 for 0"		(20'-21')	Auger Refusal at 20.5' End of Exploration						

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING SL-2

PROJECT :	M.N. Spear Librar	y, Leverett Ro	ad			LOCATION: Shutesbury, MA	F	PROJECT NO. :	0762-02-01	
DRILLING CON		,,		FOREMAN	Jeff	DATE STARTED		DATE FINISHED		
Seaboard E	nvironmental Drilli	ng			Ronnie	06/23/2010		06/23/2010		
DRILLING EQU B-53 Truck	IPMENT Mounted Rig					COMPLETION DEPTH 21'		GROUND SURFA	CE ELEV. Approx. 1176	feet
YPE BIT	Hollow Stem	Auger	SIZF &		ORE BARREL	No. Samples 6	f		UNDIST.	1001
			0			TIME		FIRST	COMPL.	3 HR
CASING HAMM		WEIGHT			DROP	WATER LEVEL (FT.)	-	15'		3
SAMPLER: 2" C).D. Split Spoon	Rod A 1 5/8"	0.D.			BORING				
	Safety	WEIGHT		DROP				roposed building		
IAMMER		140 lbs.		30" (Wire Li	ne)	ENGINEER/GEOLOGIST Sean Ca	arr			
SAMPLES	DEPTH FT.	PENETR. RESIST.	REC.	S TYPE/ NO.	וס	ESCRIPTION		SOIL DESCRIPTION	REM	ARKS
<u> </u>		BL/6 IN. 1/2/3/4	14/24	S-1	Top 7": Von loose brown SILT and fi	ine SAND, little fibrous organics, trace		TOPSOIL		
		1/2/3/4	14/24	(0'-2')	medium to coarse sand, trace (-) grave	-	moist	FINE SAND		
		11/21/29/33	16/24	S-2 (2'-4')	Dense, light gray with rust mottling, fin- gravel, trace medium to coarse sand,	e SAND, little silt, little to trace subangular moist				
	5	20/30/19/20	19/24	S-3	Dense. light grav with rust mottling. fin	e SAND, little silt, trace (+) gravel, trace (+)	,			
-X	 	20100110120	10/24		cobbles, trace (+) medium to coarse s		,		1.	
		22/15/30/30	12/24	S-4 (10'-12')	Dense, light gray, fine SAND, little silt, gravel, moist	trace medium to coarse sand, trace sub-ar	ngular			
	15	50 for 5"	2/6	S-5 (15'-15.5')	Very dense, dark brown, FRACTUREI	D ROCK, appears wet at 15'	Г	FRACTURED 6' ROCK FINE SAND	2.	
		25/ 50 for 1"	6/12	S-6 (20'-21')	Very dense, light gray, fine to medium	SAND, little silt, little to trace fine gravel, w	et	Ļ		
- - - -					Auger Refusal at 21' End of Exploration					
	g at approximately									

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING SL-3

	M.N. Spear Libra	ry, Leverett Ro				LOCATION: Shutesbury, MA		PROJECT NO. :		
RILLING CON				FOREMAN		DATE STARTED		DATE FINISHED)	
Seaboard E RILLING EQU	Invironmental Drill	ing		HELPER	Ronnie	06/23/2010 COMPLETION DEPTH	21.5'	06/23/2010 GROUND SURF		
	Mounted Rig						21.J	DATUM	ACE ELEV. Approx. 117	75 feet
YPE BIT	Hollow Stem	Auger	SIZE 8	TYPE OF C	CORE BARREL	No. Samples	7		UNDIST.	
ASING								FIRST	COMPL.	2 HF
	l. D.D. Split Spoon	WEIGHT Rod A 1 5/8"	0.0		DROP	WATER LEVEL (FT.) BORING		7'		3
	Safety	WEIGHT	U.U.	DROP			thwest corner of	proposed building	1	
AMMER	callely	140 lbs.		30" (Wire Li	ine)	ENGINEER/GEOLOGIST	Sean Carr	propossa sananig		
			AMPLE							
SAMPLES	DEPTH FT.	PENETR. RESIST. BL/6 IN.	REC. IN.	TYPE/ NO.	D	ESCRIPTION		SOIL DESCRIPTIOI		MARKS
		1/2/3/3	14/24	S-1 (0'-2')	Top 7": Very loose, brown, SILT and f medium to coarse sand, trace (-) grav Bottom 7": Loose, light brown, fine SA sand, moist	el, moist (TOPSOIL)		TOPSOIL FINE SAND		
		8/14/16/19	15/24	S-2 (2'-4')	Dense, light gray, fine SAND, little silt, sub-angular gravel, moist	trace (+) medium to coarse sand	l, trace (+)			
	5 	18/27/20/29	0/24	S-3 (5'-7')	No Recovery					
 		6/12/12/15	16/24	S-4 (7'-9')	Medium dense, light gray with rust mo coarse sand, trace (-) sub-angular gra		nedium to			
	10 	19/21/39/ 50 for 4"	14/24	S-5 (10'-12')	Very dense, light gray with rust mottlin medium to coarse sand, wet	g, fine SAND, little silt, little cobble	es, trace		1. 2.	
		29/33/ 50 for 5" 51/	15/18	(15'-16.5') S-7	Very dense, light gray, fine SAND, littl cobbles, trace (-) medium to coarse sa	and, wet			3.	
- - - -		50 for 4"			trace gravel, moist Auger Refusal at 21.5' End of Exploration					

ENVIRONMENTAL AND GEOTECHNICAL ENGINEERING CONSULTANTS

LOG OF BORING SL-4

	ar Library, Leverett Ro			LOCATION: Shutesbury, MA	PROJECT NO. :	0762-02-01
RILLING CONTRACTOR		FOREM		DATE STARTED	DATE FINISHED	
Seaboard Environmer	tal Drilling	HELPE	R Ronnie	06/23/2010 COMPLETION DEPTH 18	06/23/2010 GROUND SURFA	
B-53 Truck Mounted F	lig				DATUM	Approx. 1173 feet
YPE BIT Hollo	w Stem Auger	SIZE &TYPE C	F CORE BARREL	No. Samples 7		UNDIST.
	MEIOUT		DDOD		FIRST	COMPL. HF
CASING HAMM. SAMPLER: 2" O.D. Split S	WEIGHT poon Rod A 1 5/8"	OD	DROP	WATER LEVEL (FT.) BORING	3	3
SAMPLER Safety	WEIGHT	DROI	0		rthwest corner of proposed b	uilding
IAMMER	140 lbs.	30" (Wir	e Line)	ENGINEER/GEOLOGIST Sean		
SAMPLES DEP FT	TH PENETR.	AMPLES REC. TYPE IN. NO.	1	DESCRIPTION	SOIL DESCRIPTION	REMARKS
	BL/6 IN.					
	1/2/2/3	15/24 S-1 (0'-2'	medium to coarse sand, trace (-) gra	d fine SAND, little fibrous organics, trace avel, moist (TOPSOIL) SAND, some silt, trace medium to coarse s	and,	-
	7/12/16/16	16/24 S-2 (2'-4'		D, little silt, trace (+) medium to coarse san	d,	
	5 11/ 50 for 2"	0/12 S-3 (5'-6'	No Recovery			1.
	49/27/19/19	8/24 S-4 (7'-9'		AND, little silt, trace (-) coarse sand, trace (-)	
	1026/21/24/40	20/24 S-5 (10'-12		ilt, little to trace sub-angular gravel, trace m	nedium	2.
	 	10/18 S-6		ittle silt, little to trace gravel, trace (+) mediu	um to	3.
	50 for 5"		5') coarse sand, wet		Ļ	
	20		No Recovery 5') Auger Refusal at 18' End of Exploration			
-	 25					
emarks: 1. Drill grinding/bouncing 2. Drill cleared 1' of blow						

Remarks:

LOG OF TEST PIT TP-1

PROJECT	Proposed Shutesbury Library			CONTRACTOR	Shutesbury DPW
JOB NO.	2060-03-01	DATE	10/03/2023	OPERATOR	Dave
LOCATION	Shutesbury, MA.	WEATHER	Sunny, 50°F	BACKHOE	CAT 420XE
TEST PIT		START TIME		CAPACITY (cy)	1/4
	System in Southeastern Area of Site	FINISH TIME	08:45	GS ELEV. (ft)	1179.0
LOCATION	System in Southeastern Area of Sile	OTO STAFF	Shannon Raymond	FINAL DEPTH (ft)	9.5

DEPTH (ft)	← → SOIL DESCRIPTION	EXCAV. EFFORT		DERS/ BLES CLASS	SAMPLE NO.	FIELD TEST DATA	REMARKS
	Forest Duff Dark brown, fine SAND, some to little silt, little medium sand, trace coarse sand, some organics (roots, leaves), damp (TOPSOIL)	E	3	С			
2'	Orange brown, fine to medium SAND, little silt, little coarse sand, trace (-) gravel, trace organics (roots), moist (some rust staining throughout)	E					
	Light brown, fine to medium SAND, little to trace coarse sand, trace (-) silt, trace gravel, trace organics (roots), moist (little rust staining throughout)	М	5	С			1. 2.
3'	Light brown grey, fine to medium SAND, little to trace coarse sand,	м	10	С	S-1		
4'	little to trace gravel, trace (+) silt, moist (trace rust staining throughout)		4	S	(5'-8')		
5'		D					
6'							
7'							
8'	Grey, fine to medium SAND, little silt, little to trace coarse sand, little to trace gravel, moist (trace rust staining throughout)	D	15 3	CS			
9'			0	0			
10'	End of Exploration at 9.5'	I					
11'							
		T					

TEST PIT PLAN	EXCAVATION EFFORT	BOULDER/COBBLE CLASS		PROPO	ORTIONS USED	GROUNDWATE	R CONDITIONS	
3' N	EasyE ModerateM DifficultD Very DifficultV	<u>Type</u> Cobble Small Medium Large	<u>Size</u> 3" - 6" 6" - 18" 18" - 36" 36" and Larger	Abbr. C S M L	Term and some little trace	Relative Quantity 35% - 50% 20% - 35% 10% - 20% 10% or less	GW Encountered?: GW Depth (ft): GW Elevation (ft): Elapsed Time (min):	N/A N/A

 1. Perched water observed at between 2 and 2.5 feet below ground surface.
 PROJECT NO.

 2. Test pit walls began caving in at 2.5 feet.
 2060-03-01

 LOG OF TEST PIT

 TP-1

LOG OF TEST PIT TP-2

PROJECT	Proposed Shutesbury Library			CONTRACTOR	Shutesbury DPW
JOB NO.	2060-03-01	DATE	10/03/2023	OPERATOR	Dave
LOCATION	Shutesbury, MA.	WEATHER	Sunny, 60°F	BACKHOE	CAT 420XE
TEST PIT		START TIME		CAPACITY (cy)	1/4
	System in Southeastern Area of Site	FINISH TIME	10:00	GS ELEV. (ft)	1178.0
LOCATION	System in Southeastern Area of Site	OTO STAFF	Shannon Raymond	FINAL DEPTH (ft)	11.0

DEPTH	$\leftarrow \qquad \rightarrow \qquad $	EXCAV.	BOUL	DERS/ BLES	SAMPLE	FIELD TEST	REMARKS
(ft)	SOIL DESCRIPTION	EFFORT	COUNT	CLASS	NO.	DATA	
1'	Forest Duff Dark brown, fine to medium SAND, some to little silt, trace coarse sand, little organics (roots, leaves), moist (TOPSOIL) Orange brown, fine to medium SAND, little silt, little to trace coarse sand, trace gravel, trace organics (roots), moist (some rust staining throughout)	E M	3	С			
2'	Light grey, fine to medium SAND, little coarse sand, little to trace silt, trace (+) gravel, trace organics (roots to 2 feet), moist (trace rust staining throughout)						1.
3' 4'	Grey, fine to medium SAND, little coarse sand, little silt, trace (+) gravel, moist (trace rust staining throughout)						
5'		D	7 2 1	C S M			
6'							
7'		D	12 3	CS			
8'			1	M			
9' 							
10'							
11'	End of Exploration at 11'						

TEST PIT PLAN	EXCAVATION EFFORT	BOULDER/COBBLE CLASS			PROPO	ORTIONS USED	GROUNDWATER CONDITIONS		
3' 9 '	EasyE ModerateM DifficultD Very DifficultV	<u>Type</u> Cobble Small Medium Large	<u>Size</u> 3" - 6" 6" - 18" 18" - 36" 36" and Larger	Abbr. C S M L	<u>Term</u> and some little trace	Relative Quantity 35% - 50% 20% - 35% 10% - 20% 10% or less	GW Encountered?: N/E GW Depth (ft): N/A GW Elevation (ft): N/A Elapsed Time (min): N/A		

1. Perched water observed at ground surface, and at between 2 and 2.5 feet below ground surface.	PROJECT NO.
	2060-03-01
	LOG OF TEST PIT
	<u>TP-2</u>

LOG OF TEST PIT TP-3

PROJECT	Proposed Shutesbury Library			CONTRACTOR	Shutesbury DPW
JOB NO.	2060-03-01	DATE	10/03/2023	OPERATOR	Dave
LOCATION	Shutesbury, MA.	WEATHER	Sunny, 60°F	BACKHOE	CAT 420XE
TEST PIT	Southeast Portion of Prop. Stormwater	START TIME	10:30	CAPACITY (cy)	1/4
	System in North Area of Site	FINISH TIME		GS ELEV. (ft)	1176.0
LOCATION	System in North Area of Sile	OTO STAFF	Shannon Raymond	FINAL DEPTH (ft)	9.5

DEPTH (ft)	← N SOIL	EXCAV. EFFORT	BOUL COBI	BLES	SAMPLE NO.	FIELD TEST	REMARKS	
(11)			COUNT		NO.	DATA		
1' 2'	Dark brown, fine to medium SAND, trace (-) fine gravel, little organics (Light brown, fine to medium SAND trace silt, trace organics (roots), da Dark brown to very dark brown, fine to medium SAND,	E	5 2 20 3	С				
2 3'	little silt, little coarse sand, trace (+) gravel, little debris (brick, concrete, ash), damp	silt, little coarse sand, trace gravel, damp Orange brown, fine to medium SAND, little silt, little to trace coarse sand, trace gravel, moist (some rust staining throughout)		2	5 M			
4' 5'		Grey, fine to medium SAND, little coarse sand, little silt, little to trace gravel, moist (trace rust staining throughout)	D	5	С			1.
6'	Find of Fundamention at 0.51		D	7 2	C S			
7' 8'	End of Exploration at 6.5'							
9'								
10'	End of Exploration at 9.5'						<u> </u>	
11'	End of Exploration at 11'							

TEST PIT PLAN	EXCAVATION EFFORT	BOULDER	R/COBBLE CLAS	s	PROPO	ORTIONS USED	GROUNDWATER	CONDITIONS
	EasyE ModerateM	<u>Type</u> Cobble	<u>Size</u> 3" - 6"	Abbr. C	<u>Term</u> and	Relative Quantity 35% - 50%	GW Encountered?:	N/E
^{6'} ▲ • • • •	DifficultD Very DifficultV	Small Medium Large	6" - 18" 18" - 36" 36" and Larger	S M L	some little trace	20% - 35% 10% - 20% 10% or less	GW Depth (ft): GW Elevation (ft): Elapsed Time (min):	N/A

 Remarks:
 1. Perched water observed in north end of test pit at 4 feet below ground surface.
 PROJECT NO.

 2060-03-01
 2060-03-01

 LOG OF TEST PIT
 TP-3

LOG OF TEST PIT TP-4

PROJECT	Proposed Shutesbury Library			CONTRACTOR	Shutesbury DPW
JOB NO.	2060-03-01	DATE	10/03/2023	OPERATOR	Dave
LOCATION	Shutesbury, MA.	WEATHER	Sunny, 70°F	BACKHOE	CAT 420XE
TEST PIT		START TIME		CAPACITY (cy)	1/4
	System in North Area of Site	FINISH TIME	12:10	GS ELEV. (ft)	1171.0
LOCATION	System in North Area of Site	OTO STAFF	Shannon Raymond	FINAL DEPTH (ft)	9.5

DEPTH (ft)	← W	SOIL DESCRI	E —	EXCAV. EFFORT	BOUL COBI COUNT	BLES	SAMPLE NO.	FIELD TEST DATA	REMARKS	
1' 2'	Dark brown, fine SANE some to little silt, little medium sand, little coarse sand, trace (-) fine gravel, some organics (roots),	little med some or Brown, f little to tr	wn, fine SAND, some to little silt, lium sand, little coarse sand, ganics (roots), moist ne to medium SAND, little silt, ace coarse sand, trace (-) gravel, janics (roots), damp		E	5	С			
3'			e coarse sand, little to trace silt, noist (trace rust staining in top 3')		М	10 2	C S			1.
4' 5'	Light grey, fine to medi trace (+) gravel, damp	ium SAND, little coars	e sand, little to trace silt,		D	5	С			
5 6'					D			S-1 (5'-9')		
7' <u> </u>	- - - -									
8' <u> </u>										
9' 10'	End of Exploration at 9									
11'	TEST PIT PLAN	EXCAVATION EFFORT	BOULDER/COBBLE CLASS			ORTIONS				

TEST PIT PLAN	EXCAVATION EFFORT	BOULDER	R/COBBLE CLAS	SS	PROP	ORTIONS USED	GROUNDWATE	R CONDITIONS
3' 9 '	EasyE ModerateM DifficultD Very DifficultV	<u>Type</u> Cobble Small Medium Large	<u>Size</u> 3" - 6" 6" - 18" 18" - 36" 36" and Larger	Abbr. C S M L	<u>Term</u> and some little trace	Relative Quantity 35% - 50% 20% - 35% 10% - 20% 10% or less	GW Encountered?: GW Depth (ft): GW Elevation (ft): Elapsed Time (min):	N/A N/A

Remarks:

1. Perched water observed at 3 feet below ground surface.

PROJECT NO.

2060-03-01

LOG OF TEST PIT

<u>TP-4</u>

Photograph 1 : TP-1

Photograph 3 : TP-1

Photograph 2 : TP-1

Photograph 4 : TP-1

Photograph 5 : TP-2

Photograph 7 : TP-2

Photograph 6 : TP-2

Photograph 8 : TP-2

Photograph 9 : TP-2

Photograph 11 : TP-3

Photograph 10 : TP-3

Photograph 12 : TP-3

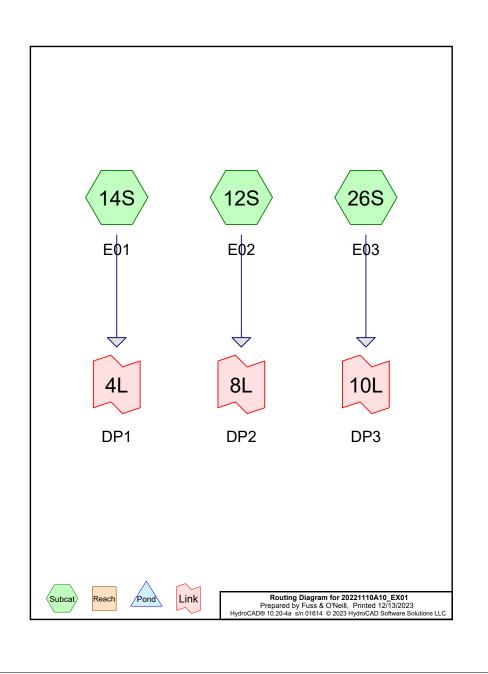
Photograph 13 : TP-3

Photograph 15 : TP-3

Photograph 14 : TP-3

Photograph 16 : TP-3

Photograph 17 : TP-4



Photograph 18 : TP-4

Appendix E

Pre-Development Hydrologic Analysis

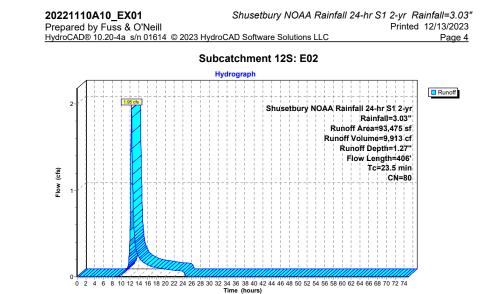
20221110A10_EX01 Prepared by Fuss & O'Neill HydroCAD® 10.20-4a s/n 01614 © 2023 F	Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03" Printed 12/13/2023 HydroCAD Software Solutions LLC Page 2
Runoff by SCS	0.00-75.00 hrs, dt=0.05 hrs, 1501 points 5 TR-20 method, UH=SCS, Weighted-CN J+Trans method - Pond routing by Stor-Ind method
Subcatchment12S: E02	Runoff Area=93,475 sf 0.63% Impervious Runoff Depth=1.27" Flow Length=406' Tc=23.5 min CN=80 Runoff=1.95 cfs 9,913 cf
Subcatchment14S: E01	Runoff Area=60,711 sf 0.00% Impervious Runoff Depth=1.27" Flow Length=274' Tc=33.0 min CN=80 Runoff=1.05 cfs 6,438 cf
Subcatchment26S: E03	Runoff Area=14,271 sf 0.00% Impervious Runoff Depth=1.54" Flow Length=231' Tc=37.0 min CN=84 Runoff=0.28 cfs 1,833 cf
Link 4L: DP1	Inflow=1.05 cfs 6,438 cf Primary=1.05 cfs 6,438 cf
Link 8L: DP2	Inflow=1.95 cfs 9,913 cf Primary=1.95 cfs 9,913 cf
Link 10L: DP3	Inflow=0.28 cfs 1,833 cf Primary=0.28 cfs 1,833 cf

 Total Runoff Area = 168,457 sf
 Runoff Volume = 18,183 cf
 Average Runoff Depth = 1.30"

 99.65% Pervious = 167,867 sf
 0.35% Impervious = 590 sf

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S	S1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 3

Summary for Subcatchment 12S: E02


Runoff = 1.95 cfs @ 12.28 hrs, Volume= Routed to Link 8L : DP2

ume= 9,913 cf, Depth= 1.27"

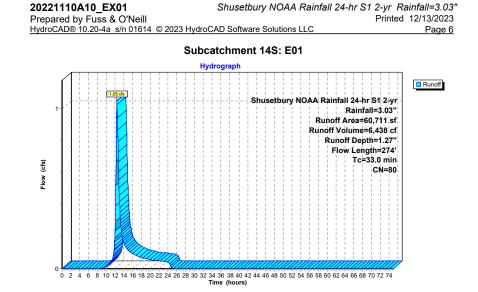
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

	A	rea (sf)	CN I	Description							
		3,802	49 5	50-75% Gra	ass cover, I	Fair, HSG A					
		49,575 84 50-75% Grass cover, Fair, HSG D									
	590 98 Paved parking, HSG D										
1,194 36 Woods, Fair, HSG A											
		38,314	79 \	Noods, Fai	r, HSG D						
		93,475		Neighted A							
		92,885	-		vious Area	-					
		590	(0.63% Impe	ervious Are	а					
	-		<u>.</u>		.						
	Tc	Length	Slope		Capacity	Description					
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
	13.5	54	0.0200	0.07		Sheet Flow,					
		40				Woods: Light underbrush n= 0.400 P2= 3.03"					
	4.8	40	0.0200	0.14		Sheet Flow,					
	0.7	40	0 0000	0.00		Grass: Short n= 0.150 P2= 3.03"					
	0.7	43	0.0200	0.99		Shallow Concentrated Flow,					
	4 5	260	0 0 4 0 0	1 00		Short Grass Pasture Kv= 7.0 fps					
	4.5	269	0.0400	1.00		Shallow Concentrated Flow, Woodland Kv= 5.0 fps					
-	00.5	400	T ()								

23.5 406 Total

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S	S1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HydroCAD Software Solutions LLC	Page 5

Summary for Subcatchment 14S: E01


Runoff = 1.05 cfs @ 12.42 hrs, Volume= Routed to Link 4L : DP1

e= 6,438 cf, Depth= 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

_	A	rea (sf)	CN	Description							
		0	49	49 50-75% Grass cover, Fair, HSG A							
		13,580	84	50-75% Gra	ass cover, I	Fair, HSG D					
		0		Paved park)					
		0	36	Woods, Fai	ir, HSG A						
_		47,131	79	Woods, Fai	ir, HSG D						
		60,711	80	Weighted A	verage						
		60,711		100.00% P	ervious Are	a					
	Tc	Length	Slope			Description					
_	(min)	(feet)	(ft/ft)) (ft/sec)	(cfs)						
	29.1	100	0.0100	0.06		Sheet Flow, Woods					
						Woods: Light underbrush n= 0.400 P2= 3.03"					
	1.4	43	0.0100	0.50		Shallow Concentrated Flow, Woods					
		40	0.0050			Woodland Kv= 5.0 fps					
	0.3	19	0.0250) 1.11		Shallow Concentrated Flow, Grass					
		07	0.0050	0.70		Short Grass Pasture Kv= 7.0 fps					
	1.4	67	0.0250	0.79		Shallow Concentrated Flow, Woods					
	0.8	45	0.0170	0.91		Woodland Kv= 5.0 fps					
	0.8	45	0.0170	0.91		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps					
-	00.0	074	T ()			Short Glass Fasilie IN- 1.0 105					

33.0 274 Total

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 2	2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill	F	Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 20	023 HvdroCAD Software Solutions LLC	Page 7

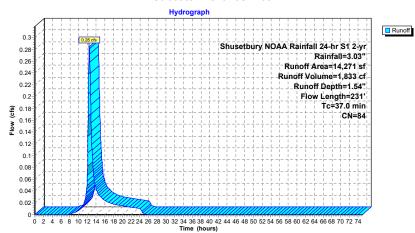
Summary for Subcatchment 26S: E03

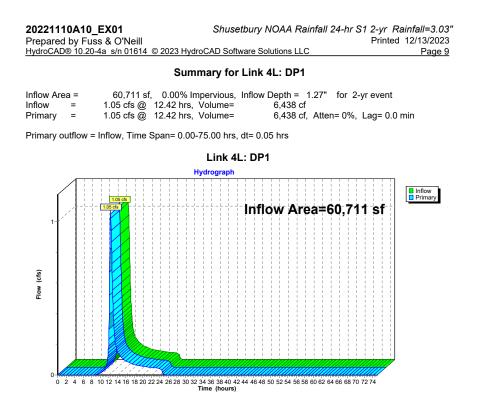
Runoff = 0.28 cfs @ 12.46 hrs, Volume= 1 Routed to Link 10L : DP3

hrs, Volume= 1,833 cf, Depth= 1.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

Α	vrea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, I	Fair, HSG A
	13,269	84	50-75% Gra	ass cover, I	Fair, HSG D
	0	98	Paved park	ing, HSG D)
	0	36	Woods, Fai	r, HSG A	
	1,002	79	Woods, Fai	r, HSG D	
	14,271	84	Weighted A	verage	
	14,271		100.00% P	ervious Are	a
_				. .	
Tc		Slope			Description
(min)	(feet)	(ft/ft)		(cfs)	
21.9	70	0.0014	0.05		Sheet Flow, Grass
					Grass: Short n= 0.150 P2= 3.03"
12.8	30	0.0070	0.04		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.03"
0.7	47	0.0255	1.12		Shallow Concentrated Flow, Grass
		0.0445			Short Grass Pasture Kv= 7.0 fps
1.4	69	0.0145	0.84		Shallow Concentrated Flow, Grass
0.0	15	0 0000	1.00		Short Grass Pasture Kv= 7.0 fps
0.2	15	0.0333	1.28		Shallow Concentrated Flow, Grass
07.0	004	T - 4 - 1			Short Grass Pasture Kv= 7.0 fps

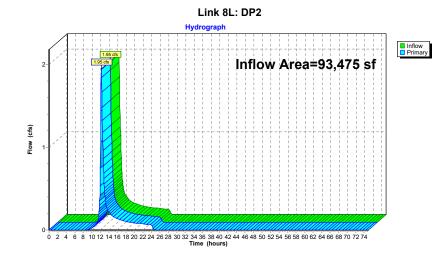

37.0 231 Total

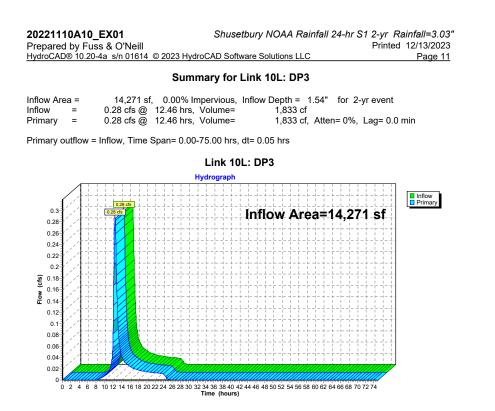

 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 8

 Subcatchment 26S: E03
 Subcatchment 26S: E03




20221110A10_EX01	Shusetbury NOAA Rainfall 24	-hr S1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 H	ydroCAD Software Solutions LLC	Page 10

Summary for Link 8L: DP2

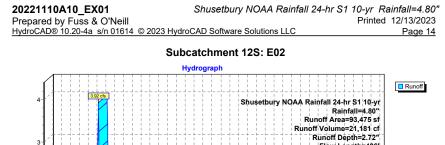
Inflow Area =	93,475 sf, 0.63% Impervious,	Inflow Depth = 1.27"	for 2-yr event
Inflow =	1.95 cfs @ 12.28 hrs, Volume=	9,913 cf	-
Primary =	1.95 cfs @ 12.28 hrs, Volume=	9,913 cf, Atter	n= 0%, Lag= 0.0 min

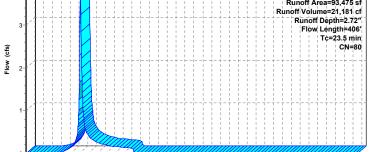
Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs

Prepared by Fuss & O'Neill	P	rinted 12/13/2023
HydroCAD® 10.20-4a_s/n 01614_© 202	3 HydroCAD Software Solutions LLC	Page 12
Runoff by S	n=0.00-75.00 hrs, dt=0.05 hrs, 1501 points ICS TR-20 method, UH=SCS, Weighted-CN -Ind+Trans method ,Pond routing by Stor-Ind met	hod
Subcatchment12S: E02	Runoff Area=93,475 sf 0.63% Impervious F Flow Length=406' Tc=23.5 min CN=80 Runoff=	
Subcatchment14S: E01	Runoff Area=60,711 sf 0.00% Impervious F Flow Length=274' Tc=33.0 min CN=80 Runoff=	
Subcatchment26S: E03	Runoff Area=14,271 sf 0.00% Impervious F Flow Length=231' Tc=37.0 min CN=84 Runof	
Link 4L: DP1		=2.11 cfs 13,757 cf =2.11 cfs 13,757 cf
Link 8L: DP2		=3.92 cfs 21,181 cf =3.92 cfs 21,181 cf
Link 10L: DP3		v=0.53 cfs 3,672 cf y=0.53 cfs 3,672 cf

Total Runoff Area = 168,457 sf Runoff Volume = 38,610 cf Average Runoff Depth = 2.75" 99.65% Pervious = 167,867 sf 0.35% Impervious = 590 sf

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1	10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HvdroCAD Software Solutions LLC	Page 13


Summary for Subcatchment 12S: E02


Runoff = 3.92 cfs @ 12.27 hrs, Volume= 21,181 cf, Depth= 2.72" Routed to Link 8L : DP2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

	A	rea (sf)	CN [Description		
-	3.802 49 50-75% Grass cover, Fair, HSG A					Fair, HSG A
		49,575	84 5	50-75% Gra	ass cover, I	Fair, HSG D
		590	98 F	Paved park	ing, HSG D)
		1,194	36 \	Noods, Fai	r, HSG A	
-		38,314	79 \	Noods, Fai	r, HSG D	
		93,475		Neighted A		
		92,885			rvious Area	
		590	(0.63% Impe	ervious Are	a
	Тс	Longth	Slone	Volocity	Conocity	Description
	(min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
-	13.5	54	0.0200		(010)	Sheet Flow,
	15.5	54	0.0200	0.07		Woods: Light underbrush n= 0.400 P2= 3.03"
	4.8	40	0.0200	0.14		Sheet Flow.
				0		Grass: Short n= 0.150 P2= 3.03"
	0.7	43	0.0200	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	4.5	269	0.0400	1.00		Shallow Concentrated Flow,
-						Woodland Kv= 5.0 fps
	00 5	400	T - 4 - 1			

23.5 406 Total

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S	S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 15

Summary for Subcatchment 14S: E01

Runoff = 2.11 cfs @ 12.40 hrs, Volume= 13,757 cf, Depth= 2.72" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

A	rea (sf)	CN	Description		
0 49 50-75% Grass cover, F					Fair, HSG A
	13,580	84	50-75% Gra	ass cover, l	Fair, HSG D
	0		Paved park)
	0		Woods, Fai		
	47,131	79	Woods, Fai	r, HSG D	
	60,711		Weighted A		
	60,711		100.00% P	ervious Are	a
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)		(cfs)	Description
29.1	100	0.0100	()	(0.0)	Sheet Flow, Woods
20.1	100	0.0100	0.00		Woods: Light underbrush n= 0.400 P2= 3.03"
1.4	43	0.0100	0.50		Shallow Concentrated Flow, Woods
					Woodland Kv= 5.0 fps
0.3	19	0.0250	1.11		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps
1.4	67	0.0250	0.79		Shallow Concentrated Flow, Woods
~ ~	45	0.0470			Woodland Kv= 5.0 fps
0.8	45	0.0170	0.91		Shallow Concentrated Flow, Grass
					Short Grass Pasture Kv= 7.0 fps

33.0 274 Total Prepared by Fuss & O'Neill HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC Printed 12/13/2023 Page 16 Subcatchment 14S: E01 Hydrograph Runoff Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80" Runoff Area=60,711 sf Runoff Volume=13,757 cf Runoff Depth=2.72" Flow Length=274 T¢=33.0 min (cfs) CN=80 Flow

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

20221110A10 EX01

Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 10	-yr Rainfall=4.80"
Prepared by Fuss & O'Neill	F	Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HvdroCAD Software Solutions LLC	Page 17

Summary for Subcatchment 26S: E03

3,672 cf, Depth= 3.09"

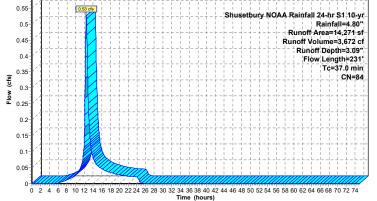
Runoff = 0.53 cfs @ 12.45 hrs, Volume= Routed to Link 10L : DP3

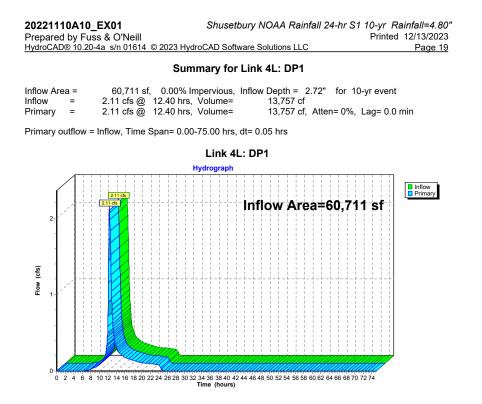
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

_	A	rea (sf)	CN	Description		
		0	49	50-75% Gr	ass cover, I	Fair, HSG A
		13,269	84	50-75% Gra	ass cover, I	Fair, HSG D
		0	98	Paved park	ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
_		1,002	79	Woods, Fa	r, HSG D	
		14,271	84	Weighted A	verage	
		14,271		100.00% P	ervious Are	a
	_		<u>.</u>		.	– 1.0
	Tc	Length	Slope			Description
-	(min)	(feet)	(ft/ft		(cfs)	
	21.9	70	0.0014	4 0.05		Sheet Flow, Grass
	40.0		0.007/			Grass: Short n= 0.150 P2= 3.03"
	12.8	30	0.0070	0.04		Sheet Flow, Woods
	0.7	47	0.0255	5 1.12		Woods: Light underbrush n= 0.400 P2= 3.03" Shallow Concentrated Flow, Grass
	0.7	47	0.0250) I.IZ		Short Grass Pasture Kv= 7.0 fps
	1.4	69	0.0145	5 0.84		Shallow Concentrated Flow, Grass
	1.4	09	0.014	0.04		Short Grass Pasture Kv= 7.0 fps
	0.2	15	0.0333	3 1.28		Shallow Concentrated Flow, Grass
	0.2	10	0.0000	1.20		Short Grass Pasture Kv= 7.0 fps
-	07.0	004	T · ·			

37.0 231 Total

 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

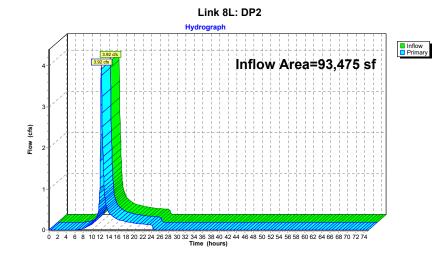

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

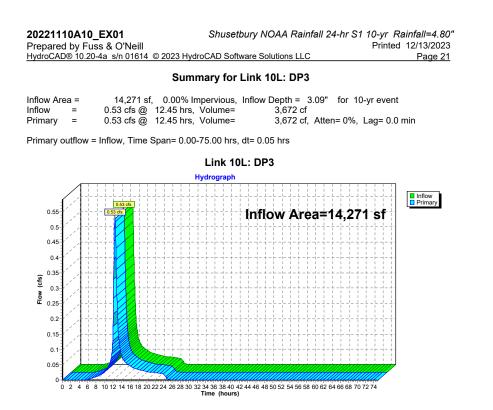

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 18

 Subcatchment 26S: E03

 Hydrograph

 Image: Subcatchment 26S: E03




20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill	Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 Hydro	CAD Software Solutions LLC Page 20

Summary for Link 8L: DP2

Inflow Area =		93,475 sf,	0.63% Impervious,	Inflow Depth = 2.72"	for 10-yr event
Inflow	=	3.92 cfs @	12.27 hrs, Volume=	21,181 cf	•
Primary	=	3.92 cfs @	12.27 hrs, Volume=	21,181 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs

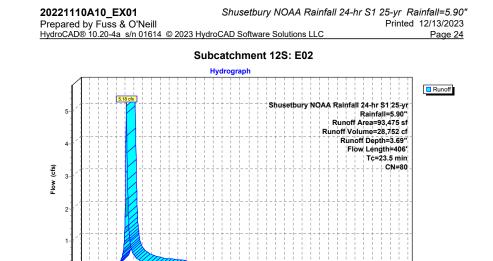
ZUZZIIIUAIU_LAUI				
Prepared by Fuss & O'Neill	Printed 12/13/2023			
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC Page 22			
	0.00-75.00 hrs, dt=0.05 hrs, 1501 points S TR-20 method, UH=SCS, Weighted-CN			
	id+Trans method - Pond routing by Stor-Ind method			
Subcatchment12S: E02	Runoff Area=93,475 sf 0.63% Impervious Runoff Depth=3.69" Flow Length=406' Tc=23.5 min CN=80 Runoff=5.18 cfs 28,752 cf			
Subcatchment14S: E01	Runoff Area=60,711 sf 0.00% Impervious Runoff Depth=3.69" Flow Length=274' Tc=33.0 min CN=80 Runoff=2.79 cfs 18,674 cf			
Subcatchment26S: E03	Runoff Area=14,271 sf 0.00% Impervious Runoff Depth=4.10" Flow Length=231' Tc=37.0 min CN=84 Runoff=0.68 cfs 4,879 cf			
Link 4L: DP1	Inflow=2.79 cfs 18,674 cf Primary=2.79 cfs 18,674 cf			
Link 8L: DP2	Inflow=5.18 cfs 28,752 cf Primary=5.18 cfs 28,752 cf			
Link 10L: DP3	Inflow=0.68 cfs 4,879 cf Primary=0.68 cfs 4,879 cf			

20221110A10 EX01

Total Runoff Area = 168,457 sf Runoff Volume = 52,306 cf Average Runoff Depth = 3.73" 99.65% Pervious = 167,867 sf 0.35% Impervious = 590 sf

Shusetbury NOAA Rainfall 24-hr S1 25-vr Rainfall=5.90"

20221110A10_EX01	Shusetbury NOAA Rainfall 24-h	r S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 23


Summary for Subcatchment 12S: E02

Runoff = 5.18 cfs @ 12.27 hrs, Volume= 28,752 cf, Depth= 3.69" Routed to Link 8L : DP2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

	A	rea (sf)	CN [Description		
		3,802	49 5	50-75% Gra	ass cover, l	Fair, HSG A
		49,575	84 5	50-75% Gra	ass cover, I	Fair, HSG D
		590	98 F	Paved park	ing, HSG D)
		1,194	36 \	Noods, Fai	r, HSG A	
		38,314	79 \	Noods, Fai	r, HSG D	
		93,475		Neighted A		
		92,885			vious Area	
		590	().63% Impe	ervious Are	а
	т.	1	01	Mala - 14 -	0	Description
	Tc	Length	Slope			Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	13.5	54	0.0200	0.07		Sheet Flow,
		40				Woods: Light underbrush n= 0.400 P2= 3.03"
	4.8	40	0.0200	0.14		Sheet Flow,
	0.7	40	0 0000	0.00		Grass: Short n= 0.150 P2= 3.03"
	0.7	43	0.0200	0.99		Shallow Concentrated Flow,
	4.5	269	0.0400	1.00		Short Grass Pasture Kv= 7.0 fps
	4.5	269	0.0400	1.00		Shallow Concentrated Flow, Woodland Kv= 5.0 fps
-	00.5	400	T ()			

23.5 406 Total

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

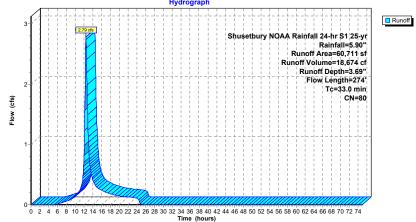
20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5	.90"
Prepared by Fuss & O'Neill	Printed 12/13/20	023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC Page	25

Summary for Subcatchment 14S: E01

Runoff = 2.79 cfs @ 12.40 hrs, Volume= 18,674 cf, Depth= 3.69" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

_	A	rea (sf)	CN	Description		
		0	49	50-75% Gra	ass cover, I	Fair, HSG A
		13,580	84	50-75% Gra	ass cover, I	Fair, HSG D
		0	98	Paved park	ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
_		47,131	79	Woods, Fai	r, HSG D	
		60,711	80	Weighted A	verage	
		60,711		100.00% P	ervious Are	a
	Tc	Length	Slope		Capacity	Description
-	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	29.1	100	0.0100	0.06		Sheet Flow, Woods
						Woods: Light underbrush n= 0.400 P2= 3.03"
	1.4	43	0.0100	0.50		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	0.3	19	0.0250	1.11		Shallow Concentrated Flow, Grass
						Short Grass Pasture Kv= 7.0 fps
	1.4	67	0.0250	0.79		Shallow Concentrated Flow, Woods
						Woodland Kv= 5.0 fps
	0.8	45	0.0170	0.91		Shallow Concentrated Flow, Grass
-						Short Grass Pasture Kv= 7.0 fps


33.0 274 Total

 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 26

 Subcatchment 14S: E01
 Hydrograph

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 25-yr F	Rainfall=5.90"
Prepared by Fuss & O'Neill	Printed	12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HvdroCAD Software Solutions LLC	Page 27

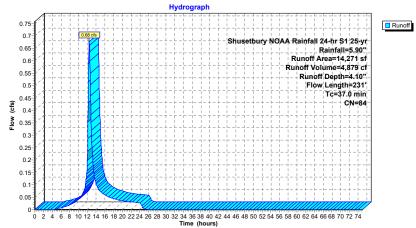
Summary for Subcatchment 26S: E03

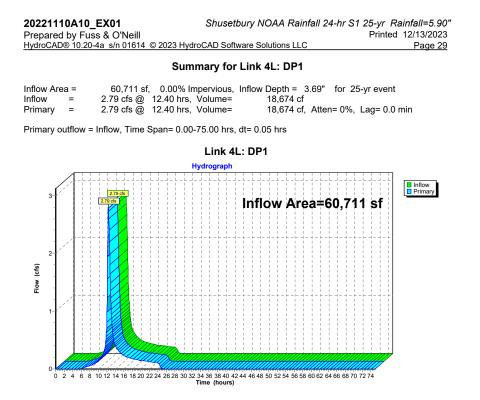
Runoff = 0.68 cfs @ 12.44 hrs, Volume= Routed to Link 10L : DP3

olume= 4,879 cf, Depth= 4.10"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, I	Fair, HSG A
	13,269	84	50-75% Gra	ass cover, I	Fair, HSG D
	0	98	Paved park	ing, HSG D)
	0	36	Woods, Fai	r, HSG A	
	1,002	79	Woods, Fai	r, HSG D	
	14,271	84	Weighted A	verage	
	14,271		100.00% P	ervious Are	a
Tc	Length	Slope			Description
(min)	(feet)	(ft/ft)		(cfs)	
21.9	70	0.0014	0.05		Sheet Flow, Grass
					Grass: Short n= 0.150 P2= 3.03"
12.8	30	0.0070	0.04		Sheet Flow, Woods
					Woods: Light underbrush n= 0.400 P2= 3.03"
0.7	47	0.0255	1.12		Shallow Concentrated Flow, Grass
		0.0445			Short Grass Pasture Kv= 7.0 fps
1.4	69	0.0145	0.84		Shallow Concentrated Flow, Grass
0.0	45	0 0000	1.00		Short Grass Pasture Kv= 7.0 fps
0.2	15	0.0333	1.28		Shallow Concentrated Flow, Grass
07.0	004	T - 4 - 1			Short Grass Pasture Kv= 7.0 fps

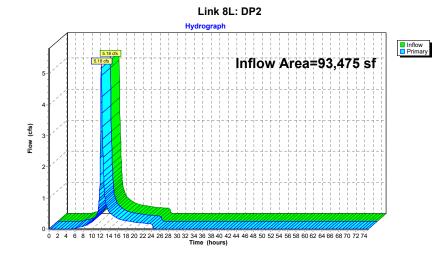

37.0 231 Total

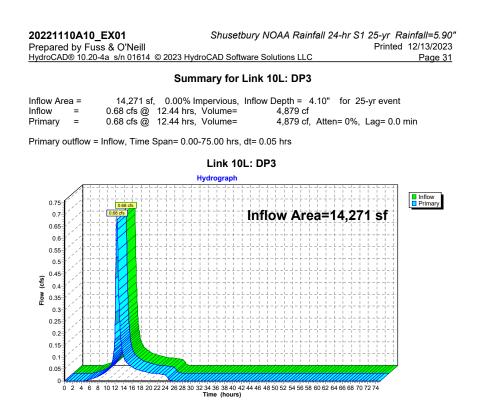

 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 28

 Subcatchment 26S: E03
 Subcatchment 26S: E03




20221110A10_EX01	Shusetbury NOAA Rainfall 24-h	r S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 H	lydroCAD Software Solutions LLC	Page 30

Summary for Link 8L: DP2

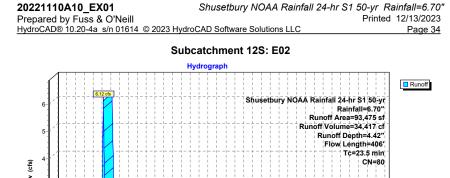
Inflow Area =	93,475 sf,	0.63% Impervious,	Inflow Depth = 3.69"	for 25-yr event
Inflow =	5.18 cfs @ 1	12.27 hrs, Volume=	28,752 cf	-
Primary =	5.18 cfs @ 1	12.27 hrs, Volume=	28,752 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs

20221110A10_EX01 Prepared by Fuss & O'Neill	Shusetbury NOAA Rainfall 24-hr S	1 50-yr Rainfall=6.70" Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 32
Runoff by SC	0.00-75.00 hrs, dt=0.05 hrs, 1501 points S TR-20 method, UH=SCS, Weighted-CN nd+Trans method - Pond routing by Stor-Ind	-
Subcatchment12S: E02	Runoff Area=93,475 sf 0.63% Impervio Flow Length=406' Tc=23.5 min CN=80 Ru	
Subcatchment14S: E01	Runoff Area=60,711 sf 0.00% Impervio Flow Length=274' Tc=33.0 min CN=80 Ru	
Subcatchment26S: E03	Runoff Area=14,271 sf 0.00% Impervio Flow Length=231' Tc=37.0 min CN=84 R	
Link 4L: DP1		nflow=3.29 cfs 22,354 cf mary=3.29 cfs 22,354 cf
Link 8L: DP2		nflow=6.12 cfs 34,417 cf mary=6.12 cfs 34,417 cf
Link 10L: DP3		Inflow=0.79 cfs 5,774 cf rimary=0.79 cfs 5,774 cf

Total Runoff Area = 168,457 sf Runoff Volume = 62,546 cf Average Runoff Depth = 4.46" 99.65% Pervious = 167,867 sf 0.35% Impervious = 590 sf

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1	50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HvdroCAD Software Solutions LLC	Page 33


Summary for Subcatchment 12S: E02

unoff = 6.12 cfs @ 12.27 hrs, Volume= Routed to Link 8L : DP2 Runoff = 34,417 cf, Depth= 4.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

3,802 49 50-75% Grass cover, Fair, HSG A 49,575 84 50-75% Grass cover, Fair, HSG D 590 98 Paved parking, HSG D 1,194 36 Woods, Fair, HSG D 93,475 80 Weighted Average 92,885 99.37% Pervious Area 590 0.63% Impervious Area 590 0.61% (ft/ft) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps Shallow Concentrated Flow, 4.5 269 0.0400 1.00		A	rea (sf)	(sf) CN	D	escription		
590 98 Paved parking, HSG D 1,194 36 Woods, Fair, HSG A 38,314 79 Woods, Fair, HSG D 93,475 80 Weighted Average 92,885 99.37% Pervious Area 590 0.63% Impervious Area Tc Length Slope 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			3,802	802 49	5	0-75% Gra	ass cover, F	Fair, HSG A
1,194 36 Woods, Fair, HSG A 38,314 79 Woods, Fair, HSG D 93,475 80 Weighted Average 92,885 99.37% Pervious Area 590 0.63% Impervious Area Tc Length Slope (min) (feet) (ft/ft) 13.5 54 0.0200 13.5 54 0.0200 0.7 43 0.0200 0.7 43 0.0200 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			49,575	575 84	- 5	0-75% Gra	ass cover, F	Fair, HSG D
38,314 79 Woods, Fair, HSG D 93,475 80 Weighted Average 92,885 99.37% Pervious Area 590 0.63% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/scc) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			590	590 98	P	aved park	ing, HSG D	
93,475 80 Weighted Average 92,885 99.37% Pervious Area 590 0.63% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			1,194	194 36	v	Voods, Fai	r, HSG A	
92,885 99.37% Pervious Area 590 0.63% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	_		38,314	,314 79	V	Voods, Fai	r, HSG D	
590 0.63% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			93,475	475 80	v	Veighted A	verage	
Tc Length (feet) Slope (ft/ft) Velocity (ft/sec) Description (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			92,885	,885	9	9.37% Per	vious Area	
(min) (feet) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps			590	590	0	.63% Impe	ervious Area	а
(min) (feet) (ft/ft) (ft/sec) (cfs) 13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		_					_	
13.5 54 0.0200 0.07 Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps								Description
4.8 40 0.0200 0.14 Woods: Light underbrush n= 0.400 P2= 3.03" 4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps	-	<u> </u>					(cts)	
4.8 40 0.0200 0.14 Sheet Flow, Grass: Short n= 0.150 P2= 3.03" 0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		13.5	54	54 0.0	200	0.07		,
0.7 43 0.0200 0.99 Grass: Short n= 0.150 P2= 3.03" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps								
0.7 43 0.0200 0.99 Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps		4.8	40	40 0.0	200	0.14		,
Short Grass Pasture Kv= 7.0 fps								
		0.7	43	43 0.0	200	0.99		
4.5 269 0.0400 1.00 Shallow Concentrated Flow								
		4.5	269	269 0.0	400	1.00		Shallow Concentrated Flow,
Woodland Kv= 5.0 fps	-							Woodland KV= 5.0 tps

23.5

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

Flow (cfs)

406 Total

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"	
Prepared by Fuss & O'Neill	Printed 12/13/2023	
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC Page 35	

Summary for Subcatchment 14S: E01


Runoff = 3.29 cfs @ 12.39 hrs, Volume= 22,354 cf, Depth= 4.42" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

A	rea (sf)	CN	Description							
	0	49	49 50-75% Grass cover, Fair, HSG A							
	13,580	84								
	0	98	Paved park	ing, HSG D)					
	0	36	Woods, Fai	ir, HSG A						
	47,131	79	Woods, Fa	ir, HSG D						
	60,711	80	Weighted A	verage						
	60,711		100.00% P	ervious Are	a					
-		~								
Tc	Length	Slope			Description					
(min)	(feet)	(ft/ft		(cfs)						
29.1	100	0.0100	0.06		Sheet Flow, Woods					
	10	0.040			Woods: Light underbrush n= 0.400 P2= 3.03"					
1.4	43	0.0100	0.50		Shallow Concentrated Flow, Woods					
0.3	19	0.0250			Woodland Kv= 5.0 fps					
0.3	19	0.0250) 1.11		Shallow Concentrated Flow, Grass Short Grass Pasture Kv= 7.0 fps					
1.4	67	0.0250	0.79		Shallow Concentrated Flow, Woods					
1.4	07	0.0230	0.79		Woodland Kv= 5.0 fps					
0.8	45	0.0170	0.91		Shallow Concentrated Flow, Grass					
0.0	40	0.0170	0.01		Short Grass Pasture Kv= 7.0 fps					
00.0	074	Tetel								

33.0 274 Total

20221110A10_EX01 Prepared by Fuss & O'Neill HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC Subcatchment 14S: E01 Hydrograph Shusetbury NOAA Rainfall 24-hr S150-yr Rainfall 24-hr S150-yr Runoff Area=60,711 sf Runoff Jage 6 (Runoff Jage 7 (R

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr S1 5	0-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	23 HvdroCAD Software Solutions LLC	Page 37

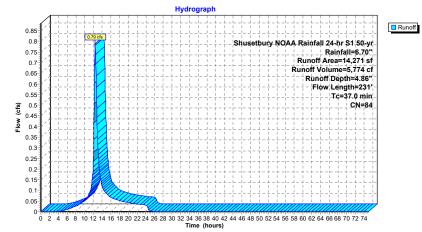
Summary for Subcatchment 26S: E03

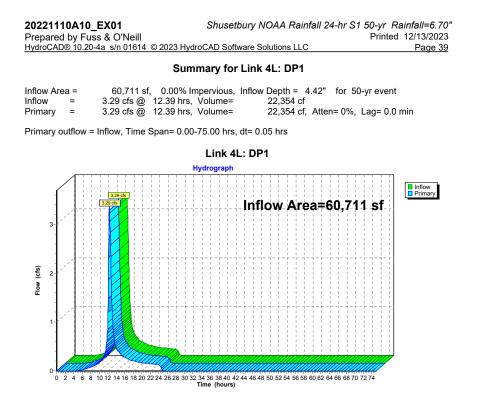
Runoff = 0.79 cfs @ 12.44 hrs, Volume= Routed to Link 10L : DP3

me= 5,774 cf, Depth= 4.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

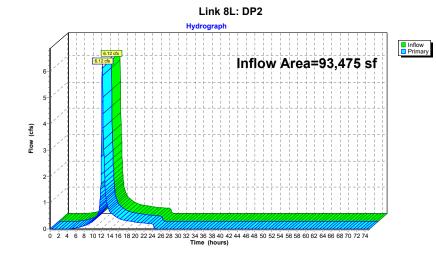
A	rea (sf)	CN	Description					
	0	49	49 50-75% Grass cover, Fair, HSG A					
	13,269	84	50-75% Gra	ass cover, I	Fair, HSG D			
	0	98	Paved park	ing, HSG D)			
	0	36	Woods, Fai	r, HSG A				
	1,002	79	Woods, Fai	r, HSG D				
	14,271	84	Weighted A	verage				
	14,271		100.00% P	ervious Are	a			
Tc	Length	Slope			Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
21.9	70	0.0014	0.05		Sheet Flow, Grass			
					Grass: Short n= 0.150 P2= 3.03"			
12.8	30	0.0070	0.04		Sheet Flow, Woods			
					Woods: Light underbrush n= 0.400 P2= 3.03"			
0.7	47	0.0255	1.12		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
1.4	69	0.0145	0.84		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
0.2	15	0.0333	1.28		Shallow Concentrated Flow, Grass			
					Short Grass Pasture Kv= 7.0 fps			
270	004	Tatal						

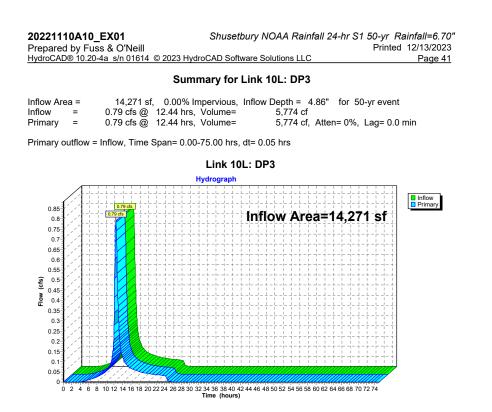

37.0 231 Total


 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614
 © 2023 HydroCAD Software Solutions LLC
 Page 38




20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr	S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 Hyd	droCAD Software Solutions LLC	Page 40

Summary for Link 8L: DP2

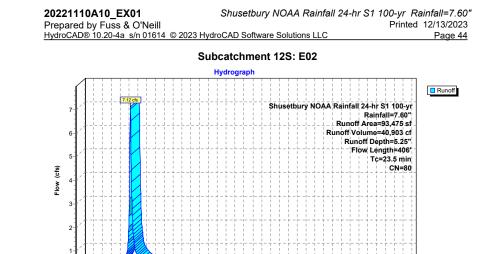
Inflow Area	a =	93,475 sf,	0.63% Impervious,	Inflow Depth = 4.42"	for 50-yr event
Inflow	=	6.12 cfs @ 1	12.27 hrs, Volume=	34,417 cf	•
Primary	=	6.12 cfs @ 1	12.27 hrs, Volume=	34,417 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs

20221110A10_EX01 Prepared by Fuss & O'Neill	Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall= Printed 12/13,	
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC Page	<u>ge 42</u>
Runoff by SC	=0.00-75.00 hrs, dt=0.05 hrs, 1501 points CS TR-20 method, UH=SCS, Weighted-CN nd+Trans method - Pond routing by Stor-Ind method	
Subcatchment12S: E02	Runoff Area=93,475 sf 0.63% Impervious Runoff Depth= Flow Length=406' Tc=23.5 min CN=80 Runoff=7.12 cfs 40,9	
Subcatchment14S: E01	Runoff Area=60,711 sf 0.00% Impervious Runoff Depth= Flow Length=274' Tc=33.0 min CN=80 Runoff=3.83 cfs 26,5	
Subcatchment26S: E03	Runoff Area=14,271 sf 0.00% Impervious Runoff Depth= Flow Length=231' Tc=37.0 min CN=84 Runoff=0.91 cfs 6,7	
Link 4L: DP1	Inflow=3.83 cfs 26,5 Primary=3.83 cfs 26,5	
Link 8L: DP2	Inflow=7.12 cfs 40,5 Primary=7.12 cfs 40,5	
Link 10L: DP3	Inflow=0.91 cfs 6,7 Primary=0.91 cfs 6,7	

Total Runoff Area = 168,457 sf Runoff Volume = 74,263 cf Average Runoff Depth = 5.29" 99.65% Pervious = 167,867 sf 0.35% Impervious = 590 sf

20221110A10_EX01	Shusetbury NOAA Rainfall 24-h	r S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 43


Summary for Subcatchment 12S: E02

Runoff = 7.12 cfs @ 12.27 hrs, Volume= 40,903 cf, Depth= 5.25" Routed to Link 8L : DP2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

	A	rea (sf)	CN E	Description			
-		3,802	49 5	50-75% Gra	ass cover, l	Fair, HSG A	
		49,575	84 5	50-75% Gra	ass cover, I	Fair, HSG D	
		590	98 F	Paved park	ing, HSG D)	
		1,194		Noods, Fai			
-		38,314	79 V	Noods, Fai	r, HSG D		
		93,475		Neighted A			
		92,885	-		vious Area	-	
		590	0.63% Impervious Area				
	т.	Loweth	Clana	Velesity	Canaaitu	Description	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
-	13.5	54	0.0200		(013)	Sheet Flow,	
	15.5	54	0.0200	0.07		Woods: Light underbrush n= 0.400 P2= 3.03"	
	4.8	40	0.0200	0.14		Sheet Flow.	
	4.0	40	0.0200	0.14		Grass: Short n= 0.150 P2= 3.03"	
	0.7	43	0.0200	0.99		Shallow Concentrated Flow,	
						Short Grass Pasture Kv= 7.0 fps	
	4.5	269	0.0400	1.00		Shallow Concentrated Flow,	
						Woodland Kv= 5.0 fps	
	00.5	100	T ()				

23.5 406 Total

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 45

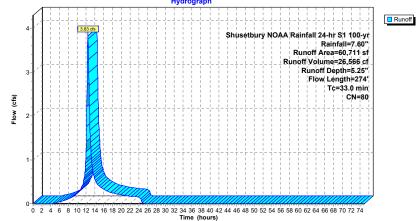
Summary for Subcatchment 14S: E01

Runoff = 3.83 cfs @ 12.39 hrs, Volume= 26,566 cf, Depth= 5.25" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

A	rea (sf)	CN	Description						
	0	49	49 50-75% Grass cover, Fair, HSG A						
	13,580	84	50-75% Gra	ass cover, F	Fair, HSG D				
	0			ing, HSG D)				
	0		Woods, Fai						
	47,131	79	Woods, Fai	r, HSG D					
	60,711		Weighted A						
	60,711		100.00% P	ervious Are	a				
та	Longeth	Clana	Valasity	Canaaitu	Description				
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
/			/	(05)					
29.1	100	0.0100	0.06		Sheet Flow, Woods				
1.4	43	0.0100	0.50		Woods: Light underbrush n= 0.400 P2= 3.03" Shallow Concentrated Flow, Woods				
1.4	43	0.0100	0.50		Woodland Kv= 5.0 fps				
0.3	19	0.0250	1.11		Shallow Concentrated Flow, Grass				
0.0		0.0200			Short Grass Pasture Kv= 7.0 fps				
1.4	67	0.0250	0.79		Shallow Concentrated Flow, Woods				
					Woodland Kv= 5.0 fps				
0.8	45	0.0170	0.91		Shallow Concentrated Flow, Grass				
					Short Grass Pasture Kv= 7.0 fps				
00.0	074	T - 4 - 1							

33.0 274 Total


 20221110A10_EX01
 Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 46

 Subcatchment 14S: E01

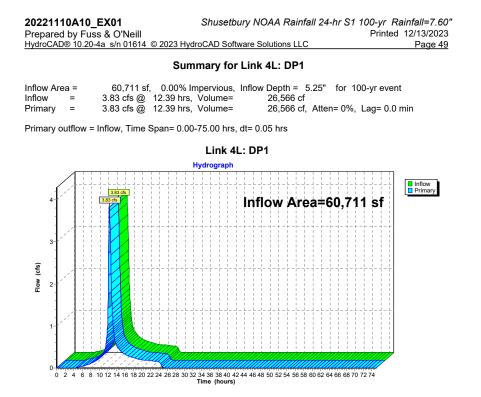
 Hydrograph

20221110A10_EX01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023 H	IvdroCAD Software Solutions LLC	Page 47

Summary for Subcatchment 26S: E03

Runoff = 0.91 cfs @ 12.44 hrs, Volume= Routed to Link 10L : DP3

ume= 6,793 cf, Depth= 5.71"

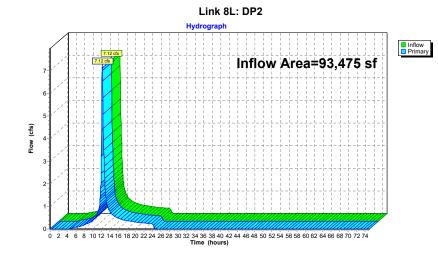

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

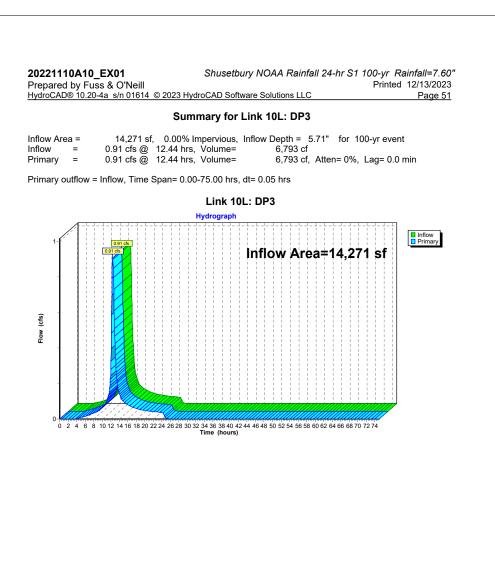
			CN	Description						
		0	49	49 50-75% Grass cover, Fair, HSG A						
		13,269	84	, , , -						
		0	98	Paved park	ing, HSG D)				
		0	36	Woods, Fai	r, HSG A					
_		1,002	79	Woods, Fai	r, HSG D					
		14,271	84	Weighted A	verage					
		14,271		100.00% Pe	ervious Are	a				
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	21.9	70	0.0014	0.05		Sheet Flow, Grass				
						Grass: Short n= 0.150 P2= 3.03"				
	12.8	30	0.0070	0.04		Sheet Flow, Woods				
						Woods: Light underbrush n= 0.400 P2= 3.03"				
	0.7	47	0.0255	1.12		Shallow Concentrated Flow, Grass				
						Short Grass Pasture Kv= 7.0 fps				
	1.4	69	0.0145	0.84		Shallow Concentrated Flow, Grass				
	~ ~	45		4.00		Short Grass Pasture Kv= 7.0 fps				
	0.2	15	0.0333	1.28		Shallow Concentrated Flow, Grass				
	07.0	004	T-4-1			Short Grass Pasture Kv= 7.0 fps				

37.0 231 Total

20221110A10_EX01 Prepared by Fuss & O'Neill HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC Page 48 Subcatchment 26S: E03 Hydrograph 1000 Shusetbury NOAA/Rainfall 24-hr S1 100-yr Rainfall-7.60" Runoff Volume-6,733 cf

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 Time (hours)

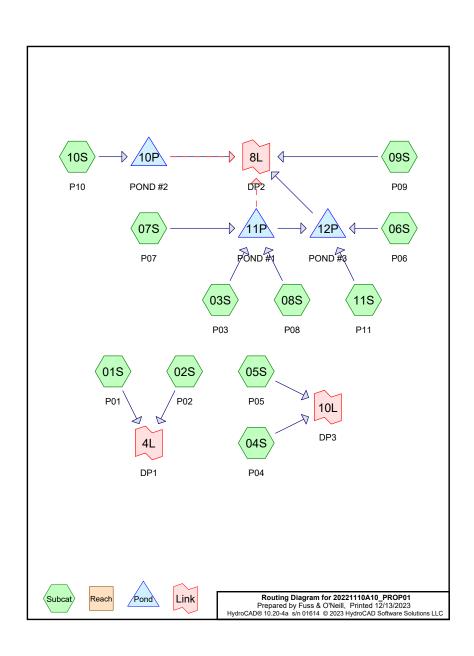



20221110A10_EX01	Shusetbury NOAA Rainfall 24-	hr S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 50

Summary for Link 8L: DP2

Inflow Area =	93,475 sf,	0.63% Impervious,	Inflow Depth = 5.25"	for 100-yr event
Inflow =	7.12 cfs @ 1	12.27 hrs, Volume=	40,903 cf	•
Primary =	7.12 cfs @ 1	12.27 hrs, Volume=	40,903 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-75.00 hrs, dt= 0.05 hrs



Appendix F

Post-Development Hydrologic Analysis

 Tir R	4 © 2023 HydroCAD Software Solutions LLC Page 2
R	
Reach Touling	e span=0.00-100.00 hrs, dt=0.03 hrs, 3334 points x 2 loff by SCS TR-20 method, UH=SCS, Weighted-CN ly Dyn-Stor-Ind method , Pond routing by Dyn-Stor-Ind method
Subcatchment01S: P01	Runoff Area=32,249 sf 0.00% Impervious Runoff Depth=1.27" Flow Length=222' Tc=31.2 min CN=80 Runoff=0.57 cfs 3,420 cf
Subcatchment02S: P02	Runoff Area=11,918 sf 0.00% Impervious Runoff Depth=1.47" ow Length=85' Slope=0.0130 // Tc=17.6 min CN=83 Runoff=0.34 cfs 1,461 cf
Subcatchment03S: P03	Runoff Area=37,348 sf 47.60% Impervious Runoff Depth=2.28" Tc=6.0 min CN=93 Runoff=2.65 cfs 7,105 cf
Subcatchment04S: P04	Runoff Area=3,986 sf 5.27% Impervious Runoff Depth=1.47" low Length=137' Slope=0.0200 '/' Tc=10.7 min CN=83 Runoff=0.15 cfs 489 cf
Subcatchment05S: P05	Runoff Area=2,992 sf 6.28% Impervious Runoff Depth=1.61" Tc=6.0 min CN=85 Runoff=0.15 cfs 402 cf
Subcatchment06S: P06	Runoff Area=7,053 sf 57.88% Impervious Runoff Depth=2.19" Tc=6.0 min CN=92 Runoff=0.48 cfs 1,287 cf
Subcatchment07S: P07	Runoff Area=3,147 sf 100.00% Impervious Runoff Depth=2.80" Tc=6.0 min CN=98 Runoff=0.25 cfs 734 cf
Subcatchment08S: P08	Runoff Area=1,869 sf 100.00% Impervious Runoff Depth=2.80" Tc=6.0 min CN=98 Runoff=0.15 cfs 436 cf
Subcatchment09S: P09	Runoff Area=55,682 sf 0.50% Impervious Runoff Depth=1.15" Flow Length=209' Tc=20.6 min CN=78 Runoff=1.11 cfs 5,337 cf
Subcatchment10S: P10	Runoff Area=7,808 sf 11.68% Impervious Runoff Depth=2.01" low Length=74' Slope=0.0500 '/' Tc=6.0 min CN=90 Runoff=0.50 cfs 1,309 cf
Subcatchment11S: P11	Runoff Area=4,381 sf 0.00% Impervious Runoff Depth=1.77" Tc=6.0 min CN=87 Runoff=0.25 cfs 644 cf
Pond 10P: POND #2	Peak Elev=1,176.59' Storage=911 cf Inflow=0.50 cfs 1,309 cf Primary=0.02 cfs 542 cf Secondary=0.00 cfs 0 cf Outflow=0.02 cfs 542 cf
Pond 11P: POND #1	Peak Elev=1,175.08' Storage=3,370 cf Inflow=3.05 cfs 8,274 cf Primary=0.69 cfs 7,424 cf Secondary=0.00 cfs 0 cf Outflow=0.69 cfs 7,424 cf
Pond 12P: POND #3	Peak Elev=1,170.64' Storage=445 cf Inflow=1.25 cfs 9,355 cf Outflow=1.23 cfs 9,021 cf
Link 4L: DP1	Inflow=0.81 cfs 4,881 cf Primary=0.81 cfs 4,881 cf
Link 8L: DP2	Inflow=2.03 cfs 14,901 cf Primary=2.03 cfs 14,901 cf

 20221110A10_PROP01
 Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 3

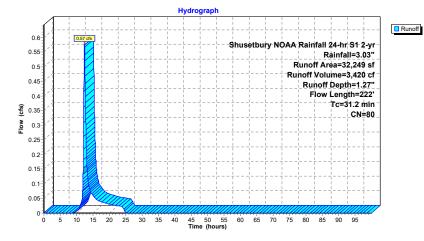
Link 10L: DP3

Inflow=0.27 cfs 891 cf Primary=0.27 cfs 891 cf

Total Runoff Area = 168,433 sf Runoff Volume = 22,623 cf Average Runoff Depth = 1.61" 83.10% Pervious = 139,970 sf 16.90% Impervious = 28,463 sf

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-y	r Rainfall=3.03"
Prepared by Fuss & O'Neill	Prir	nted 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 Hydro(CAD Software Solutions LLC	Page 4

Summary for Subcatchment 01S: P01


Runoff	=	0.57 cfs @	12.39 hrs,	Volume=	3,420 cf,	Depth= 1.27"
Routed	d to Link	4L : DP1				

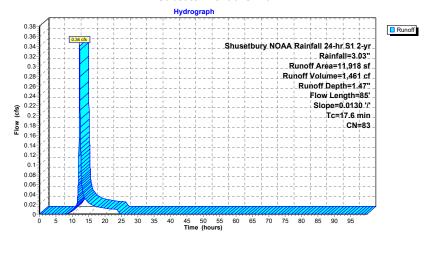
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

_	A	rea (sf)	CN	Description		
-	0 49 50-75% Grass cover					Fair, HSG A
3,462 84 50-75% 0					ass cover, F	Fair, HSG D
0 98 Paved parking, H					ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
		28,787	79	Woods, Fai	r, HSG D	
	0 98 Roofs, HSG D					
	0 98 Water Surface, 0					p, HSG D
	32,249 80 Weigh			Weighted A	verage	
	32,249 100.00% Pervious Area				ervious Are	a
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	29.1	100	0.010	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.03"
	2.1	122	0.020	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
-	31.2	222	Total			

31.2 222 Total

Subcatchment 01S: P01

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-	yr Rainfall=3.03"
Prepared by Fuss & O'Neill	Pr	inted 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	23 HydroCAD Software Solutions LLC	Page 5


Summary for Subcatchment 02S: P02

Runoff = 0.34 cfs @ 12.20 hrs, Volume= 1,461 cf, Depth= 1.47" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

_	A	rea (sf)	CN	Description		
		0	49	50-75% Gra	ass cover, F	Fair, HSG A
		9,878	84	50-75% Gra	ass cover, F	Fair, HSG D
		0	98	Paved park	ing, HSG D	
		0	36 Woods, Fair, HSG A			
		2,040	79 Woods, Fair, HSG D			
	0 98 Roofs, HSG D				Β́D	
	0 98 Water Surface, 0% imp,				ace, 0% imp	p, HSG D
-		11.918	83	Weighted A	verade	· · · · · · · · · · · · · · · · · · ·
		11.918 100.00% Pervious Area				a
		,				
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)		(cfs)	
-	7.3	54	0.0130	0.12		Sheet Flow,
		0.	0.0.00	02		Grass: Short n= 0.150 P2= 3.03"
	10.3	31	0.0130	0.05		Sheet Flow,
	10.0	01	0.0100	0.00		Woods: Light underbrush n= 0.400 P2= 3.03"
-	17.6	85	Total			
	17.0	60	rotar			

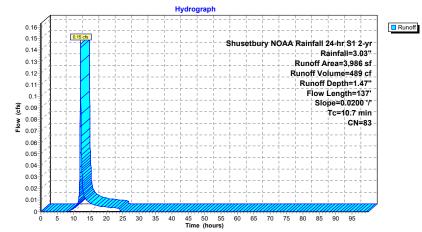
Subcatchment 02S: P02

				Sun	nma	ry f	or	Sub	catc	hme	ent O	3S:	P03	3				
noff Route	= ed to Por		cfs @ : PON		04 h	rs, \	/olu	me=		-	7,105	cf,	Depi	th=	2.28			
	y SCS T ury NOA									ime \$	Span	= 0.0	0-99	9.99	hrs,	dt=	0.03	hrs
A	rea (sf)	CN	Desc															
	0 14,179 17,778 0	49 84 98 36	50-75 50-75 Pave Wood	5% G d par	rass king	cov , HS	er, F G D	air, I										
	0	79 98	Wood	ds, Fa	air, ⊦													
	<u>5,391</u> 37,348	<u>98</u> 93	Wate	r Sur	face			o, HS	G D									
	19,570 17,778	90	52.40 47.60)% P	ervio	us A	rea											
То	Length	Slo	be Ve						cripti	on								
nin) 6.0	(feet)	(ft/		/sec			fs)				Mini							
0.0									ect E				1					
					5			chm graph	ent	035	P03	3						
ĺ											-		-					Runoff
	2.0	i5 cfs							Sh	usett	oury N		Rair		24-hr ainfa			
											-			ff Ar	ea=3	7,34	8 sf	
2-			!	+	\ 		!				!	RI			ume= Dept	h=2.	28"	
													1 1 1		IC=	6.0 CN	=93	
															 !		 	
1-	1111																	
-				i i		- i		i					 	1				
-						Ì	į		1								1	
-																		

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"	
Prepared by Fuss & O'Neill	Printed 12/13/2023	
HvdroCAD® 10.20-4a s/n 01614 © 202	3 HydroCAD Software Solutions LLC Page 7	

Summary for Subcatchment 04S: P04

unoff = 0.15 cfs @ 12.10 hrs, Volume= Routed to Link 10L : DP3 Runoff


489 cf, Depth= 1.47"

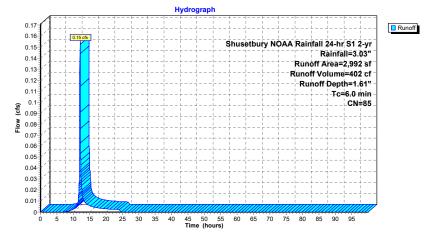
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

	Δ	rea (sf)	CN I	Description		
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	-		ass cover	Fair. HSG A
		2.774				Fair. HSG D
		2,774		Paved park		
		210		Noods. Fai		
		1.002		Noods, Fai Noods, Fai	, -	
		,		,	, -	
		0		Roofs, HSC		- 1100 B
-		0	98 Water Surface, 0% im			o, HSG D
		3,986	83 Weighted Average			
		3,776	9	94.73% Pe	vious Area	
		210	:	5.27% Impe	ervious Are	a
			-			
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
-	10.1	100	0.0200	0.17		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.03"
	0.6	37	0.0200	0.99		Shallow Concentrated Flow.
						Short Grass Pasture Kv= 7.0 fps

10.7 137 Total

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03	"
Prepared by Fuss & O'Neill	Printed 12/13/2023	
HydroCAD® 10 20-4a s/n 01614 © 2023 F	vdroCAD Software Solutions LLC Page 9	

Summary for Subcatchment 05S: P05


Runoff = 0.15 cfs @ 12.04 hrs, Volume= Routed to Link 10L : DP3

e= 402 cf, Depth= 1.61"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

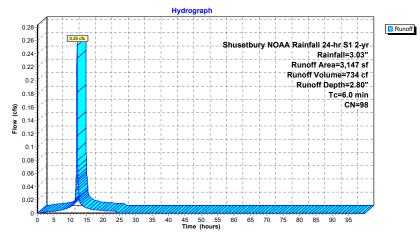
A	rea (sf)	CN	Description			
	0	49	50-75% Gra	ass cover, F	air, HSG A	
	2,804	84	50-75% Gra	ass cover, F	air, HSG D	
	188	98	Paved park	ing, HSG D)	
	0	36	Woods, Fai	r, HSG A		
	0	79	Woods, Fai	r, HSG D		
	0	98	Roofs, HSC	6 D		
	0	98	Water Surfa	ace, 0% imp	o, HSG D	
	2,992	85	Weighted A	verage		
	2,804		93.72% Pei	vious Area		
	188		6.28% Impe	ervious Area	a	
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description	
6.0					Direct Entry, Minimum	

Subcatchment 05S: P05

	-4a s/n	01614 ©	2023 H	IydroCA	D Soft	ware So	olutions	LLC						Page 1
		Su	umma	ry for	Subc	atchr	nent	06S:	P06	6				
noff = Routed to Pon		cfs @ 1		rs, Volu	ıme=		1,28	7 cf,	Dep	:h= 2	2.19	"		
				N 14/-:		NI T:					l			h.u.s
noff by SCS TF usetbury NOA							e Spai	ר= U.U	10-95	9.99	nrs,	at= (J.U3	nrs
Area (sf)	CN	Descrip	tion											
0 2,971	49 84	50-75% 50-75%												
4,082	98	Paved p	barking	, HSG [000								
0 0	36 79	Woods, Woods,												
0	98 98	Roofs, I Water S			ь ПС(
7,053	92	Weighte	ed Aver	rage		50								
2,971 4,082		42.12% 57.88%												
,														
Tc Length min) (feet)		e Veloo			Desc	ription								
	(ft/f	t) (ft/se	ec)	(cfs)										
6.0	(תיו	t) (ft/se	ec)	(CIS)	Dire	ct Enti	y, Min	imun	n					
	(11/1	t <u>) (</u> ft/se	,	(crs) Subcat					n					
	(101	t) (ft/se	,	Subcat					n					
6.0		t) (ft/se	,	Subcat	chme				n					Runoff
6.0	(TL/T	t) (ft/se	,	Subcat	chme	ent 06								Runoff
6.0		t) (ft/se	,	Subcat	chme	ent 06	S: P0		Rair		ainfa	11=3.0	03"	Runoff
6.0		t) (ft/se	,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea=' me=	ll=3.(7,053 1,287)3" sf_ 'cf	Runoff
6.0 0.5 0.45		t) (ft/se	,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.35		t) (ft/se	,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.35		t) (ft/se	,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.35		t) (ft/se	,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.35 0.25			,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.3 0.3 0.2 0.2			,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff
6.0 0.5 0.45 0.4 0.35 0.25 0.25 0.25 0.25			,	Subcat	chme	ent 06	S: P0	NOAA	Rair	Ra off A Volu	ainfa rea= me= Dept	ll=3.(7,053 1,287 h=2.1 6.0 n)3" sf - cf 9" - nin	Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-I	nr S1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023 H	vdroCAD Software Solutions LLC	Page 11

Summary for Subcatchment 07S: P07


Runoff = 0.25 cfs @ 12.03 hrs, Volume= Routed to Pond 11P : POND #1

me= 734 cf, Depth= 2.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

	Ai	rea (sf)	CN	Description		
		0	49	50-75% Gra	ass cover, F	Fair, HSG A
		0	84	50-75% Gra	ass cover, F	Fair, HSG D
		0	98	Paved park	ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
		0	79	Woods, Fai	r, HSG D	
		3,147	98	Roofs, HSG	6 D	
		0	98	Water Surfa	ace, 0% imp	p, HSG D
		3,147	98	Weighted A	verage	
		3,147		100.00% Im	pervious A	Area
					-	
	Тс	Length	Slop	e Velocity	Capacity	Description
(r	min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
_	6.0					Direct Entry, Minimum
						•

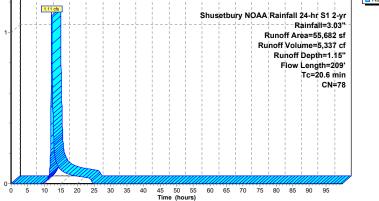
Subcatchment 07S: P07

									LLC					Page 12
		S	Summ	ary fo	or Su	bcat	chm	ent	08S:	P08				
noff = Routed to F		cfs @ : POND		hrs, V	olume	=		43	6 cf,	Depth	n= 2	.80"		
noff by SCS	TR-20 m	nethod I	UH=SC	S We	iahter	I-CN	Time	Snar	n= 0 0	0-99	99 h	rs d	t= 0.03	hrs
usetbury NC							THIL	opui	1 0.0	0 00.	0011	10, u	0.00	
Area (st) CN	Descri	ption											
	0 49			s cove										
	0 84 0 98	50-759 Paved		s cove		, HSC	GΟ							
	0 36	Woods												
	0 79	Woods)									
1,86	998 098	Roofs, Water			imn F	ISG I	h							
1,86		Weigh			<u>p, i</u>		<u> </u>							
1,86	9			perviou	s Area	I I								
Tc Leng	th Slor	be Velo	ocity	Canac	tv D	escrir	ntion							
min) (fee			sec)	(cf										
6.0					D	irect	Entry	r, Min	imun	۱				
				Subc	atch	mon	+ 000	. ם	0					
					drogra		1 00). FU	0					
				,	ulogiu	-								
			L I.	1 1		1	I I	. i .	- i	1	i		1	
0.16	+ 0.15 cfs - +		+			-¦	+						 +	Runoff
0.15	+ - 0.15 cfs - +		+ +				Shuse	tbury	NOAA	Rainf			61 2-yr	Runoff
0.15	+ 0.15 cfs - +						Shuse	tbury	NOAA		Rai	nfall=	61 2-yr =3.03" 869 sf	Runoff
0.15	+ 0.15 cfs - +						\$huse	tbury		Runo Runoff	Rai ff Arc Volu	infall= ea=1, ume=	=3.03" 869 sf 436 cf	Runoff
0.15	+ 0.15 cfs - + 						\$huse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall= ea=1, ume= epth=	=3.03" 869 sf 436 cf =2.80"	Runoff
0.15 0.14 0.13 0.12 0.12 0.11 0.11 0.11							3huse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf	Runoff
0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.12 0.11 0.12 0.11 0.12 0.13 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.15 0.14 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.							Shuse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff
0.15 0.14 0.13 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.12 0.11 0.12 0.11 0.12 0.13 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.15 0.14 0.15 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.							\$huse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff
0.15 0.14 0.13 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.12 0.13 0.14 0.13 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.14 0.15 0.05							+	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff
0.15 0.14 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.14 0.13 0.12 0.14 0.13 0.12 0.14 0.14 0.13 0.15 0.09 0.08 0.08 0.08 0.07 0.07 0.08 0.07 0.07 0.07 0.08 0.07							3huse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff
0.15 0.14 0.13 0.12 0.12 0.11 0.1 0.12 0.11 0.1 0.1 0.1 0.1 0.1 0.1 0.							3huse	tbury		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff
0.15 0.14 0.13 0.12 0.11 0.12 0.11 0.19 0.09 0.09 0.08 0.05							3huse	tbuty		Runo Runoff	Rai ff Arc Volu off D	infall: ea=1, ume= epth: Tc=6	=3.03" 869 sf 436 cf =2.80" .0 min	Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10 20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 13

Summary for Subcatchment 09S: P09

Runoff = 1.11 cfs @ 12.24 hrs, Volume= Routed to Link 8L : DP2


nrs, Volume= 5,337 cf, Depth= 1.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

А	rea (sf)	CN	Description		
	3.802	49	50-75% Gra	ass cover. F	Fair, HSG A
	19,931				Fair, HSG D
	277	98	Paved park	ing, HSG D	
	1,194	36	Woods, Fai	r, HSG A	
	30,478	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSG	6 D	
	0	98	Water Surfa	ace, 0% imp	o, HSG D
	55,682	78	Weighted A	verage	
	55,405	1	99.50% Per	vious Area	
	277		0.50% Impe	ervious Area	а
Tc	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.8	100	0.0300	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.03"
1.8	109	0.0430	1.04		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

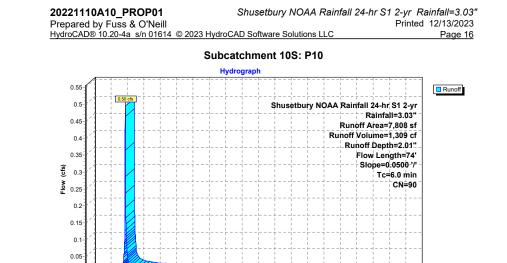
20.6 209 Total

20221110A10_PROP01 Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03" Prepared by Fuss & O'Neill Printed 12/13/2023 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC Page 14 Subcatchment 09S: P09 Hydrograph

Flow (cfs)

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-yr	Rainfall=3.03"
Prepared by Fuss & O'Neill	Print	ed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 15

Summary for Subcatchment 10S: P10


Runoff = 0.50 cfs @ 12.04 hrs, Volume= Routed to Pond 10P : POND #2

1,309 cf, Depth= 2.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"

Α	rea (sf)	CN I	Description		
	0	49	50-75% Gra	ass cover, F	Fair, HSG A
	3,994	84 9	50-75% Gra	ass cover, F	Fair, HSG D
	912			ing, HSG D	
	0	36	Noods, Fai	r, HSG A	
	210		Noods, Fai		
	0	98 I	Roofs, HSG	6 D	
	2,692	98	Nater Surfa	ace, 0% imp	o, HSG D
	7,808	90	Neighted A	verage	
	6,896	8	38.32% Pei	vious Area	
	912		11.68% Imp	pervious Are	ea
_		<u>.</u>		.	
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.7	23	0.0500	0.08		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.03"
0.5	51	0.0500	1.57		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

5.2 74 Total, Increased to minimum Tc = 6.0 min

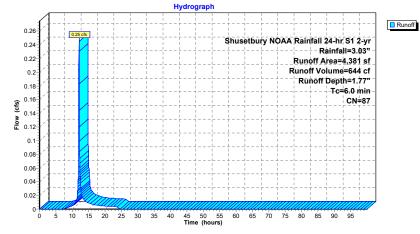
45 50 55 Time (hours) 60

65 70 75 80 85 90 95

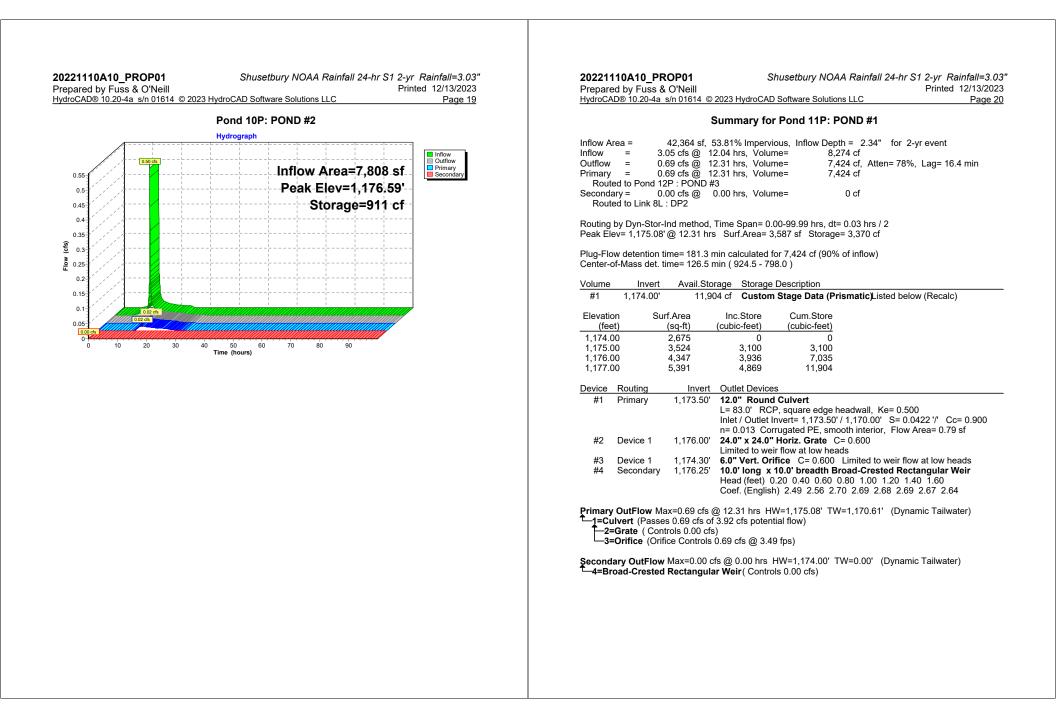
5 10 15 20 25 30 35 40

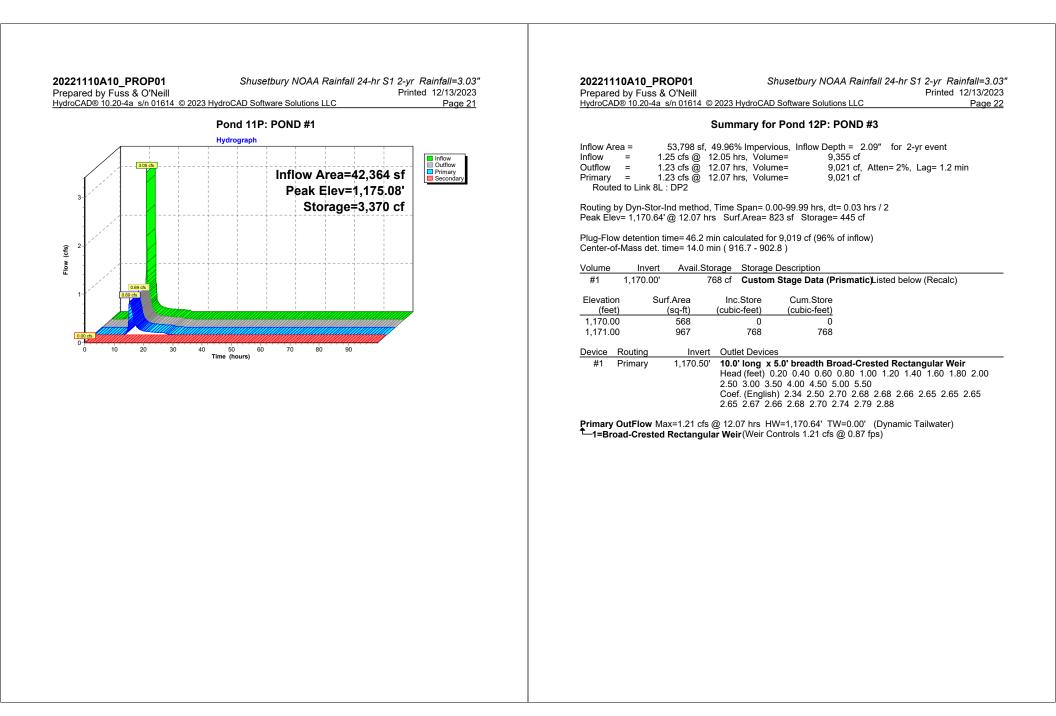
Ó

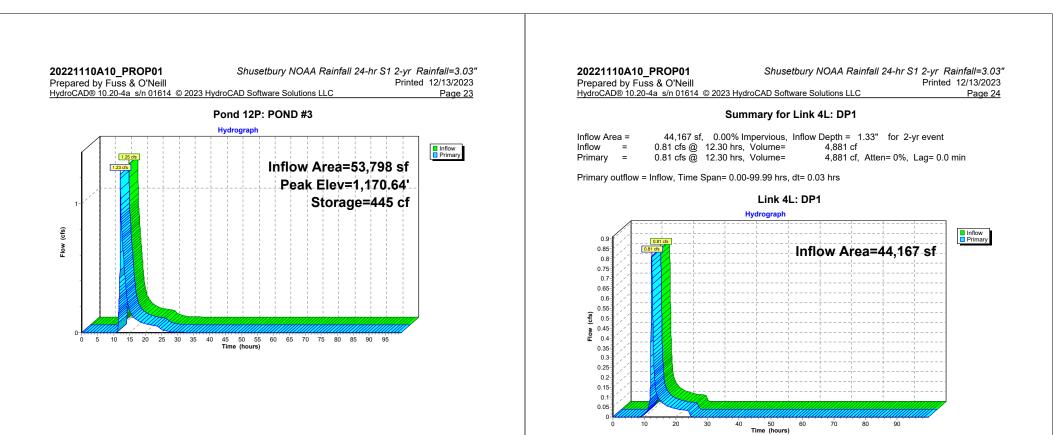
20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr St	1 2-yr Rainfall=3.03"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 202	23 HydroCAD Software Solutions LLC	Page 17

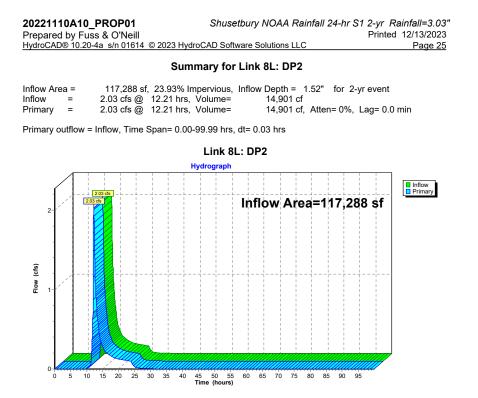

Summary for Subcatchment 11S: P11

Runoff = 0.25 cfs @ 12.04 hrs, Volume= Routed to Pond 12P : POND #3

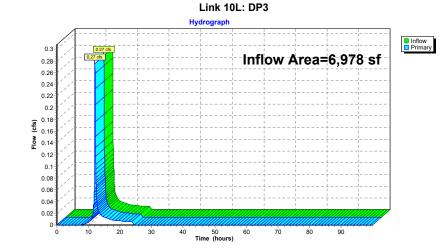

644 cf, Depth= 1.77"


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"


	Ai	rea (sf)	CN	Description		
		0	49	50-75% Gra	ass cover, I	Fair, HSG A
		3,414	84	50-75% Gra	ass cover, I	Fair, HSG D
		0	98	Paved park	ing, HSG D	
		0	36	Woods, Fai	r, HSG A	
		0	79	Woods, Fai	r, HSG D	
		0	98	Roofs, HSC	6 D	
_		967	98	Water Surfa	ace, 0% im	o, HSG D
		4,381	87	Weighted A	verage	
		4,381		100.00% P	ervious Are	a
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	6.0					Direct Entry, Minimum
					Subcat	chment 11S: P11



Summary for Pond 10P: POND #2Inflow Area =7,808 sf, 11.68% Impervious, Inflow Depth = 2.01" for 2-yr eventInflow =0.50 cfs @ 12.04 hrs, Volume=1,309 cfOutflow =0.02 cfs @ 15.39 hrs, Volume=542 cfRouted to Link 8L: DP2Presson 2000 cfs @ 0.00 hrs, Volume=0 cfRouted to Link 8L: DP20.00 cfs @ 0.00 hrs, Volume=0 cfRouted to Link 8L: DP2Presson 2000 cfs @ 15.39 hrs0.00 -99.99 hrs, dt= 0.03 hrs / 2Routed to Link 8L: DP2Presson 2000 cfs @ 15.39 hrsSurf.Area=1,729 sfRouted to Link 8L: DP2Presson 2000 cfs @ 15.39 hrsSurf.Area=1,729 sfRouted to Link 8L: DP2Presson 2000 cfs @ 15.39 hrsSurf.Area=1,729 sfRouted to Link 8L: DP2Presson 2000 cfs @ 10.20 hrsSurger 2000 hrsRouted to Link 8L: DP2Presson 2000 hrsSurger 2000 hrsRouted to Link 8L: DP2Presson 2000 hrsSurf.AreaRouted to Link 8L: DP2Inc alculated for 542 cf (41% of inflow)Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0)Surger 2000 hrsVolumeInvertAvail.StorageStorage Description#11,176.001,373001,177.001,9791,6761,6761,177.001,9791,6761,6761,178.002,6922,3364,012DeviceIntervert1,175.23' 1,175.00' S= 0.0052 /' Cc= 0.900Intervert 0.200 cfs 0,0200 hreadt PE, smooth interior, Flow Area=0.79 sf#2Device 11,176.50'3.0" Vert. Orifice Cc= 0.600 <th>HydroCA</th> <th>D® 10.20-4a</th> <th>s/n 01614 ©</th> <th>2023 HydroCAD S</th> <th>Software Solutions L</th> <th>LC</th> <th></th> <th></th> <th>Page 1</th>	HydroCA	D® 10.20-4a	s/n 01614 ©	2023 HydroCAD S	Software Solutions L	LC			Page 1
Inflow = 0.50 cfs @ 12.04 hrs, Volume= 1,309 cf Outflow = 0.02 cfs @ 15.39 hrs, Volume= 542 cf, Atten= 97%, Lag= 201.3 min Primary = 0.02 cfs @ 15.39 hrs, Volume= 542 cf Routed to Link 8L : DP2 Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 8L : DP2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Surf.Area= 1,729 sf Storage= 911 cf Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) 1,176.00 1,373 0 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L = 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Devices #2 Device 1 1,177.00' #2 Device 1 1,177.00' #3 Device 1 1,176.50' #4 Secondary 1,177.50' 3.0" Vert. Orfice C = 0.600 Limited to weir flow at low heads #3 Device 1 1,177.50' 44 Secondary 1,177.50' 50 Coef (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.02 cfs 0 2.85 cfs potential flow) 1=2-Certate (Controls 0.00 cfs)			9	Summary for I	Pond 10P: PON	ID #2			
Outflow = 0.02 cfs @ 15.39 hrs, Volume= 542 cf, Atten= 97%, Lag= 201.3 min Primary = 0.02 cfs @ 15.39 hrs, Volume= 542 cf Routed to Link 8L : DP2 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 8L : DP2 0.00 hrs, Volume= 0 cf Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stare Cum.Store Cum.Store (feet) (sq.ft) (cubic-feet) (cubic-feet) 1,176.00 1,177.00 1,979 1,676 1,676	Inflow A	rea =	7,808 sf, 1	11.68% Imperviou	us, Inflow Depth =	2.01"	for 2-y	r event	
Primary = 0.02 cfs 0 15.39 hrs, Volume= 542 cf Routed to Link 8L : DP2 Routed to Link 8L : DP2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' 0 15.39 hrs Surf.Area= 1,729 sf Storage= 911 cf Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq.ft) (cubic-feet) 1,176.00 1,373 0 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L = 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' 12.0" Round Culvert L = 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' 12.0" Round Culvert #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Grage 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) 1=2=Certae (Controls 0.00 cfs)	Inflow						-		
Routed to Link 8L : DP2 0.00 frs 0.00 hrs, Volume= 0 cf Secondary = 0.00 cfs 0.00 hrs, Volume= 0 cf Routed to Link 8L : DP2 Peak Elev= 0 cf Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59'@ 15.39 hrs Surf.Area= 1,729 sf Storage= 911 cf Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0'' Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00'' S= 0.00052 /'' Cc= 0.900 n=0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf 3.0'' Vert.							n= 97%,	Lag= 201.3	min
Secondary = 0.00 cfs @ 0.00 hrs, Volume= 0 cf Routed to Link 8L : DP2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Surf.Area= 1,729 sf Storage= 911 cf Pleak Elev= 1,176.59' @ 15.39 hrs Surf.Area= 1,729 sf Storage = 911 cf Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (ubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0'' Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert = 1,175.23'/ 1,175.00' S= 0.0052 '/' Cc= 0.900 #2 Device 1 1,177.00' 24.0'' RCP, square				5.39 hrs, Volume	e= 542	cf			
Routed to Link 8L : DP2 Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.59' @ 15.39 hrs Surf.Area= 1,729 sf Storage= 911 cf Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (get) (sq-ft) (cubic-feet) (cubic-feet) (cubic-feet) 1,176.00 1,373 0 0 1,176.00 1,373 0 0 0 1,177.00 1,979 1,676 1,676 1,676 1,177.00 2,692 2,336 4,012 Evence Primary 1,175.23' 12.0" Round Culvert L = 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C = 0.600 Imited to weir flow at low heads #3 Device 1 1,177.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary				0.00 hrs. Volume	-= 0	cf			
Peak Elev= 1,176.59'@ 15.39 hrs Surf.Area= 1,729 sf Storage = 911 cf Plag-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (reet) (sq-ft) (cubic-feet) (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S = 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #3 Device 1 1,177.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Inag * 10.0' Inag * 10.0' Inag * 1.20' I.20' I.20				0.00	· ·				
Peak Elev= 1,176.59'@ 15.39 hrs Surf.Area= 1,729 sf Storage = 911 cf Plag-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (reet) (sq-ft) (cubic-feet) (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S = 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #3 Device 1 1,177.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Inag * 10.0' Inag * 10.0' Inag * 1.20' I.20' I.20	D	h D Ota	I	Time 0		00 kmz /	•		
Plug-Flow detention time= 560.2 min calculated for 542 cf (41% of inflow) Center-of-Mass det. time= 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) Cubic-feet) (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" RCP, square edge headwall, Ke= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 1.00' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 CutFlow Max=0.02 cfs @ 1.539 hrs HW=1,							2		
Center-of-Mass det. time = 414.4 min (1,236.4 - 822.0) Volume Invert Avail.Storage Storage Description #1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (sq-ft) (cubic-feet) (cubic-feet) 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S = 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Iong x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) -2eGrate (Controls 0.00 cfs)	Car Elt	ev- 1,170.09	w 10.08 ms	5 Guil.Alea- 1,7	20 SI SIULAYE- 9	110			
VolumeInvertAvail.StorageStorage Description#11,176.00'4,012 cfCustom Stage Data (Prismatic)Listed below (Recalc)ElevationSurf.AreaInc.StoreCum.Store(feet)(sq-ft)(cubic-feet)(cubic-feet)1,176.001,373001,177.001,9791,6761,6761,178.002,6922,3364,012Device Routing#1Primary1,175.23'1,175.23'12.0" Round CulvertL= 44.0'RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00'#2Device 11,177.00'L= 44.0'RCP, square edge headwall, Ke= 0.600 Limited to weir flow at low heads#3Device 11,176.50'#4Secondary1,177.50'10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs)						flow)			
#1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area (sq-ft) Inc.Store (cubic-feet) Cum.Store (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth Interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) -2eGrate (Controls 0.00 cfs)	Center-c	of-Mass det. t	ime= 414.4 r	min(1,236.4-82	2.0)				
#1 1,176.00' 4,012 cf Custom Stage Data (Prismatic)Listed below (Recalc) Elevation Surf.Area (sq-ft) Inc.Store (cubic-feet) Cum.Store (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth Interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) -2eGrate (Controls 0.00 cfs)	/olume	Invert	Avail Sto	rade Storade D	escription				
Elevation Surf.Area (sq-ft) Inc.Store (cubic-feet) Cum.Store (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,177.00 2,692 2,336 4,012 Device Routing Invert #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) -2=Grate (Controls 0.00 cfs)				<u> </u>		atic) is	ted below	(Recalc)	
(feet) (sq-ft) (cubic-feet) (cubic-feet) 1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,175.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) -2eGrate (Controls 0.00 cfs)	#1	1,170.00	4,0		Juge Data (111311	anojeis		(ittobalo)	
1,176.00 1,373 0 0 1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" X 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,175.03' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 1.00' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) 1-2eGrate (Controls 0.00 cfs)					Cum.Store				
1,177.00 1,979 1,676 1,676 1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 /' Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 100' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs)	(fee	et)	(sq-ft)						
1,178.00 2,692 2,336 4,012 Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" Horiz Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Index 100' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 2.85 cfs potential flow) TW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs) -2 -2 -2 -2 -2		/			<u> </u>				
Device Routing Invert Outlet Devices #1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs)		00	1,373	0	0				
#1 Primary 1,175.23' 12.0" Round Culvert L= 44.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 1,175.23' / 1,175.00' S= 0.0052 '/ Cc= 0.900 n= 0.013 Corrugated PE, smooth interior, Flow Area= 0.79 sf #2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C= 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) -2=Grate (Controls 0.00 cfs) .00 .00 .00	1,177.0) 00 00	1,373 1,979	0 1,676	0 1,676				
#2 Device 1 1,177.00' 24.0" x 24.0" Active transformation of the transformation of transformatin of transformatic of transformation of transformatin of transfor	1,177.0) 00 00	1,373 1,979	0 1,676	0 1,676				
#2 Device 1 1,177.00' Inlet / Outlet Invert= 1,175.23'/1,175.00' S= 0.0052 '/' Cc= 0.900 #2 Device 1 1,177.00' Z4.0" x 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' Iong x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coefficient Ceff (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs) Coef (English)	1,177.0 1,178.0	00 00 00	1,373 1,979 2,692	0 1,676 2,336 Outlet Devices	0 1,676 4,012				
#2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C = 0.600 Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 1.00' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs of 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 Device	00 00 00 Routing	1,373 1,979 2,692 Invert	0 1,676 2,336 Outlet Devices 12.0" Round C	0 1,676 4,012 Culvert				
#2 Device 1 1,177.00' 24.0" x 24.0" Horiz. Grate C = 0.600 #3 Device 1 1,176.50' 3.0" Vert. Orifice C = 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 1.00' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.67 2.64	1,177.0 1,178.0 Device	00 00 00 Routing	1,373 1,979 2,692 Invert	0 1,676 2,336 Outlet Devices 12.0'' Round C L= 44.0' RCP,	0 1,676 4,012 Culvert square edge head				000
Limited to weir flow at low heads #3 Device 1 1,176.50' 3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads #4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) -2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 Device	00 00 00 Routing	1,373 1,979 2,692 Invert	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv	0 1,676 4,012 Culvert square edge head /ert= 1,175.23' / 1,	175.00'	S= 0.00	52 '/' Cc= 0	.900
#4 Secondary 1,177.50' 10.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) 1=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) 1.20 2.69 2.67 2.64	1,177.0 1,178.0 <u>Device</u> #1	00 00 00 Routing Primary	1,373 1,979 2,692 Invert 1,175.23'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth	175.00' interior	S= 0.00	52 '/' Cc= 0	900
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) =Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) =2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 <u>Device</u> #1	00 00 00 Routing Primary	1,373 1,979 2,692 Invert 1,175.23'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0	175.00' interior	S= 0.00	52 '/' Cc= 0	900
Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64 Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) T=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) T=2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 <u>Device</u> #1 #2 #3	00 00 00 Primary Device 1 Device 1	1,373 1,979 2,692 <u>Invert</u> 1,175.23' 1,177.00' 1,176.50'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 COR 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orific	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin	175.00' interior .600 nited to	S= 0.00 , Flow Ar weir flow	52 '/' Cc= 0 rea= 0.79 sf at low heads	
Primary OutFlow Max=0.02 cfs @ 15.39 hrs HW=1,176.59' TW=0.00' (Dynamic Tailwater) =Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) =2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 <u>Device</u> #1 #2 #3	00 00 00 Primary Device 1 Device 1	1,373 1,979 2,692 <u>Invert</u> 1,175.23' 1,177.00' 1,176.50'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weiri 3.0" Vert. Orifit 10.0' long x 10	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin J.0' breadth Broa	175.00' interior .600 nited to d-Crest	S= 0.00 , Flow Ar weir flow ed Recta	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir	
T=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) T=2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 <u>Device</u> #1 #2 #3	00 00 00 Primary Device 1 Device 1	1,373 1,979 2,692 <u>Invert</u> 1,175.23' 1,177.00' 1,176.50'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifin 10.0' long x 10 Head (feet) 0.2	0 1,676 4,012 Culvert square edge heac vert= 1,175.23' / 1, ugated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 0 0.40 0.60 0.80	175.00' interior .600 nited to d-Crest) 1.00	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir 0 1.60	
T=Culvert (Passes 0.02 cfs of 2.85 cfs potential flow) T=2=Grate (Controls 0.00 cfs)	1,177.0 1,178.0 <u>Device</u> #1 #2 #3	00 00 00 Primary Device 1 Device 1	1,373 1,979 2,692 <u>Invert</u> 1,175.23' 1,177.00' 1,176.50'	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifin 10.0' long x 10 Head (feet) 0.2	0 1,676 4,012 Culvert square edge heac vert= 1,175.23' / 1, ugated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 0 0.40 0.60 0.80	175.00' interior .600 nited to d-Crest) 1.00	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir 0 1.60	
	1,177.0 1,178.0 <u>Device</u> #1 #2 #3 #4 Primary	Routing Primary Device 1 Device 1 Secondary	1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.02 cfs (0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifit 10.0' long x 10 Head (feet) 0.2 Coef. (English) @ 15.39 hrs HW	0 1,676 4,012 Culvert square edge heac vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 20 0.40 0.60 0.80 2.49 2.56 2.70 : =1,176.59' TW=0	175.00' interior .600 nited to d-Crest 0 1.00 2.69 2.6	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40 58 2.69 2	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir 0 1.60 2.67 2.64	
-3=Orifice (Orifice Controls 0.02 cfs @ 1.01 fps)	1,177.0 1,178.0 <u>Device</u> #1 #2 #3 #4 Primary 1=Cu	Routing Primary Device 1 Device 1 Secondary	1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.02 cfs (or so 0.02 cfs of	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifin 10.0' long x 10 Head (feet) 0.2 Coef. (English) @ 15.39 hrs HW: 2.85 cfs potentia	0 1,676 4,012 Culvert square edge heac vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 20 0.40 0.60 0.80 2.49 2.56 2.70 : =1,176.59' TW=0	175.00' interior .600 nited to d-Crest 0 1.00 2.69 2.6	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40 58 2.69 2	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir 0 1.60 2.67 2.64	
	1,177.0 1,178.0 <u>Device</u> #1 #2 #3 #4 Primary 1=Cu	Routing Primary Device 1 Device 1 Secondary (OutFlow Ma ulvert (Passe Grate (Con	1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.02 cfs of trols 0.00 cfs	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifit 10.0' long x 10 Head (feet) 0.2 Coef. (English) @ 15.39 hrs HW- 2.85 cfs potentia)	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 20 0.40 0.60 0.80 2.49 2.56 2.70 : =1,176.59' TW=0 at flow)	175.00' interior .600 nited to d-Crest 0 1.00 2.69 2.6	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40 58 2.69 2	52 '/' Cc= 0 rea= 0.79 sf at low heads ngular Weir 0 1.60 2.67 2.64	
Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,176.00' TW=0.00' (Dynamic Tailwater)	1,177.0 1,178.0 2evice #1 #2 #3 #4 Primary 1=Cu 2= 3=	Routing Primary Device 1 Device 1 Secondary OutFlow Ma Ilvert (Passe Grate (Con Grifice (Orif	1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.02 cfs (is 0.02 cfs of trols 0.00 cfs ice Controls	0 1,676 2,336 Outlet Devices 12.0" Round C L= 44.0' RCP, Inlet / Outlet Inv n= 0.013 Corru 24.0" x 24.0" H Limited to weir 1 3.0" Vert. Orifit 10.0' long x 10 Head (feet) 0.2 Coef. (English) @ 15.39 hrs HW: 2.85 cfs potentia) 0.02 cfs @ 1.011	0 1,676 4,012 Culvert square edge head vert= 1,175.23' / 1, igated PE, smooth loriz. Grate C= 0 flow at low heads ce C= 0.600 Lin 0.0' breadth Broa 20 0.40 0.60 0.80 2.49 2.56 2.70 : =1,176.59' TW=0 at flow) fps)	175.00' interior .600 hited to d-Crest 1.00 2.69 2.0 00' (D	S= 0.00 , Flow Ar weir flow ed Recta 1.20 1.40 58 2.69 2 ynamic Ta	52 '/' Cc= 0 rea= 0.79 sf at low heads ingular Weir) 1.60 2.67 2.64 ailwater)	



20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2-yr Rainfall=3.03"	
Prepared by Fuss & O'Neill	Printed 12/13/2023	
HydroCAD® 10.20-4a s/n 01614 © 2023 HydroC	AD Software Solutions LLC Page 26	

Summary for Link 10L: DP3

Inflow Are	a =	6,978 sf,	5.70% Impervious,	Inflow Depth = 1.53"	for 2-yr event
Inflow	=	0.27 cfs @ 1	12.06 hrs, Volume=	891 cf	-
Primary	=	0.27 cfs @ 1	12.06 hrs, Volume=	891 cf, Atte	n= 0%, Lag= 0.0 min

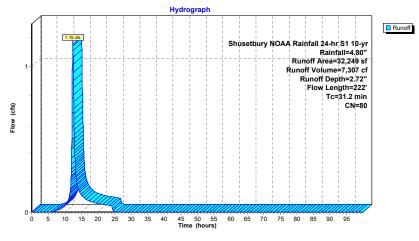
Primary outflow = Inflow, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs

202211110A10_PROP(Prepared by Fuss & O'N <u>HydroCAD® 10.20-4a s/n 0</u> :		20221110A10_PROP01 Prepared by Fuss & O'Neill HydroCAD® 10.20-4a s/n 01614 © 20	Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80" Printed 12/13/2023 23 HydroCAD Software Solutions LLC Page 28
F	ime span=0.00-100.00 hrs, dt=0.03 hrs, 3334 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN na by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind method	Link 10L: DP3	Inflow=0.51 cfs 1,788 cf Primary=0.51 cfs 1,788 cf
Subcatchment01S: P01	Runoff Area=32,249 sf 0.00% Impervious Runoff Depth=2.72" Flow Length=222' Tc=31.2 min CN=80 Runoff=1.15 cfs 7,307 cf	Total Runoff Area = 1	68,433 sf Runoff Volume = 44,149 cf Average Runoff Depth = 3.15" 83.10% Pervious = 139,970 sf 16.90% Impervious = 28,463 sf
Subcatchment02S: P02	Runoff Area=11,918 sf 0.00% Impervious Runoff Depth=2.99" Flow Length=85' Slope=0.0130 '/' Tc=17.6 min CN=83 Runoff=0.64 cfs 2,973 cf		
Subcatchment03S: P03	Runoff Area=37,348 sf 47.60% Impervious Runoff Depth=4.00" Tc=6.0 min CN=93 Runoff=4.13 cfs 12,454 cf		
Subcatchment04S: P04	Runoff Area=3,986 sf 5.27% Impervious Runoff Depth=2.99" Flow Length=137' Slope=0.0200 '/ Tc=10.7 min CN=83 Runoff=0.27 cfs 994 cf		
Subcatchment05S: P05	Runoff Area=2,992 sf 6.28% Impervious Runoff Depth=3.18" Tc=6.0 min CN=85 Runoff=0.28 cfs 794 cf		
Subcatchment06S: P06	Runoff Area=7,053 sf 57.88% Impervious Runoff Depth=3.89" Tc=6.0 min CN=92 Runoff=0.77 cfs 2,289 cf		
Subcatchment07S: P07	Runoff Area=3,147 sf 100.00% Impervious Runoff Depth=4.56" Tc=6.0 min CN=98 Runoff=0.37 cfs 1,197 cf		
Subcatchment08S: P08	Runoff Area=1,869 sf 100.00% Impervious Runoff Depth=4.56" Tc=6.0 min CN=98 Runoff=0.22 cfs 711 cf		
Subcatchment09S: P09	Runoff Area=55,682 sf 0.50% Impervious Runoff Depth=2.54" Flow Length=209' Tc=20.6 min CN=78 Runoff=2.34 cfs 11,799 cf		
Subcatchment10S: P10	Runoff Area=7,808 sf 11.68% Impervious Runoff Depth=3.68" Flow Length=74' Slope=0.0500 '/' Tc=6.0 min CN=90 Runoff=0.81 cfs 2,397 cf		
Subcatchment11S: P11	Runoff Area=4,381 sf 0.00% Impervious Runoff Depth=3.38" Tc=6.0 min CN=87 Runoff=0.43 cfs 1,234 cf		
Pond 10P: POND #2	Peak Elev=1,176.79' Storage=1,265 cf Inflow=0.81 cfs 2,397 cf Primary=0.09 cfs 1,630 cf Secondary=0.00 cfs 0 cf Outflow=0.09 cfs 1,630 cf		
Pond 11P: POND #1	Peak Elev=1,175.50' Storage=4,945 cf Inflow=4.72 cfs 14,362 cf Primary=0.92 cfs 13,512 cf Secondary=0.00 cfs 0 cf Outflow=0.92 cfs 13,512 cf		
Pond 12P: POND #3	Peak Elev=1,170.69' Storage=484 cf Inflow=1.92 cfs 17,034 cf Outflow=1.88 cfs 16,700 cf		
Link 4L: DP1	Inflow=1.61 cfs 10,281 cf Primary=1.61 cfs 10,281 cf		
Link 8L: DP2	Inflow=3.72 cfs 30,129 cf Primary=3.72 cfs 30,129 cf		

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	r S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 29

Summary for Subcatchment 01S: P01

7,307 cf, Depth= 2.72"


Runoff = 1.15 cfs @ 12.37 hrs, Volume= Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

_	A	rea (sf)	CN	Description				
		0	49	49 50-75% Grass cover, Fair, HSG A				
		3,462	84	50-75% Gra	ass cover, I	Fair, HSG D		
		0	98	Paved park	ing, HSG D)		
		0	36	Woods, Fai	r, HSG A			
		28,787	79	Woods, Fai	r, HSG D			
		0	98	Roofs, HSC	6 D			
_		0	98	Water Surfa	ace, 0% im	p, HSG D		
		32,249	80	Weighted A	verage			
		32,249		100.00% P	ervious Are	a		
	Tc	Length	Slope	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)			
	29.1	100	0.010	0.06		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.03"		
	2.1	122	0.020	0 0.99		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		

31.2 222 Total

Subcatchment 01S: P01

		ss & O'N -4a_s/n 0		3 HydroCA	D Software S	olutic	ons LLC	2		Printeo	d 12/13/202 Page 3
			Sumr	nary for	Subcatch	men	nt 025	6: P0	2		
unoff Route	= ed to Link	0.64 cf 4L : DP	is@ 12.19 1	9 hrs, Volu	me=	2,	973 cf	, Dep	th= 2.9	99"	
			hod, UH=S I 24-hr S1		ited-CN, Tin fall=4.80"	ne Sp	oan= 0	0.00-99	9.99 hr	s, dt= 0.03	3 hrs
A	rea (sf)	CN E	Description								
	0				air, HSG A						
	9,878 0		60-75% Gra Paved park		air, HSG D						
	0		Voods, Fai		,						
	2,040	79 V	Voods, Fai	r, HSG D							
	0		Roofs, HSG Vater Surfa								
	11.918		Veighted A		<u>, пов D</u>						
	11,918		00.00% Pe		а						
-		0		o							
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	ר					
7.3	54	0.0130	0.12	(013)	Sheet Flo	N.					
					Grass: Sho	ort r	n= 0.15	50 P2	2= 3.03	3"	
10.3	31	0.0130	0.05		Sheet Flor Woods: Lig		ndorbr	uch	n- 0 40	0 02-3	03"
17.6	85	Total			WOOUS. LI	jiit u	nuerbi	usii	1- 0.40	JU FZ- J	.05
11.0	00	rotar									
				Subcat	chment 02	2S: I	P02				
				Hydro	graph						_
0.7									+		Runoff
0.65]/{¦ī	0.64 cfs			 					hr S1 10-yr	
0.6	//					useib		AA Kai		nfall=4.80"	
0.55	3_4∔-		+-							a=11,918 sf ne=2.973 cf	
0.5],∤†-		·		i					epth=2.975 Cl	
0.45	<u> </u> ,∤†-				JL 					Length=85'-	-
-	1/1						++-			e=0.0130 '/' _ c=17.6 min	-
(S) 0.4 0.35 0.35	1/1		·		iii				+	CN=83	-
e 0.3]/{{-								+		-
0.25	1/1					-	⊢ – – + – I I I		+		
0.2	1/1		·		i	-i			÷		-
0.15	∃_∤÷-		·		$\frac{1}{1}\frac{1}{1} \frac{1}{1}$				$\frac{1}{1} = -\frac{1}{1} - \frac{1}{1}$		-
0.10	1 L				والمتر والمتر والمراجع المراجع		L İ _		1		

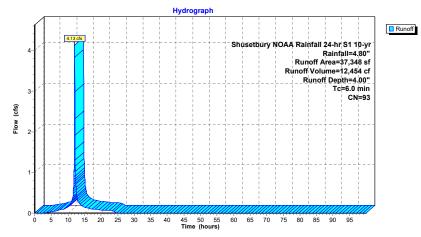
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 Time (hours)

0.1

0

Ó

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 31

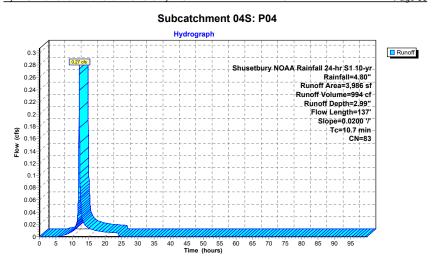

Summary for Subcatchment 03S: P03

Runoff = 4.13 cfs @ 12.04 hrs, Volume= 12,454 cf, Depth= 4.00" Routed to Pond 11P : POND #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

Ar	ea (sf)	CN	Description			
	0	49	50-75% Gra	ass cover, F	air, HSG A	
	14,179	84	50-75% Gra	ass cover, F	air, HSG D	
	17,778	98	Paved park	ing, HSG D		
	0	36	Woods, Fai	r, HSG A		
	0	79	Woods, Fai	r, HSG D		
	0	98	Roofs, HSC	6 D		
	5,391	98	8 Water Surface, 0% imp, HSG D			
	37,348	93	Weighted A	verage		
	19,570		52.40% Pei	vious Area		
	17,778		47.60% Imp	pervious Are	ea	
Tc	Length	Slop		Capacity	Description	
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)		
6.0					Direct Entry, Minimum	

Subcatchment 03S: P03

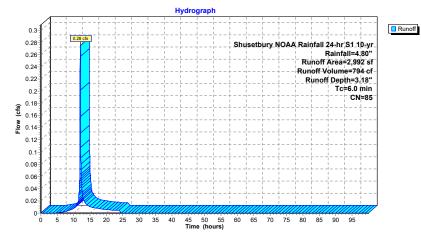


	d by Fus D® 10.20			3 HydroCA	D Software Solu	tions LLC	Page 32	
Summary for Subcatchment 04S: P04								
Runoff = 0.27 cfs @ 12.10 hrs, Volume= 994 cf, Depth= 2.99" Routed to Link 10L : DP3								
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"								
Ai	rea (sf)		Description					
	0		49 50-75% Grass cover, Fair, HSG A					
	2,774				air, HSG D			
	210			ing, HSG D)			
	0		Noods, Fai					
	1,002		Noods, Fai					
	0		Roofs, HSC					
	0	98 \	Nater Surfa	ace, 0% imp	o, HSG D			
	3,986		Neighted A					
	3,776	ç	94.73% Per	vious Area				
	210	Ę	5.27% Impe	ervious Area	а			
Тс	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·[- ·· - ··			
10.1	100	0.0200			Sheet Flow.			
			0.11			n= 0.150 P2= 3.03"		
0.6	37	0.0200	0.99			centrated Flow,		
						Pasture Kv= 7.0 fps		
10.7	137	Total			_			

10.7 137 Total

Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80" Printed 12/13/2023 CAD Software Solutions LLC Page 33

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 10-	yr Rainfall=4.80"
Prepared by Fuss & O'Neill	P	rinted 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 20	023 HydroCAD Software Solutions LLC	Page 34


Summary for Subcatchment 05S: P05

Runoff	=	0.28 cfs @	12.04 hrs, V	olume=	794 cf,	Depth= 3.18"
Routed	d to Lin	k 10L : DP3				

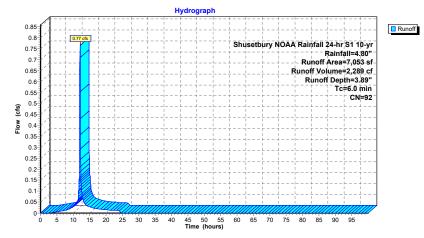
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

A	rea (sf)	CN	Description				
	0	49	50-75% Gra	ass cover, l	Fair, HSG A		
	2,804	84	50-75% Gra	ass cover, l	Fair, HSG D		
	188	98	Paved park	ing, HSG D)		
	0	36	Woods, Fai	r, HSG A			
	0	79	Woods, Fai	r, HSG D			
	0	98	Roofs, HSG D				
	0	98	Water Surface, 0% imp, HSG D				
	2,992	85	Weighted Average				
	2,804		93.72% Pervious Area				
	188		6.28% Impe	ervious Are	a		
Тс	Length	Slop	e Velocity	Capacity	Description		
(min)	(feet)	(ft/f) (ft/sec)	(cfs)			
6.0					Direct Entry, Minimum		

Subcatchment 05S: P05

20221110A10_PROP01	Shusetbury NOAA Rainfall 2	4-hr S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023 Hv	droCAD Software Solutions LLC	Page 35

Summary for Subcatchment 06S: P06


2,289 cf, Depth= 3.89"

Runoff = 0.77 cfs @ 12.04 hrs, Volume= Routed to Pond 12P : POND #3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

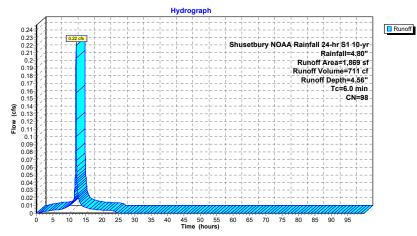
Α	rea (sf)	CN	Description					
	0	49	50-75% Grass cover, Fair, HSG A					
	2,971	84	50-75% Gra	ass cover, F	Fair, HSG D			
	4,082	98	Paved park	ing, HSG D)			
	0	36	Woods, Fai	r, HSG A				
	0	79	Woods, Fai	r, HSG D				
	0	98	Roofs, HSC	6 D				
	0	98	Water Surfa	ace, 0% imp	p, HSG D			
	7,053	92	Weighted A	verage				
	2,971		42.12% Pe	vious Area				
	4,082		57.88% Imp	pervious Ar	ea			
Tc	Length	Slop	e Velocity	Capacity	Description			
(min)	(feet)	(ft/fl) (ft/sec)	(cfs)				
6.0					Direct Entry, Minimum			

Subcatchment 06S: P06

Prepared by Fuss & O'Neill HydroCAD® 10.20-4a_s/n 01614_© 2023 Hydr							ydro	IroCAD Software Solutions LLC										Page 3			
					S	um	mai	ry fo	or S	Sub	cat	chr	nen	nt 0	7S:	P0	7				
unoff	=			cfs)3 hr	s, V	olur	me=			1,	197	cf, I	Dep	th=	4.56	"		
Rou	ted to	o Pono	11P	: PC	DND	#1															
unoff	by SO	CS TR	-20 r	nethe	od, l	JH=	scs	, We	eight	ted-	CN,	Tim	e Sp	oan=	= 0.0	0-99	9.99	hrs,	dt=	0.03	hrs
nuset	bury I	NOAA	Rair	itali 2	24-n	r S1	10-y	/r Ra	ainta	ali=4	1.80										
	Area	<u> </u>	CN		escri																
		0 0	49 84				ass ass														
		Ő	98				king,			an,	1100	50									
		0	36				ir, H														
	3 1	0 147	79 98		oods oofs,		ir, H	SGI	נ												
	0,	0	98				ace,	0%	imp	, HS	G E)									
		147	98				Vera														
	3,1	147		10	0.00	1% Ir	nper	viou	s Ar	rea											
Тс	: Le	ngth	Slo	ре	Velc	ocity	Ca	apaci	ity	De	scrip	otion									
(min)) (1	feet)	(ft	ft)	(ft/s	sec)		(cf	s)												
			(10	10	(100	,,,,			0/												
6.0)		(10	1()	(100				0/	Dir	ect	Enti	'y, N	linir	num	1					
6.0)		(10	<u></u>	(100		s									1					
6.0)			<u>it</u>)			s	ubc	ato	:hm	en					1					
6.0	A	+	-!	+		+	S	ubc	ato		en					1 !	+				
0.	4			++ ++		+	S	ubc	ato	:hm	en					1 	 + +		 	 + +	Runoff
	4	+ + +		++		+	S	ubc	ato	:hm	en	t 07	S: I	P07	• +	 		24-hī			Runoff
0. 0.3 0.3	4	+		+		+	S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff	Rainf Area	ali=4 =3,14	80" 7 sf	Runoff
0. 0.3 0.3	4						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume	all=4 =3,14 =1,19	80" 7 sf 7 cf	Runoff
0. 0.3 0.3 0.3 0.3 0.2	4						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19	80" 7 sf 7 cf 56"	Runoff
0. 0.3 0.3 0.3 0.2 0.2	4 86 4 2 3 8 8 6 6						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56"	Runoff
0. 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2	4 8 6 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
0. 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2	4-18-16-14-12-13-14-14-14-14-14-14-14-14-14-14-14-14-14-						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
0. 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2	4.12.2.2.88.66.44.12.2.2.88.66.44.12.2.2.88.66.44.12.2.88.66.44.12.2.2.88.66.44.12.2.88.66.44.12.2.88.66.44.12.2.88.66.44.12.2.88.66.44.12.2.88.66.44.88.66.44.12.2.88.66.44.288.66.44.88.66.44.44.88.66.48.66.44.88.66.44.88.66.44.88.66.44.88.66.48.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.44.88.66.48.88.66.48.88.66.44.88.66.48.88.66.48.88.66.48.66.48.88.66.48.66.48.88.66.66.48.66.48.88.66.66.48.66.66.88.66.66.66.66.66.66.66.66.66.66						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
.0 .3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1	4.886444222288644444444						S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
0. 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2							S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
0. 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2							S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff
0. 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1							S	ubc	ato	:hm	en	t 07	S: I	P07	NOA#	Rai	inoff ff Vo	Rainf Area lume f Dep	all=4 =3,14 =1,19 th=4 =6.0	80" 7 sf 7 cf 56" min	Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	r S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023 I	HvdroCAD Software Solutions LLC	Page 37

Summary for Subcatchment 08S: P08

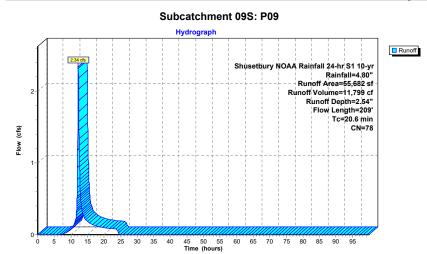

Runoff = 0.22 cfs @ 12.03 hrs, Volume= Routed to Pond 11P : POND #1

711 cf, Depth= 4.56"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

	A	rea (sf)	CN	Description						
		0	49	50-75% Grass cover, Fair, HSG A						
		0	84	50-75% Gra	50-75% Grass cover, Fair, HSG D					
		0	98	Paved parki	ing, HSG D					
		0	36	Woods, Fai	r, HSG A					
		0	79	Woods, Fai	r, HSG D					
		1,869	98	Roofs, HSG	D					
		0	98	Water Surfa	ice, 0% imp	o, HSG D				
		1,869	98	Weighted A	verage					
		1,869		100.00% Im	pervious A	rea				
	Тс	Length	Slop	e Velocity	Capacity	Description				
-	(min)	(feet)	(ft/fl	t) (ft/sec)	(cfs)					
	6.0					Direct Entry, Minimum				
		Subcatchmont 08S: D08								

Subcatchment 08S: P08



	10A10_ d by Fus	-		31	iuselbury N	IOAA Rainfall 24-hr S1	Printed 12/13/2023		
HydroCA	D® 10.20	-4a s/n 0	1614 © 202	23 HydroCA	D Software S	olutions LLC	Page 38		
Summary for Subcatchment 09S: P09									
Runoff Route	= ed to Link			3 hrs, Volu	me=	11,799 cf, Depth= 2.54	4"		
				SCS, Weigh 10-yr Rain		e Span= 0.00-99.99 hrs	, dt= 0.03 hrs		
A	rea (sf)	CN E	Description						
	3,802	49 5	50-75% Gra	ass cover, l	air, HSG A				
	19,931				air, HSG D				
	277	98 F	Paved park	ing, HSG D)				
	1,194	36 V	Voods, Fai	r, HSG A					
	30,478	79 V	Voods, Fai	r, HSG D					
	0	98 F	Roofs, HSC	6 D					
	0	98 V	Vater Surfa	ace, 0% imp	o, HSG D				
	55,682		Veighted A						
	55,405	ç	9.50% Pe	rvious Area					
	277	C).50% Impe	ervious Are	а				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descriptior	I			
18.8	100	0.0300	0.09		Sheet Flow	v.			
			2.50			ht underbrush n= 0.400) P2= 3.03"		
1.8	109	0.0430	1.04			oncentrated Flow,			
						Kv= 5.0 fps			
20.6	209	Total							

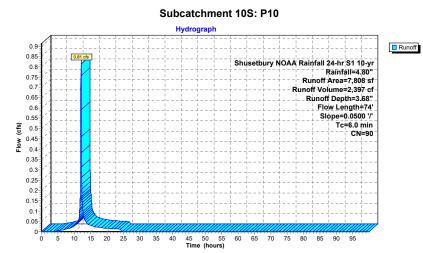
20.6 209 Total

Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80" Printed 12/13/2023 CAD Software Solutions LLC Page 39

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	nr S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 H	lydroCAD Software Solutions LLC	Page 40

Summary for Subcatchment 10S: P10

Runoff	=	0.81 cfs @	12.04 hrs, Volume=	2,397 cf,	Depth= 3.68"
Routed	to Pond	d 10P : POÑE) #2		

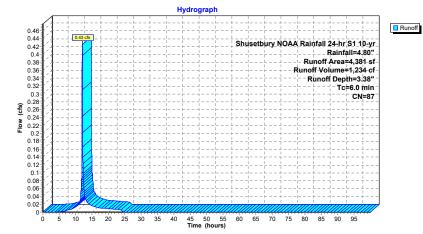

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

A	rea (sf)	CN	Description					
	0	49	50-75% Gra	ass cover, l	Fair, HSG A			
	3,994	84	50-75% Gra	ass cover, I	Fair, HSG D			
	912	98	Paved parking, HSG D					
	0	36	Woods, Fai	r, HSG A				
	210	79	Woods, Fai	r, HSG D				
	0	98	Roofs, HSC	G D				
	2,692	98	Nater Surfa	ace, 0% im	p, HSG D			
	7,808	90	Neighted A	verage				
	6,896		38.32% Pe	rvious Area				
	912		11.68% Imp	pervious Ar	ea			
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
4.7	23	0.0500	0.08		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.03"			
0.5	51	0.0500	1.57		Shallow Concentrated Flow,			
					Short Grass Pasture Kv= 7.0 fps			
52	74	Total	Increased t	to minimum	$T_{\rm C} = 6.0 \rm{min}$			

5.2 74 Total, Increased to minimum Tc = 6.0 min

Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80" Printed 12/13/2023 Page 41

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-I	nr S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 42


Summary for Subcatchment 11S: P11

Runoff	=	0.43 cfs @	12.04 hrs,	Volume=	1,234 cf,	Depth= 3.38"
Routed	to Pond	12P : PONE) #3			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 10-yr Rainfall=4.80"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, F	Fair, HSG A
	3,414	84	50-75% Gra	ass cover, F	Fair, HSG D
	0	98	Paved park	ing, HSG D)
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSG	6 D	
	967	98	Water Surfa	ice, 0% im	p, HSG D
	4,381	87	Weighted A	verage	
	4,381		100.00% Pe	ervious Are	a
Tc	Length	Slop	,	Capacity	Description
(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry, Minimum

Subcatchment 11S: P11

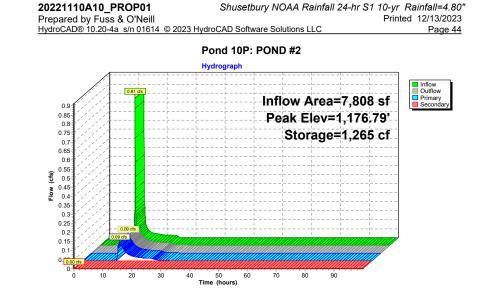
20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 43

Summary for Pond 10P: POND #2

Inflow Area =	7,808 sf,	11.68% Impervious	, Inflow Depth = 3.68" for 10-yr event
Inflow =	0.81 cfs @	12.04 hrs, Volume=	2,397 cf
Outflow =	0.09 cfs @	12.61 hrs, Volume=	1,630 cf, Atten= 88%, Lag= 34.7 min
Primary =	0.09 cfs @	12.61 hrs, Volume=	1,630 cf
Routed to Link	< 8L : DP2		
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0 cf
Routed to Link	< 8L : DP2		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,176.79' @ 12.61 hrs Surf.Area= 1,849 sf Storage= 1,265 cf

Plug-Flow detention time= 340.5 min calculated for 1,630 cf (68% of inflow) Center-of-Mass det. time= 221.3 min (1,025.9 - 804.5)


Volume	Invert	Avail.Sto	rage Storage	Description	
#1	1,176.00'	4,01	12 cf Custom	Stage Data (P	rismatic)Listed below (Recalc)
Elevatio (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,176.0		1,373	0	0	
1,177.0 1,178.0		1,979 2,692	1,676 2,336	1,676 4.012	
Device	Routing	Invert	Outlet Device	,-	
#1	Primary	1,175.23'	Inlet / Outlet I	P, square edge l nvert= 1,175.23	headwall, Ke= 0.500 ' / 1,175.00' S= 0.0052 '/' Cc= 0.900
#2	Device 1	1,177.00'	24.0" x 24.0"	rugated PE, sm Horiz. Grate (ir flow at low hea	
#3 #4	Device 1 Secondary	1,176.50' 1,177.50'	10.0' long x Head (feet) 0	10.0' breadth B	Limited to weir flow at low heads croad-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=0.09 cfs @ 12.61 hrs HW=1,176.79' TW=0.00' (Dynamic Tailwater) ______1=Culvert (Passes 0.09 cfs of 3.29 cfs potential flow)

2=Grate (Controls 0.00 cfs)

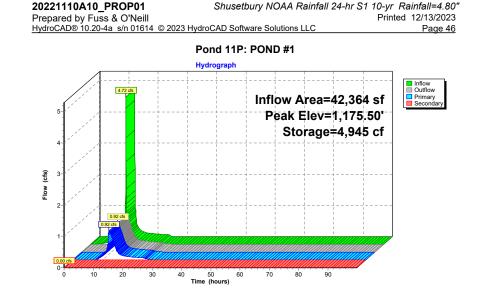
-3=Orifice (Orifice Controls 0.09 cfs @ 1.93 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,176.00' TW=0.00' (Dynamic Tailwater)

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hi	r S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 45

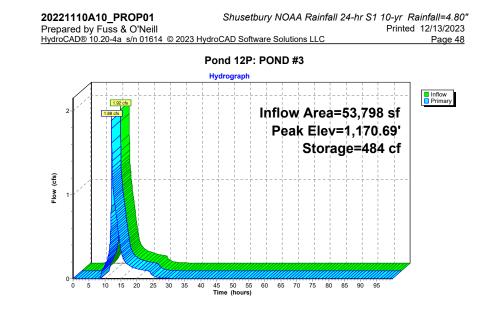
Summary for Pond 11P: POND #1

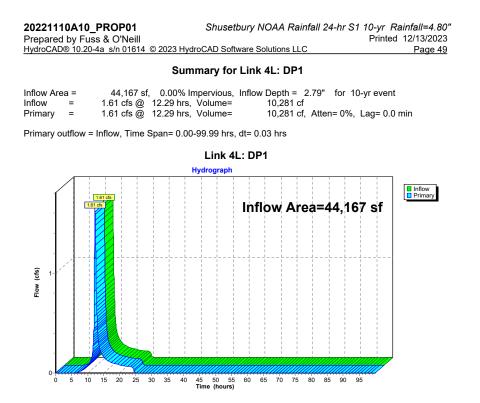
Inflow Area =	42,364 sf,	53.81% Impervious	s, Inflow Depth = 4.07" for 10-yr event
Inflow =	4.72 cfs @	12.04 hrs, Volume	= 14,362 cf
Outflow =	0.92 cfs @	12.36 hrs, Volume	= 13,512 cf, Atten= 81%, Lag= 19.5 min
Primary =	0.92 cfs @	12.36 hrs, Volume	= 13,512 cf
Routed to Pon	d 12P : POND	#3	
Secondary =	0.00 cfs @	0.00 hrs, Volume	= 0 cf
Routed to Link	8L : DP2		


Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,175.50'@ 12.36 hrs Surf.Area= 3,931 sf Storage= 4,945 cf

Plug-Flow detention time= 144.2 min calculated for 13,512 cf (94% of inflow) Center-of-Mass det. time= 108.8 min (892.0 - 783.2)

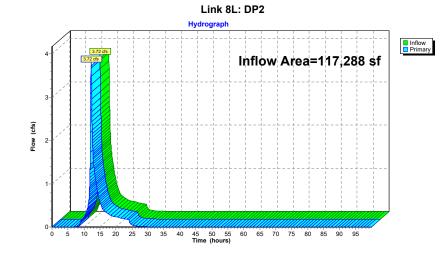
Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	1,174.00'	11,90	04 cf Custor	n Stage Data (Pi	rismatic)Listed below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,174.0 1,175.0		2,675 3,524	0 3,100	0 3,100	
1,176.0 1,177.0		4,347 5,391	3,936 4,869	7,035 11,904	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,173.50'	12.0" Roun		neadwall, Ke= 0.500
			Inlet / Outlet	Invert= 1,173.50	/ 1,170.00' S= 0.0422 '/' Cc= 0.900 poth interior, Flow Area= 0.79 sf
#2	Device 1	1,176.00'		"Horiz. Grate (
#3 #4	Device 1 Secondary	1,174.30' 1,176.25'	10.0' long x Head (feet)	a 10.0' breadth B 0.20 0.40 0.60	Limited to weir flow at low heads road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60
	,	,	Head (feet)	0.20 0.40 0.60	

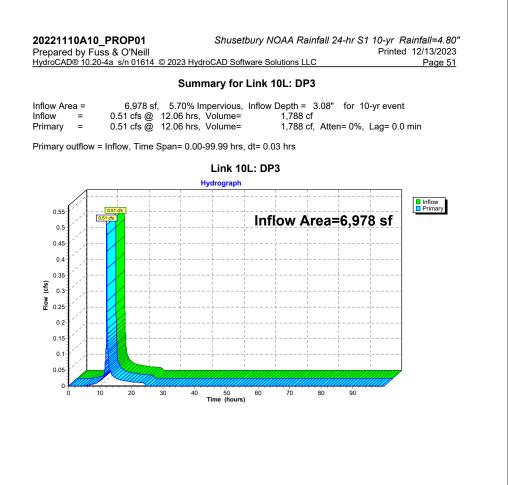

Primary OutFlow Max=0.92 cfs @ 12.36 hrs HW=1,175.50' TW=1,170.64' (Dynamic Tailwater) 1=Culvert (Passes 0.92 cfs of 4.62 cfs potential flow) 2=Grate (Controls 0.00 cfs) 3=Orifice (Orifice Controls 0.92 cfs @ 4.68 fps)


Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,174.00' TW=0.00' (Dynamic Tailwater)

Prepared by Fu		2023 HydroCAD	Software Solutions LLC	Printed 12/13/2023 Page 47
IJUIOCAD® 10.20	-4a 3/1101014 @	2023 Hydrocad	Soltware Solutions LEC	Fage 47
	9	Summary for	Pond 12P: POND #3	
Inflow Area =			ous, Inflow Depth = 3.80" for 10)-yr event
Inflow =		2.04 hrs, Volum		
Outflow =		2.06 hrs, Volum 2.06 hrs, Volum		Lag= 1.1 min
Primary = Routed to Lin		2.00 115, VOIUI		
			0-99.99 hrs, dt= 0.03 hrs / 2 12 sf Storage= 484 cf	
	0.09 @ 12.00 113	Sull.Alea- 04	12 SI Slolaye- 404 CI	
Plug-Flow detent	ion time= 29.2 m	in calculated for	16,695 cf (98% of inflow)	
	ion time= 29.2 m det. time= 11.0 m			
Center-of-Mass	det. time= 11.0 m	in (884.5 - 873.	5)	
Center-of-Mass o	det. time= 11.0 m vert Avail.Sto	in (884.5 - 873. rage Storage I	5) Description	w (Pocolo)
Center-of-Mass	det. time= 11.0 m vert Avail.Sto	in (884.5 - 873. rage Storage I	5)	w (Recalc)
Center-of-Mass o	det. time= 11.0 m <u>vert Avail.Sto</u> .00' 7(Surf.Area	in (884.5 - 873. rage Storage I	5) Description	w (Recalc)
Center-of-Mass of Volume Inv #1 1,170 Elevation (feet)	det. time= 11.0 m /ert Avail.Sto .00' 7(Surf.Area (sq-ft)	in (884.5 - 873. <u>rage Storage I</u> 58 cf Custom	5) Description Stage Data (Prismatic)Listed belo	w (Recalc)
Center-of-Mass of <u>Volume Inv</u> #1 1,170 Elevation <u>(feet)</u> 1,170.00	det. time= 11.0 m <u>vert Avail.Sto</u> .00' 7(Surf.Area <u>(sq-ft)</u> 568	in (884.5 - 873. rage Storage I 58 cf Custom Inc.Store (cubic-feet) 0	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet) 0	w (Recalc)
Center-of-Mass of Volume Inv #1 1,170 Elevation (feet)	det. time= 11.0 m /ert Avail.Sto .00' 7(Surf.Area (sq-ft)	in (884.5 - 873. r <u>age Storage I</u> 58 cf Custom Inc.Store (cubic-feet)	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet)	w (Recalc)
Center-of-Mass of <u>Volume Inv</u> #1 1,170 Elevation <u>(feet)</u> 1,170.00	det. time= 11.0 m vert Avail.Sto .00' 74 Surf.Area (sq-ft) 568 967	in (884.5 - 873. rage Storage I 58 cf Custom Inc.Store (cubic-feet) 0	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet) 0 768	w (Recalc)
Center-of-Mass (Volume Im #1 1,170 Elevation (feet) 1,170.00 1,171.00 1,171.00	det. time= 11.0 m vert Avail.Sto .00' 74 Surf.Area (sq-ft) 568 967 I Invert	in (884.5 - 873. rage Storage I 58 cf Custom Inc.Store (cubic-feet) 0 768 Outlet Devices 10.0' long x 5	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet) 0 768 5.0' breadth Broad-Crested Recta	ngular Weir
Center-of-Mass (Volume Im #1 1,170 Elevation (feet) 1,170.00 1,170.00 1,171.00 Device Routing	det. time= 11.0 m vert Avail.Sto .00' 74 Surf.Area (sq-ft) 568 967 I Invert	in (884.5 - 873. rage Storage I 58 cf Custom Inc.Store (cubic-feet) 0 768 Outlet Devices Head (feet) 0.	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet) 0 768 5. 6. 6. 6. 6. 768 5. 6. 768 6. 768 768 768 768 768 768 768 768	ngular Weir
Center-of-Mass (Volume Im #1 1,170 Elevation (feet) 1,170.00 1,170.00 1,171.00 Device Routing	det. time= 11.0 m vert Avail.Sto .00' 74 Surf.Area (sq-ft) 568 967 I Invert	in (884.5 - 873. rage Storage I 58 cf Custom Inc.Store (cubic-feet) 0 768 Outlet Devicess 10.0' long x 5 Head (feet) 0. 2.50 3.00 3.5	5) Description Stage Data (Prismatic)Listed belo Cum.Store (cubic-feet) 0 768 5.0' breadth Broad-Crested Recta	ngular Weir 10 1.60 1.80 2.00

Primary OutFlow Max=1.88 cfs @ 12.06 hrs HW=1,170.69' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 1.88 cfs @ 1.01 fps)




20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	S1 10-yr Rainfall=4.80"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 50

Summary for Link 8L: DP2

Inflow Are	ea =	117,288 sf, 23.93% Impervious	Inflow Depth = 3.08"	for 10-yr event
Inflow	=	3.72 cfs @ 12.21 hrs, Volume=	30,129 cf	-
Primary	=	3.72 cfs @ 12.21 hrs, Volume=	30,129 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs

Time span=0.00-100.00 hrs, Runoff by SCS TR-20 metho Reach routing by Dyn-Stor-Ind method	dt=0.02 bro. 2224 points x 2
	od, UH=SCS, Weighted-CN
	Area=32,249 sf 0.00% Impervious Runoff Depth=3.69" =222' Tc=31.2 min CN=80 Runoff=1.53 cfs 9,920 cf
	Area=11,918 sf 0.00% Impervious Runoff Depth=4.00" 130 // Tc=17.6 min CN=83 Runoff=0.83 cfs 3,971 cf
Subcatchment03S: P03 Runoff Ar	ea=37,348 sf 47.60% Impervious Runoff Depth=5.08" Tc=6.0 min CN=93 Runoff=5.04 cfs 15,823 cf
	Area=3,986 sf 5.27% Impervious Runoff Depth=4.00" 200 // Tc=10.7 min CN=83 Runoff=0.35 cfs 1,328 cf
Subcatchment05S: P05 Runoff	Area=2,992 sf 6.28% Impervious Runoff Depth=4.21" Tc=6.0 min CN=85 Runoff=0.35 cfs 1,049 cf
Subcatchment06S: P06 Runoff A	Area=7,053 sf 57.88% Impervious Runoff Depth=4.97" Tc=6.0 min CN=92 Runoff=0.94 cfs 2,922 cf
Subcatchment07S: P07 Runoff Ar	ea=3,147 sf 100.00% Impervious Runoff Depth=5.66" Tc=6.0 min CN=98 Runoff=0.44 cfs 1,485 cf
Subcatchment08S: P08 Runoff Ar	ea=1,869 sf 100.00% Impervious Runoff Depth=5.66" Tc=6.0 min CN=98 Runoff=0.26 cfs 882 cf
	Area=55,682 sf 0.50% Impervious Runoff Depth=3.49" 209' Tc=20.6 min CN=78 Runoff=3.14 cfs 16,198 cf
	Area=7,808 sf 11.68% Impervious Runoff Depth=4.75" 0500 '/' Tc=6.0 min CN=90 Runoff=1.01 cfs 3,090 cf
Subcatchment11S: P11 Runoff	Area=4,381 sf 0.00% Impervious Runoff Depth=4.42" Tc=6.0 min CN=87 Runoff=0.54 cfs 1,614 cf
	v=1,176.95' Storage=1,583 cf Inflow=1.01 cfs 3,090 cf f Secondary=0.00 cfs 0 cf Outflow=0.14 cfs 2,323 cf
	=1,175.74' Storage=5,950 cf Inflow=5.75 cfs 18,190 cf Secondary=0.00 cfs 0 cf Outflow=1.03 cfs 17,339 cf
Pond 12P: POND #3 Peak Ele	v=1,170.71' Storage=504 cf Inflow=2.30 cfs 21,875 cf Outflow=2.26 cfs 21,541 cf
Link 4L: DP1	Inflow=2.12 cfs 13,891 cf Primary=2.12 cfs 13,891 cf
Link 8L: DP2	Inflow=4.77 cfs 40,062 cf Primary=4.77 cfs 40,062 cf

 20221110A10_PROP01
 Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

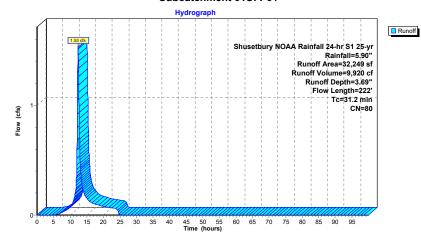
 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 53

Link 10L: DP3

Inflow=0.65 cfs 2,377 cf Primary=0.65 cfs 2,377 cf

Total Runoff Area = 168,433 sf Runoff Volume = 58,281 cf Average Runoff Depth = 4.15" 83.10% Pervious = 139,970 sf 16.90% Impervious = 28,463 sf

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 I	HydroCAD Software Solutions LLC	Page 54


Summary for Subcatchment 01S: P01

Runoff	=	1.53 cfs @	12.37 hrs, Volume=	9,920 cf, Depth= 3.69"
Route	d to Li	nk 4L : DP1		

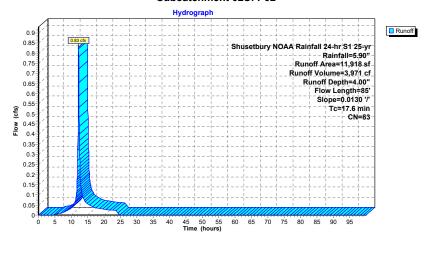
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

_	A	rea (sf)	CN	Description		
-		0	49	50-75% Gra	ass cover, l	Fair, HSG A
		3,462	84	50-75% Gra	ass cover, F	Fair, HSG D
		0	98	Paved park	ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
		28,787	79	Woods, Fai	r, HSG D	
		0	98	Roofs, HSC	6 D	
		0	98	Water Surfa	ace, 0% imp	p, HSG D
		32,249	80	Weighted A	verage	
		32,249		100.00% P	ervious Are	a
	Tc	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f) (ft/sec)	(cfs)	
	29.1	100	0.010	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.03"
	2.1	122	0.020	0 0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	31.2	222	Total			

31.2 222 Total

Subcatchment 01S: P01

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 2	5-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	23 HydroCAD Software Solutions LLC	Page 55


Summary for Subcatchment 02S: P02

Runoff = 0.83 cfs @ 12.19 hrs, Volume= 3,971 cf, Depth= 4.00" Routed to Link 4L : DP1

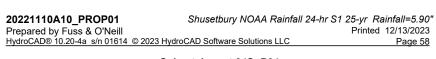
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

					escription	CN D	rea (sf)	A
			air. HSG A	ass cover. F	0-75% Gra	49 5	0	
			air, HSG D	ass cover, F	0-75% Gra	84 5	9,878	
				ing, HSG D	aved park	98 P	0	
				ir, HSG A	Voods, Fai	36 V	0	
				ir, HSG D	Voods, Fai	79 V	2,040	
				ĞD	loofs, HSC	98 R	0	
			, HSG D	ace, 0% imp	Vater Surfa	98 V	0	
				verage	Veiahted A	83 V	11.918	
			а	ervious Are			11.918	
							,	
			Description	Capacity	Velocity	Slope	Length	Tc
			•	(cfs)	(ft/sec)	(ft/ft)	(feet)	(min)
			Sheet Flow.		0.12	0.0130	54	73
		n= 0.150 P2= 3.03"			02	0.0.00	•••	
					0.05	0.0130	31	10.3
	P2= 3.03"	underbrush n= 0.400	,		0.00		0.	
						Total	85	17.6
-	P2= 3.03"		a Description Sheet Flow, Grass: Short Sheet Flow,	ir, HSG A ir, HSG D G D ace, <u>0% imp</u> verage ervious Are Capacity	Voods, Fai Voods, Fai Voofs, HSC Vater Surfa Veighted A 00.00% Po Velocity (ft/sec) 0.12	36 V 79 V 98 R 98 V 83 V 1 Slope (ft/ft) 0.0130	0 2,040 0 11,918 11,918 Length (feet) 54	<u>(min)</u> 7.3

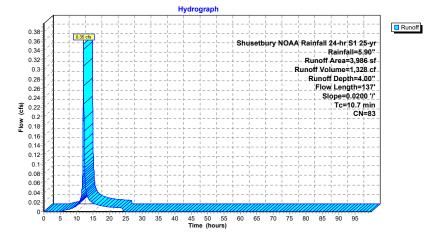
Subcatchment 02S: P02

Summary for Subcatchment 03S: P03 Runoff = _ 5.04 cfs @ 12.04 hrs, Volume: _ 15,823 cf, Depth= 5.08". Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Subort of the SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Area (sf) CN Description 0 49 50-75% Grass cover, Fair, HSG D 14,179 84 50-75% Grass cover, Fair, HSG D 0 36 Woods, Fair, HSG D 0 79 Woods, Fair, HSG D 0 79 Woods, Fair, HSG D 0 98< Roofs, HSG D 99 19,570 52.40% Pervious Area 17,778 47.00% Impervious Area Tc Length Slope 19,570 52.40% Pervious Area 17,778 47.00% Impervious Area Tc Length Slope 19 Buter Sufface, 0% imp, HSG D 19,570 52.40% Pervious Area 17,778 47.00% Impervious Area 19 Buter Sufface 19 Buter Sufface 19 Buter Sufface 19 Buter Sufface	21110A10_ pared by Fus roCAD® 10.20-			-	Rainfall 24-hr S		nfall=5.90" 2/13/2023 Page <u>56</u>
Routed to Pond 11P : POND #1 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90" Area (sf) CN Description 0 49 50-75% Grass cover, Fair, HSG A 14,179 84 50-75% Grass cover, Fair, HSG D 17,778 98 Paved parking, HSG D 0 36 Woods, Fair, HSG A 0 79 Woods, Fair, HSG A 0 79 Woods, Fair, HSG D 5,391 98 Water Suface, 0% imp, HSG D 5,391 98 Water Suface, 0% imp, HSG D 37,348 93 Weighted Average 19,570 52.40% Pervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph 4 4 4 4 4 4 5 4 4 4 4 5 5 4 4 4 4 5 5 5 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5		Sumn	mary for Subo	catchment (03S: P03		
Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90" Area (sf) CN Description 0 49 50-75% Grass cover, Fair, HSG A 14,179 84 50-75% Grass cover, Fair, HSG D 17,778 98 Paved parking, HSG D 0 36 Woods, Fair, HSG A 0 79 Woods, Fair, HSG A 0 79 Woods, Fair, HSG D 5,391 98 Water Surface, 0% imp, HSG D 37,348 93 Weighted Average 19,570 52,40% Pervious Area 17,778 47.60% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph 0 Shusetbury NOAA Rainfall 24-hr S1 25-yr Runoff Veloum=15,828 73.48 sf Runoff Veloum=15,828 73.48 sf Runoff Veloum=15,828 73.48 sf Runoff Veloum=15,828 73.48 sf Runoff Veloum=15,828 748 sf Ru			4 hrs, Volume=	15,823	3 cf, Depth= 5	.08"	
0 49 50-75% Grass cover, Fair, HSG A 14,179 84 50-75% Grass cover, Fair, HSG D 17,778 98 Paved parking, HSG A 0 36 Woods, Fair, HSG A 0 79 Woods, Fair, HSG D 0 98 Roofs, HSG D 5,391 98 Water Surface, 0% imp, HSG D 37,348 93 Weighted Average 19,570 52.40% Pervious Area 17,778 47.60% Impervious Area Tc Length Slope 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph Runoff Area=37.348 sf Group of the second of t					n= 0.00-99.99 h	rs, dt= 0.03 hr	S
14,179 84 50-75% Grass cover, Fair, HSG D 17,778 98 Paved parking, HSG D 0 36 Woods, Fair, HSG D 0 98 Roofs, HSG D 5,391 98 Water Surface, 0% imp, HSG D 37,348 93 Weighted Average 19,570 52.40% Pervious Area 17,778 47.60% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph Hydrograph 19 10 10 10 10 10 10 10 10 10 10	Area (sf)	CN Description					
37,348 93 Weighted Average 19,570 52.40% Pervious Area 17,778 47.60% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph Hydrograph Runoff Volume=15,823 cf Runoff Volume=15,823 cf	14,179 17,778 0 0	84 50-75% Gra 98 Paved parki 36 Woods, Fair 79 Woods, Fair	ass cover, Fair, H ing, HSG D r, HSG A r, HSG D				
19,570 52.40% Pervious Area 17,778 47.60% Impervious Area Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph Hydrograph Runoff Area=37,348 sf Runoff Area=37,348 sf Runoff Depth=5.08" Tc F6.0 min CN=93 0 0 0 0 0 0 0 0 0 0 0 0 0	,			G D			
(min) (feet) (ft/ft) (ft/sec) (cfs) 6.0 Direct Entry, Minimum Subcatchment 03S: P03 Hydrograph 6.0 Shusetbury NOAA Rainfall 24-hr S1 25-yr Runoff Area37,348 sf Runoff Area37,348 sf 7 Runoff Area37,348 sf 8 Runoff Area37,348 sf 9 0	19,570	52.40% Per	rvious Area				
Guerrant of the second	nin) (feet)		(cfs)	-	imum		
Hydrograph	0.0		Dire	ct Entry, with	iniuni		
(g) 3 4 4 5 5 6 6 6 7 8 10 15 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 70 85 70 80 85 70 80 85 70 80 85 80 80 80 80 80 80 80 80 80 80			Subcatchme	ent 03S: P0	3		
(9) 3 4 5 5 4 4 5 5 6 6 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1		<u>, , , , , , , , , , , , , , , , , , , </u>	Hydrograph				
5 6 7 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1							Runoff
(9) 4 4 4 4 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 80 85 90 95 80 80 80 80 80 80 80 80 80 80				Shusetbury			
4 Runoff Depth=5.08" Tc=6.0 min cN=93 90 0 3 0					Runoff Are	ea=37,348 sf	
(F) 3 4 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 5 10 15 20 25 30 35 40 45 55 60 65 75 75 80 85 90 95 5 80 85 90 95 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 80 85 80 85 80 85 80 85 80 80 85 80 80 80 80 80 80 80 80 80 80	4-					Depth=5.08"	
	3-4						
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95							
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	1						
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95							
Time (hours)	0 5 10	15 20 25 30 3			75 80 85	90 95	
			Time (hours	s)			

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	3 HydroCAD Software Solutions LLC	Page 57


Summary for Subcatchment 04S: P04

Runoff = 0.35 cfs @ 12.10 hrs, Volume= 1,328 cf, Depth= 4.00" Routed to Link 10L : DP3

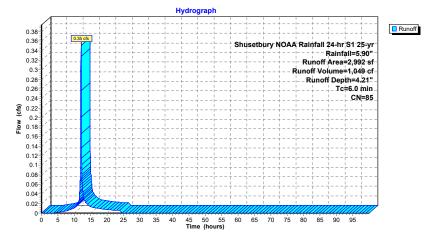

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

A	rea (sf)	CN I	Description		
	0	49 5	50-75% Gra	ass cover, F	Fair, HSG A
	2,774	84 5	50-75% Gra	ass cover, F	Fair, HSG D
	210	98 F	Paved park	ing, HSG D	
	0	36 \	Noods, Fai	r, HSG A	
	1,002	79 N	Noods, Fai	r, HSG D	
	0	98 F	Roofs, HSC	6 D	
	0	98 \	Nater Surfa	ace, 0% imp	o, HSG D
	3,986	83 N	Neighted A	verage	
	3,776	ę	94.73% Pe	rvious Area	
	210	ę	5.27% Impe	ervious Area	a
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.1	100	0.0200	0.17		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.03"
0.6	37	0.0200	0.99		Shallow Concentrated Flow,
-					Short Grass Pasture Kv= 7.0 fps

10.7 137 Total

Subcatchment 04S: P04

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	nr S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 59


Summary for Subcatchment 05S: P05

Runoff = 0.35 cfs @ 12.04 hrs, Volume= 1,049 cf, Depth= 4.21" Routed to Link 10L : DP3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

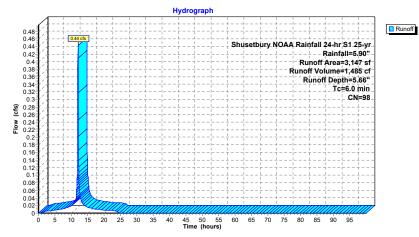
A	rea (sf)	CN	Description			
	0	49	50-75% Gra	ass cover, F	Fair, HSG A	
	2,804	84	50-75% Gra	ass cover, F	Fair, HSG D	
	188	98	Paved park	ing, HSG D)	
	0	36	Woods, Fai	r, HSG A		
	0	79	Woods, Fai	r, HSG D		
	0	98	Roofs, HSG	6 D		
	0	98	Water Surfa	ace, 0% imp	p, HSG D	
	2,992	85	Weighted A	verage		
	2,804		93.72% Per	vious Area	1	
	188		6.28% Impe	ervious Area	a	
Tc	Length	Slope	e Velocity	Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry, Minimum	
					-	

Subcatchment 05S: P05

	1-4a S/I	n 01614														Page 6
		9	Sum	mary	for S	Subc	atchi	nen	t 00	6S:	P0(6				
off = Routed to Por		cfs @ : PONE		4 hrs,	Volu	me=		2,9	922	cf, I	Dep	th=	4.97			
					Voigh	tod CI	I Tim	- F r			0.00	0.00	hro	d+= 0	0.2 P	270
off by SCS T setbury NOA								ie op	an-	0.0	0-9:	9.99	ms,	ui– 0	.031	115
Area (sf)	CN	Descr	iption													
0	49			ass co												
2,971	84			ass co			SG D									
4,082 0	98 36			ing, H ir, HSC												
Ő	79			ir, HSC												
0	98	Roofs	, HSC	ĞD												
0	98			ace, 0		, HSG	D									
7,053 2,971	92			verag rvious												
4.082				pervious		a										
,																
Tc Length		be Vel				Desc	riptior	1								
<u>nin) (feet)</u> 6.0	(ft/	IL) (IL	/sec)	(cfs)	Diroc	t Ent		linir	nm						
0.0						Direc	ι Επι	y, w		num						
											-					
				Sub	ocato	chme	nt 06	5S: I	> 06		-					
					ocato Hydrog		nt 06	5S: I	P 06		_				_	
							nt 06	5S: I	206							Runoff
1-											 					Runoff
1	94 cfs										 			S1 25-		Runoff
1-	94 cfs									AON	Rai	F noff	Rainf Area	all=5.9 =7,053	o" sf	Runoff
1-	94 cfs									AON	Rai Ru	F Inoff ff Vol	Rainf Area ume	all=5.9 =7,053 =2,922	o" sf cf	Runoff
1-	94 cfs									AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	Runoff
	94 cfs									AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9	o" sf cf 7" in	Runoff
	94 cfs									AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	Runoff
1-										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	E Runoff
										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	Runoff
	94 cfs									AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	Runoff
										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	E Runoff
										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	E Runoff
										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	E Runoff
										AON	Rai Ru	F Inoff ff Vol	Rainf Area ume f Dep	all=5.9 =7,053 =2,922 th=4.9 =6.0 m	o" sf cf 7" in	E Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	r S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023 I	HvdroCAD Software Solutions LLC	Page 61

Summary for Subcatchment 07S: P07


1,485 cf, Depth= 5.66"

Runoff = 0.44 cfs @ 12.03 hrs, Volume= Routed to Pond 11P : POND #1

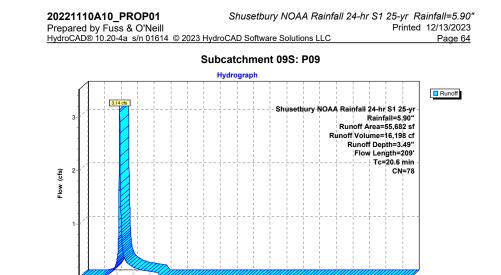
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ss cover, F	Fair, HSG A
	0	84	50-75% Gra	ss cover, F	Fair, HSG D
	0	98	Paved parki	ng, HSG D)
	0	36	Woods, Fair	, ĤSG A	
	0	79	Woods, Fair	, HSG D	
	3,147	98	Roofs, HSG	D	
	0	98	Water Surfa	ce, 0% imp	p, HSG D
	3,147	98	Weighted A	verage	
	3,147		100.00% Im	pervious A	Area
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry, Minimum

Subcatchment 07S: P07

droCA			,	Sum	mary	for	Sub	cat	chm	nont	089		18				
"					-				CIIII								
noff Rout	= ted to Por		i cfs @ : PONI)3 hrs,	Volu	me=			88	32 ct	, De	oth=	5.66			
noff l	by SCS T	R-20 m	nethod	UH=	SCS I	Weigh	ited_i	CN	Time	Sna	in= (00-0	0 00	hrs	dt=	0 03	hrs
usett	bury NOA	A Rain	fall 24-	hr S1	25-yr	Raint	fall={	5.90'	'	, opu	C		0.00	1113,	ut-	0.00	1113
A	Area (sf)	CN	Desci	riptior	ı												
	0	49			ass co												
	0	84 98			ass co king, H			HSG	ΒD								
	Õ	36	Wood	ls, Fa	ir, HS	GΑ											
	0 1.869	79 98	Wood Roofs		ir, HS	G D											
	1,869	98 98			ace, 0	% imr	o. HS	SG D)								
	1,869	98	Weig	hted A	Avera	je											
	1,869		100.0	0% Ir	npervi	ous A	rea										
Tc	Lenath	Slor	be Ve	locitv	Cap	acitv	Des	scrip	tion								
			pe Ve ft) (ft	locity /sec)		acity (cfs)	Des	scrip	tion								
Tc <u>min)</u> 6.0	(feet)									y, Miı	nimu	ım					
min)	(feet)					(cfs)	Dir	ect	Entry			ım					
min)	(feet)					(cfs) bcate	Dir chm	ect l	Entry			ım					
min)	(feet)					(cfs)	Dir chm	ect l	Entry			JM		1	1		
min)	(feet)					(cfs) bcate	Dir chm	ect l	Entry	S: P(08		-+				Runoff
<u>min)</u> 6.0	(feet)	(ft/1				(cfs) bcate	Dir chm	ect l	Entry		08						Runoff
0.28 0.26 0.26	(feet)	(ft/1				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	 AA R: 	unoff	Rainf Area	all=5. =1,86	90" 9_sf_	Runoff
0.28 0.26 0.22 0.22	8 6 4 2	(ft/1				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F		Rainf Area /olum	all=5. =1,86 e=88	90" 9_sf_ 2 cf	Runoff
0.26 0.26 0.22 0.22 0.22	8 4 	(ft/1				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
min) 6.0 0.26 0.22 0.22 0.22 0.22 0.24	(feet)	(ft/1				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66"	Runoff
0.28 0.26 0.22 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/1				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.28 0.28 0.29 0.22 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.22		(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.28 0.28 0.29 0.22 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff
0.24 0.24 0.22 0.22 0.22 0.22 0.22 0.22	(feet)	(ft/i				(cfs) bcate	Dir chm	ect l	Entry	S: P(08	AA R: F	unoff Inoff \	Rainf Area /olum f Dep	all=5. =1,86 e=88 th=5. =6.0	90" 9_sf_ 2 cf 66" min_	Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	3 HydroCAD Software Solutions LLC	Page 63


Summary for Subcatchment 09S: P09

Runoff = 3.14 cfs @ 12.23 hrs, Volume= 16,198 cf, Depth= 3.49" Routed to Link 8L : DP2

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

A	rea (sf)	CN I	Description		
	3,802	49	50-75% Gra	ass cover, F	Fair, HSG A
	19,931	84 9	50-75% Gra	ass cover, F	Fair, HSG D
	277	98 I	Paved park	ing, HSG D	
	1,194	36	Noods, Fai	r, HSG A	
	30,478	79	Noods, Fai	r, HSG D	
	0	98 I	Roofs, HSG	6 D	
	0	98	Nater Surfa	ace, 0% imp	o, HSG D
	55,682	78	Neighted A	verage	
	55,405	9	99.50% Pei	vious Area	
	277	(0.50% Impe	ervious Area	a
_				. .	
Тс	Length	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
18.8	100	0.0300	0.09		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.03"
1.8	109	0.0430	1.04		Shallow Concentrated Flow,
					Woodland Kv= 5.0 fps

20.6 209 Total

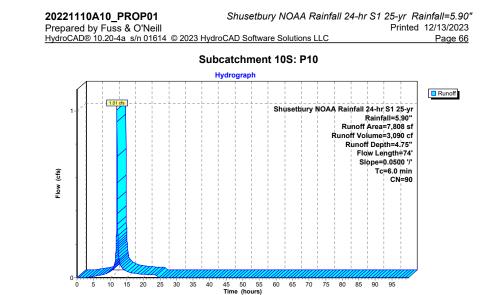
45 50 55 Time (hours) 60 65 70 75 80 85 90 95

0 5

10 15 20 25 30 35 40

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 20	23 HvdroCAD Software Solutions LLC	Page 65

Summary for Subcatchment 10S: P10


Runoff = 1.01 cfs @ 12.04 hrs, Volume= Routed to Pond 10P : POND #2

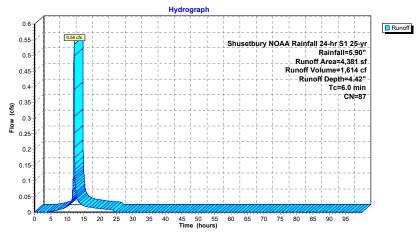
me= 3,090 cf, Depth= 4.75"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"

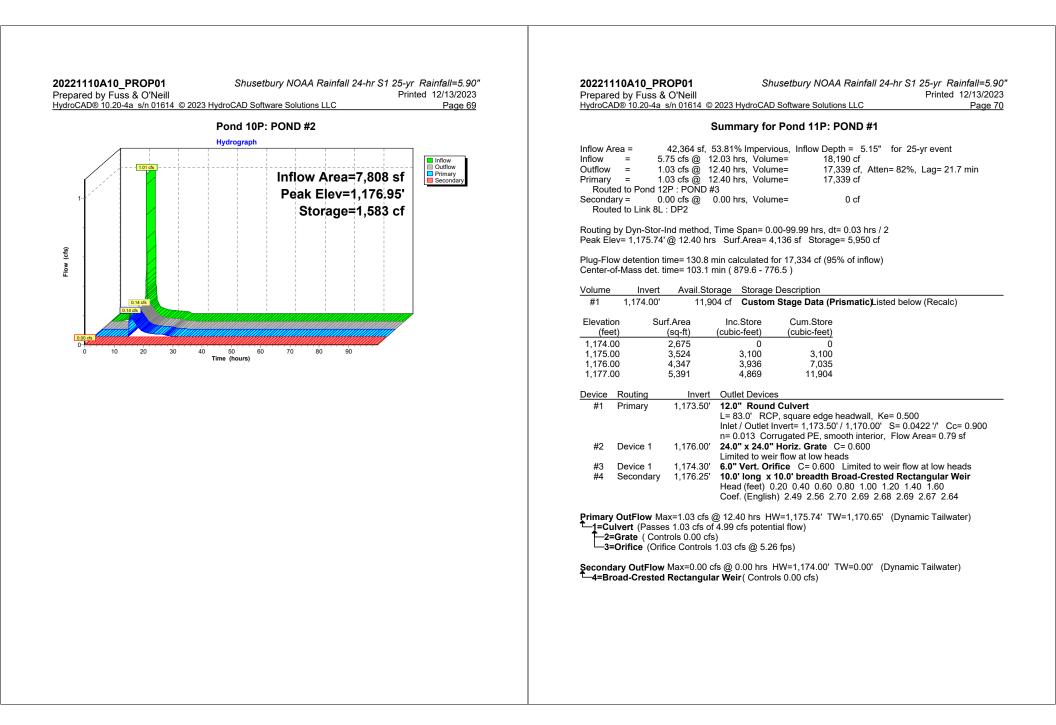
٨	rea (sf)	CN I	Description		
		-			
	0			,	Fair, HSG A
	3,994				Fair, HSG D
	912	98 F	Paved park	ing, HSG E	
	0	36 \	Voods, Fai	r, HSG A	
	210	79 N	Voods, Fai	r, HSG D	
	0	98 F	Roofs, HSC	D	
	2,692	98 \	Vater Surfa	ace, 0% im	o, HSG D
	7,808	90 \	Veighted A	verage	
	6.896	8	38.32% Pei	vious Area	
	912		1.68% Imp	pervious Ar	ea
Тс	Length	Slope	Velocitv	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
4.7	23	0.0500	0.08	()	Sheet Flow,
	20	0.0000	0.00		Woods: Light underbrush n= 0.400 P2= 3.03"
0.5	51	0.0500	1.57		0
0.5	51	0.0500	1.57		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

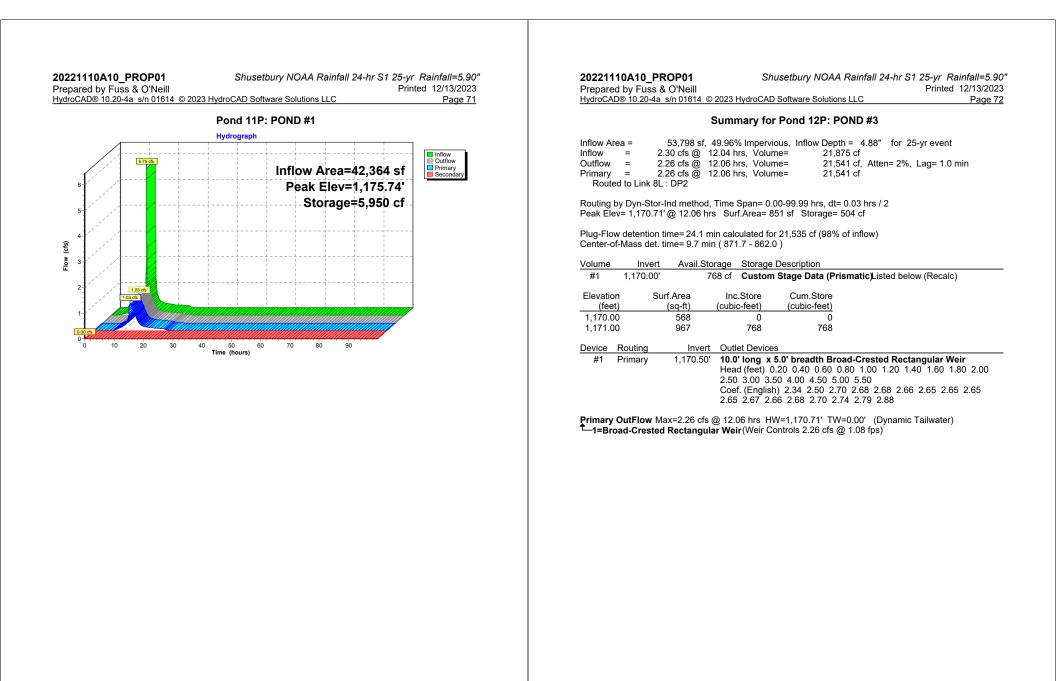
5.2 74 Total, Increased to minimum Tc = 6.0 min

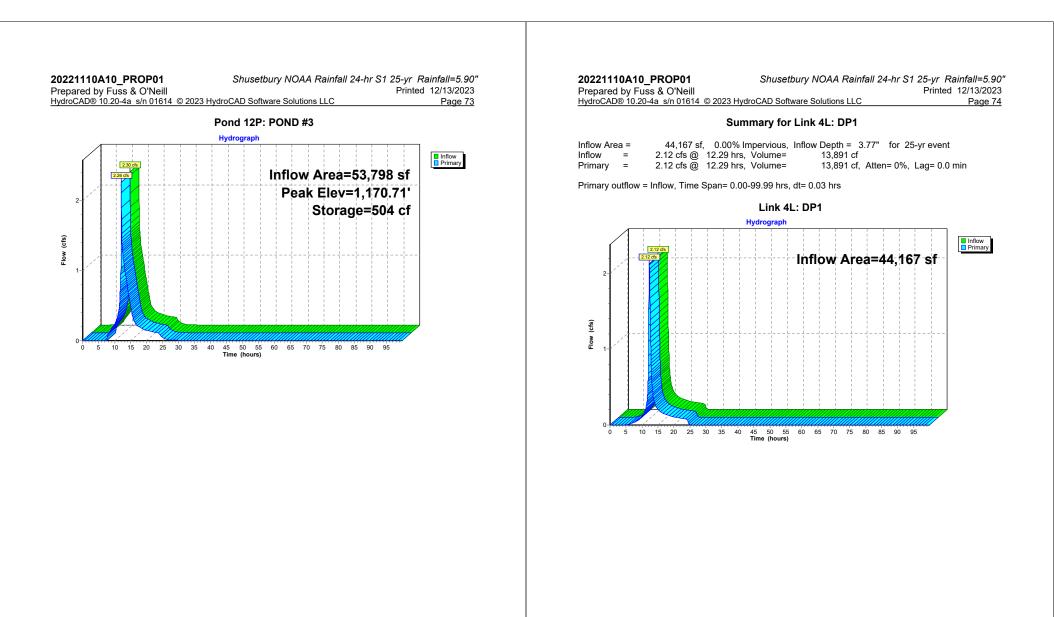
20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 20	23 HvdroCAD Software Solutions LLC	Page 67

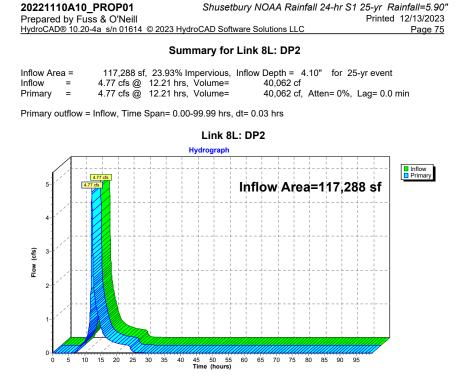

Summary for Subcatchment 11S: P11

1,614 cf, Depth= 4.42"

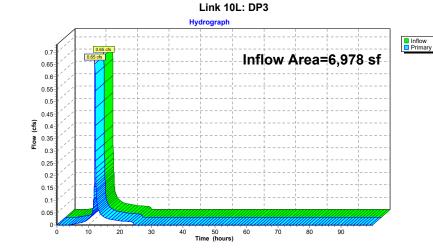

Runoff = 0.54 cfs @ 12.04 hrs, Volume= Routed to Pond 12P : POND #3


Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 25-yr Rainfall=5.90"


_	Area (sf)	CN	Description						
	0	49	50-75% Grass cover, Fair, HSG A						
	3,414	84	50-75% Grass cover, Fair, HSG D						
	0	98	Paved parking, HSG D						
	0	36	Woods, Fair, HSG A						
	0	79	Woods, Fair, HSG D						
	0	98	Roofs, HSG D						
_	967	98	Water Surface, 0% imp, HSG D						
	4,381	87	Weighted Average						
	4,381		100.00% Pervious Area						
	Tc Length	Sloj	pe Velocity Capacity Description						
-	(min) (feet)	(ft/	ft) (ft/sec) (cfs)						
	6.0		Direct Entry, Minimum						
	Subcatchment 11S: P11								



iydroC/	D® 10.20-4a	s/n 01614 ©	2023 HydroCAD	Software Solu	utions LLC			Page 6
		:	Summary for	Pond 10P	: POND	#2		
nflow A	rea =	7,808 sf,	11.68% Impervio	ous, Inflow D	epth = 4	.75" for 2	25-yr event	
nflow			2.04 hrs, Volun		3,090 cf			
Dutflow			2.57 hrs, Volun			Atten= 87%	%, Lag= 32	2.0 min
Primary	= 0. ed to Link 8L		2.57 hrs, Volun	ne=	2,323 cf			
Second		00 cfs @	0.00 hrs, Volun	ne=	0 cf			
Roui		. DFZ						
			Time Span= 0.0					
'eak El	ev= 1,176.95	@ 12.57 hr	s Surf.Area= 1,	,950 sf Stora	age= 1,58	3 cf		
	w dotontion t	imo- 304 5	min calculated for	or 2 222 of /7	5% of infle			
			min (994.2 - 79			, ww		
	51-191035 UCL 1		11111 (334.2 - 79	0.0)				
/olume	Invert	Avail.Sto	orage Storage	Description				
#1	1,176.00'	4,0	12 cf Custom	Stage Data	(Prismatio	Listed bel	ow (Recalc	;)
				Stage Data	(-,		
Elevati	on Su	rf Area	Inc Store	U		,	,	
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Stor (cubic-fee	e		,	
	et)	rf.Area <u>(sq-ft)</u> 1,373		Cum.Stor (cubic-fee	e	,	Υ.	
(fee	et) 00	(sq-ft)	(cubic-feet)	Cum.Stor (cubic-fee	re <u>t)</u> 0	,	Υ.	
(fee 1,176.	e <u>t)</u> 00 00	(sq-ft) 1,373	(cubic-feet) 0	Cum.Stor (cubic-fee	re <u>t)</u> 0 76	,	Υ.	
(fee 1,176.0 1,177.0 1,178.0	≥t) DO DO DO	(sq-ft) 1,373 1,979 2,692	(cubic-feet) 0 1,676	Cum.Stor (cubic-fee 1,67 4,01	re <u>t)</u> 0 76	,	Υ.	
(fee 1,176.0 1,177.0 1,178.0	≥t) DO DO DO	(sq-ft) 1,373 1,979 2,692	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round	Cum.Stor (cubic-fee 1,67 4,01 s Culvert	re t <u>)</u> 0 6 2		、 	
(fee 1,176.0 1,177.0 1,178.0 Device	et) 00 00 00 Routing	(sq-ft) 1,373 1,979 2,692 Invert	(cubic-feet) 0 1,676 2,336 Outlet Device: 12.0" Round L= 44.0' RCF	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg	re t <u>)</u> 0 6 2 9 9 headwa	, II, Ke= 0.5	00	
(fee 1,176.0 1,177.0 1,178.0 Device	et) 00 00 00 Routing	(sq-ft) 1,373 1,979 2,692 Invert	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg yvert= 1,175.	re t <u>)</u> 0 '6 2 ge headwa 23' / 1,175	, II, Ke= 0.5 .00' S= 0.	00 0052 '/' Cd	
(fee 1,176.0 1,177.0 1,178.0 <u>Device</u> #1	et) 00 00 00 Routing Primary	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23'	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg vert= 1,175, rugated PE, s	re t <u>)</u> 0 6 2 2 ye headwa 23' / 1,175 smooth inte	, II, Ke= 0.5 .00' S= 0. erior, Flow	00 0052 '/' Cd	
(fee 1,176.0 1,177.0 1,178.0 Device	et) 00 00 00 Routing	(sq-ft) 1,373 1,979 2,692 Invert	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0"	Cum.Stor (cubic-fee 1,67 4,01 S Culvert P, square edg wert= 1,175. rugated PE, s Horiz. Grate	re t <u>)</u> 0 6 2 2 ye headwa 23' / 1,175 smooth inte C = 0.600	, II, Ke= 0.5 .00' S= 0. erior, Flow	00 0052 '/' Cd	
(fee 1,176. 1,177. 1,178. Device #1 #2	et) 20 20 20 Routing Primary Device 1	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00'	(cubic-feet) 0 1,676 2,336 Outlet Device: 12.0" Round L= 44.0' RCF Inlet / Outlet If n= 0.013 Corr 24.0" x 24.0" Limited to wei	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg nvert= 1,175, rugated PE, s Horiz. Grate r flow at low f	t) 0 6 2 23' / 1,175 5 5 mooth intr C = 0.600 neads	II, Ke= 0.5 .00' S= 0. erior, Flow)	00 0052 '/' Co Area= 0.79	9 sf
(fee 1,176.0 1,177.0 1,178.0 <u>Device</u> #1	et) 00 00 00 Routing Primary	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23'	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Orr	Cum.Stor (cubic-fee 1,67 4,01 5 Culvert 2, square edg vert= 1,175. rugated PE, s Horiz. Grate Horiz. Grate fice C = 0.60	e t) 0 6 2 2 ye headwa 23' / 1,175 smooth inte C = 0.600 C = 0.600 box C = 0.600 0 Limite	II, Ke= 0.5 .00' S= 0. erior, Flow 0 d to weir flo	00 0052 '/' Co Area= 0.79 ow at low he	9 sf eads
(fee 1,176. 1,177. 1,178. Device #1 #2 #3	et) D0 D0 Routing Primary Device 1 Device 1	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50'	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Ori 10.0' long x ' Head (feet) 0	Cum.Stor (cubic-fee)(cubic-fee (cubic-fee)(c	re <u>t</u>) 0 6 2 23'/1,175 smooth inter C=0.600 neads 0 Limite h Broad-C	II, Ke= 0.5 .00' S= 0. erior, Flow 0 d to weir flo rested Re 00 1.20 1	00 0052 '/' Co Area= 0.79 ow at low he ctangular V .40 1.60	9 sf eads Veir
(fee 1,176. 1,177. 1,178. Device #1 #2 #3	et) D0 D0 Routing Primary Device 1 Device 1	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50'	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Orri 10.0' long x 2	Cum.Stor (cubic-fee)(cubic-fee (cubic-fee)(c	re <u>t</u>) 0 6 2 23'/1,175 smooth inter C=0.600 neads 0 Limite h Broad-C	II, Ke= 0.5 .00' S= 0. erior, Flow 0 d to weir flo rested Re 00 1.20 1	00 0052 '/' Co Area= 0.79 ow at low he ctangular V .40 1.60	9 sf eads Veir
(fee 1,176.0 1,177.0 1,178.0 Device #1 #2 #3 #4	et) D0 D0 Routing Primary Device 1 Device 1 Secondary	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50'	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Orri 10.0' long x ' Head (feet) 0 Coef. (English	Cum.Stor (cubic-fee 1,67 4,01 5 Culvert 7, square edg hvert= 1,175. rugated PE, s Horiz. Grate Horiz. Grate fice C= 0.6(10.0' breadtf .20 0.40 0.6 0) 2.49 2.56	te t <u>t</u>) 0 6 2 23' / 1,175 mooth intr C= 0.600 eads 00 Limite Broad-C 0 0.80 1. 2.70 2.69	II, Ke= 0.5 .00' S= 0. erior, Flow d to weir flo rested Re 00 1.20 1. 0 2.68 2.69	00 0052 '/' Cd Area= 0.75 bw at low he ctangular V .40 1.60 9 2.67 2.6	9 sf eads Neir 4
1,176.0 1,177.0 1,178.0 Device #1 #2 #3 #4	et) 20 20 20 20 Primary Device 1 Device 1 Secondary Y OutFlow Ma	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.14 cfs	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Orri 10.0' long x ' Head (feet) 0 Coef. (English @ 12.57 hrs HW	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg wert= 1,175. rugated PE, s Horiz. Grate r flow at low h fice C = 0.6(0.0' breadth .20 0.40 0.6)) 2.49 2.56 V=1,176.95'	te t <u>t</u>) 0 6 2 23' / 1,175 mooth intr C= 0.600 eads 00 Limite Broad-C 0 0.80 1. 2.70 2.69	II, Ke= 0.5 .00' S= 0. erior, Flow d to weir flo rested Re 00 1.20 1. 0 2.68 2.69	00 0052 '/' Cd Area= 0.75 bw at low he ctangular V .40 1.60 9 2.67 2.6	9 sf eads Neir 4
(fee 1,176.1 1,177.0 1,178.0 2evice #1 #2 #3 #4 Primary 1=Cu	et) 20 20 20 20 Primary Device 1 Device 1 Secondary Y OutFlow Ma	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.14 cfs s 0.14 cfs o	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Ori 10.0' long x' Head (feet) 0 Coef. (English @ 12.57 hrs HV f 3.62 cfs potent	Cum.Stor (cubic-fee 1,67 4,01 s Culvert P, square edg wert= 1,175. rugated PE, s Horiz. Grate r flow at low h fice C = 0.6(0.0' breadth .20 0.40 0.6)) 2.49 2.56 V=1,176.95'	te t <u>t</u>) 0 6 2 23' / 1,175 mooth intr C= 0.600 eads 00 Limite Broad-C 0 0.80 1. 2.70 2.69	II, Ke= 0.5 .00' S= 0. erior, Flow d to weir flo rested Re 00 1.20 1. 0 2.68 2.69	00 0052 '/' Cd Area= 0.75 bw at low he ctangular V .40 1.60 9 2.67 2.6	9 sf eads Neir 4
(fee 1,176.0 1,177.0 1,178.0 Device #1 #2 #3 #4 Primary 1=Cu	et) D0 D0 Primary Device 1 Device 1 Secondary (OutFlow Ma ulvert (Passe =Grate (Con	(sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.14 cfs s 0.14 cfs o trols 0.00 cfr	(cubic-feet) 0 1,676 2,336 Outlet Devices 12.0" Round L= 44.0' RCF Inlet / Outlet Ir n= 0.013 Corr 24.0" x 24.0" Limited to wei 3.0" Vert. Ori 10.0' long x' Head (feet) 0 Coef. (English @ 12.57 hrs HV f 3.62 cfs potent	Cum.Stor (cubic-fee 1,67 4,01 5 Culvert P, square edg nvert= 1,175. rugated PE, s Horiz. Grate r flow at low f fice C= 0.6(10.0' breadtt 10.0' breadtt 20 0.40 0.65) 2.49 2.56 V=1,176.95' iail flow)	te t <u>t</u>) 0 6 2 23' / 1,175 mooth intr C= 0.600 eads 00 Limite Broad-C 0 0.80 1. 2.70 2.69	II, Ke= 0.5 .00' S= 0. erior, Flow d to weir flo rested Re 00 1.20 1. 0 2.68 2.69	00 0052 '/' Cd Area= 0.75 bw at low he ctangular V .40 1.60 9 2.67 2.6	9 sf eads Neir 4



20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 25-yr Rainfall=5.90"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 76

Summary for Link 10L: DP3

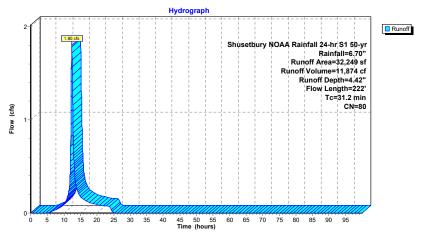
Inflow Area =	6,978 sf, 5.70	% Impervious,	Inflow Depth = 4.09"	for 25-yr event
Inflow =	0.65 cfs @ 12.06	hrs, Volume=	2,377 cf	-
Primary =	0.65 cfs @ 12.06	hrs, Volume=	2,377 cf, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs

20221110A10 PROP(01 Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"	20221110A10 PROP01 Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'N	Veill Printed 12/13/2023	Prepared by Fuss & O'Neill Printed 12/13/2023
F	Fime span=0.00-100.00 hrs, dt=0.03 hrs, 3334 points x 2 Runoff by SCS TR-20 method, UH=SCS, Weighted-CN ng by Dyn-Stor-Ind method . Pond routing by Dyn-Stor-Ind method	Link 10L: DP3 Inflow=0.76 cfs 2,814 cf Primary=0.76 cfs 2,814 cf
Subcatchment01S: P01	Runoff Area=32,249 sf 0.00% Impervious Runoff Depth=4.42" Flow Length=222' Tc=31.2 min CN=80 Runoff=1.80 cfs 11,874 cf	Total Runoff Area = 168,433 sf Runoff Volume = 68,768 cf Average Runoff Depth = 4.90" 83.10% Pervious = 139,970 sf 16.90% Impervious = 28,463 sf
Subcatchment02S: P02	Runoff Area=11,918 sf 0.00% Impervious Runoff Depth=4.75" Flow Length=85' Slope=0.0130 '/' Tc=17.6 min CN=83 Runoff=0.97 cfs 4,713 cf	
Subcatchment03S: P03	Runoff Area=37,348 sf 47.60% Impervious Runoff Depth=5.87" Tc=6.0 min CN=93 Runoff=5.71 cfs 18,283 cf	
Subcatchment04S: P04	Runoff Area=3,986 sf 5.27% Impervious Runoff Depth=4.75" Flow Length=137' Slope=0.0200 '/' Tc=10.7 min CN=83 Runoff=0.41 cfs 1,576 cf	
Subcatchment05S: P05	Runoff Area=2,992 sf 6.28% Impervious Runoff Depth=4.97" Tc=6.0 min CN=85 Runoff=0.41 cfs 1,238 cf	
Subcatchment06S: P06	Runoff Area=7,053 sf 57.88% Impervious Runoff Depth=5.76" Tc=6.0 min CN=92 Runoff=1.07 cfs 3,385 cf	
Subcatchment07S: P07	Runoff Area=3,147 sf 100.00% Impervious Runoff Depth=6.46" Tc=6.0 min CN=98 Runoff=0.50 cfs 1,694 cf	
Subcatchment08S: P08	Runoff Area=1,869 sf 100.00% Impervious Runoff Depth=6.46" Tc=6.0 min CN=98 Runoff=0.30 cfs 1,006 cf	
Subcatchment09S: P09	Runoff Area=55,682 sf 0.50% Impervious Runoff Depth=4.20" Flow Length=209' Tc=20.6 min CN=78 Runoff=3.74 cfs 19,505 cf	
Subcatchment10S: P10	Runoff Area=7,808 sf 11.68% Impervious Runoff Depth=5.53" Flow Length=74' Slope=0.0500 '/' Tc=6.0 min CN=90 Runoff=1.15 cfs 3,598 cf	
Subcatchment11S: P11	Runoff Area=4,381 sf 0.00% Impervious Runoff Depth=5.19" Tc=6.0 min CN=87 Runoff=0.62 cfs 1,895 cf	
Pond 10P: POND #2	Peak Elev=1,177.03' Storage=1,731 cf Inflow=1.15 cfs 3,598 cf Primary=0.27 cfs 2,831 cf Secondary=0.00 cfs 0 cf Outflow=0.27 cfs 2,831 cf	
Pond 11P: POND #1	Peak Elev=1,175.93' Storage=6,723 cf Inflow=6.51 cfs 20,984 cf Primary=1.11 cfs 20,133 cf Secondary=0.00 cfs 0 cf Outflow=1.11 cfs 20,133 cf	
Pond 12P: POND #3	Peak Elev=1,170.73' Storage=517 cf Inflow=2.57 cfs 25,413 cf Outflow=2.53 cfs 25,079 cf	
Link 4L: DP1	Inflow=2.50 cfs 16,587 cf Primary=2.50 cfs 16,587 cf	
Link 8L: DP2	Inflow=5.60 cfs 47,415 cf Primary=5.60 cfs 47,415 cf	

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	3 HvdroCAD Software Solutions LLC	Page 79

Summary for Subcatchment 01S: P01


Runoff = 1.80 cfs @ 12.37 hrs, Volume= 11,874 cf, Depth= 4.42" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

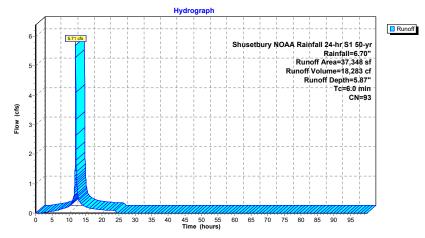
А	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, l	Fair, HSG A
	3,462	84	50-75% Gra	ass cover, I	Fair, HSG D
	0	98	Paved park	ing, HSG D	
	0	36	Woods, Fai	r, HSG A	
	28,787	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSG	6 D	
	0	98	Water Surfa	ace, 0% im	p, HSG D
	32,249	80	Weighted A	verage	
	32,249		100.00% Pe	ervious Are	a
Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description
29.1	100	0.0100	0.06		Sheet Flow,
2.1	122	0.0200	0.99		Woods: Light underbrush n= 0.400 P2= 3.03" Shallow Concentrated Flow, Short Grass Pasture Kv= 7.0 fps

31.2 222 Total

Subcatchment 01S: P01

/droCA	D® 10.20	-4a s/n (<u>)1614 © 202</u>	3 HydroCA	D Software Solu	utions LLC	;		Page 8
			Sumr	nary for	Subcatchm	ent 02S	: P02		
unoff Route	= ed to Link		cfs @ 12.19 P1	9 hrs, Volu	me=	4,713 cf,	Depth= 4.7	5"	
unoff b	V SCS TI	R-20 me	ethod, UH=S	CS, Weigh	ited-CN, Time	Span= 0	.00-99.99 hrs	, dt= 0.03	hrs
nusetb	ury NOA	A Rainfa	all 24-hr S1 5	50-yr Rain	fall=6.70"				
A	rea (sf)		Description						
	0 9.878		50-75% Gra 50-75% Gra						
	0	98	Paved parki	ing, HSG D					
	0 2.040		Woods, Fail Woods, Fail						
	2,040		Roofs, HSG						
	0		Water Surfa		o, HSG D				
	11,918 11,918		Weighted A 100.00% Pe		a				
	,								
	Length	Slope		Capacity	Description				
(min) 7.3	(feet) 54	(ft/ft) 0.0130	//	(cfs)	Sheet Flow.				
	•				Grass: Short	n= 0.15	50 P2= 3.03"		
10.3	31	0.0130	0.05		Sheet Flow,		ush n= 0.400	n <u>p</u> 2-30	13"
17.6	85	Total			WOOds. Light	t underbi	usii ii= 0.400	5 12- 5.0	
				Subcat	chment 02S	. 002			
				Subcat		D. PUZ			
					graph				
1-	/	+ 97 cfs							Runoff
ľ					Shus	etbury NO	AA Rainfall 24-h Rain	r S1 50-yr fall=6.70"	
							Runoff Area	=11,918 sf	
							Runoff Volume Runoff De		
							Flow L	ength‡85'	
(sj								=0.0130 '/' =17.6 min	
⁻low (cfs)								CN=83	
음									
-									
						1 1	- I I I	1 1	

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-h	nr S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 81

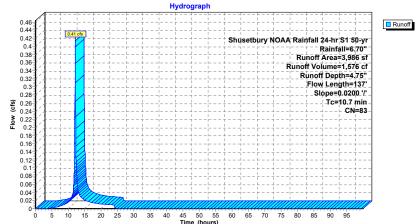

Summary for Subcatchment 03S: P03

unoff = 5.71 cfs @ 12.03 hrs, Volume= Routed to Pond 11P : POND #1 18,283 cf, Depth= 5.87" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

 A	rea (sf)	CN	Description			
	0	49	50-75% Gra	ass cover, F	Fair, HSG A	
	14,179	84	50-75% Gra	ass cover, F	Fair, HSG D	
	17,778	98	Paved park	ing, HSG D)	
	0	36	Woods, Fai	r, HSG A		
	0	79	Woods, Fai	r, HSG D		
	0	98	Roofs, HSG	6 D		
	5,391	98	Water Surfa	ace, 0% imp	o, HSG D	
	37,348	93	Weighted A	verage		
	19,570		52.40% Per	vious Area		
	17,778		47.60% Imp	pervious Ar	ea	
Тс	Length	Slope	e Velocity	Capacity	Description	
 (min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
6.0					Direct Entry, Minimum	

Subcatchment 03S: P03


20221110A10 Prepared by Fu			SI	husetbury NC	AA Rainf	all 24-hr S1		ainfall=6.70 12/13/2023
HydroCAD® 10.20			23 HydroCA	D Software Solu	utions LLC		1 miliou	Page 82
		Sum	mary for	Subcatchm	ent 04S:	P04		
Runoff = Routed to Linl			0 hrs, Volu	me=	1,576 cf,	Depth= 4.7	5"	
Runoff by SCS T Shusetbury NOA					Span= 0.0)0-99.99 hrs	, dt= 0.03	hrs
Area (sf)	CN E	Description						
0	49 5	0-75% Gra	ass cover. I	air, HSG A				
2.774				air, HSG D				
210			ing, HSG [°] D					
0	36 V	Voods, Fai	r, HSG A					
1,002	79 V	Voods, Fai	r, HSG D					
0	98 F	Roofs, HSC) D					
0	98 V	Vater Surfa	ace, 0% im	o, HSG D				
3.986		Veighted A		•				
3,776			rvious Area					
210	5	6.27% Impe	ervious Are	а				
Tc Length	Slope	Velocity	Capacity	Description				
(min) (feet)	(ft/ft)	(ft/sec)	(cfs)	-				
10.1 100	0.0200	0.17		Sheet Flow,				
				Grass: Short	n= 0.150) P2= 3.03"		
0.6 37	0.0200	0.99		Shallow Cor	ncentrated	l Flow,		
				Short Grass	Pasture I	<v= 7.0="" fps<="" td=""><td></td><td></td></v=>		
10.7 137	Total							

 20221110A10_PROP01
 Shusetbury NOAA Raint

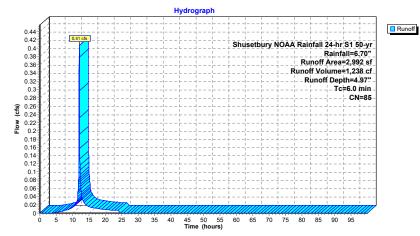
 Prepared by Fuss & O'Neill
 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC

Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70" Printed 12/13/2023 CAD Software Solutions LLC Page 83

 20221110A10_PROP01
 Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

 Prepared by Fuss & O'Neill
 Printed 12/13/2023

 HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLC
 Page 84


Summary for Subcatchment 05S: P05

Runoff	=	0.41 cfs @	12.04 hrs, Volume=	1,238 cf, Depth= 4.97"
Routed	d to Li	nk 10L : DP3		

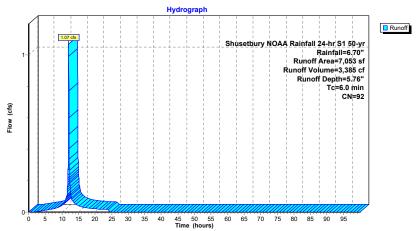
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, I	Fair, HSG A
	2,804	84	50-75% Gra	ass cover, F	Fair, HSG D
	188	98	Paved park	ing, HSG D)
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSC	6 D	
	0	98	Water Surfa	ace, 0% imp	p, HSG D
	2,992	85	Weighted A	verage	
	2,804		93.72% Pe	vious Area	l l
	188		6.28% Impe	ervious Are	a
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
6.0					Direct Entry, Minimum

Subcatchment 05S: P05

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-I	hr S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 85

Summary for Subcatchment 06S: P06


3,385 cf, Depth= 5.76"

Runoff = 1.07 cfs @ 12.04 hrs, Volume= Routed to Pond 12P : POND #3

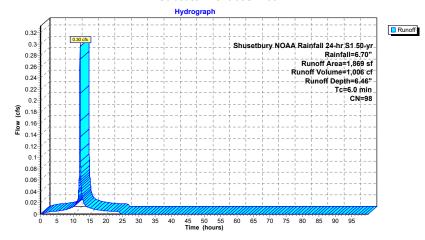
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, F	Fair, HSG A
	2,971	84	50-75% Gra	ass cover, F	Fair, HSG D
	4,082	98	Paved park	ing, HSG D	
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSC	6 D	
	0	98	Water Surfa	ace, 0% imp	ip, HSG D
	7,053	92	Weighted A	verage	
	2,971		42.12% Pe	rvious Area	a
	4,082		57.88% Imp	pervious Ar	rea
Tc	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
6.0					Direct Entry, Minimum
					•
				.	

Subcatchment 06S: P06

	D® 10.20)-4a s/r					000				20						
				Sum	mary	for	Sub	cato	chmer	nt 07	7S:	P07	,				
unoff Route	= ed to Po				3 hrs,	Volu	me=		1,	694	cf, [Dept	h= (6.46'	•		
unoff b nusetb	y SCS T ury NOA	R-20 n A Rain	nethod fall 24∙	, UH=s hr S1	SCS, W 50-yr	/eigh Raint	ited-(fall=6	CN, ⁻ 6.70"	Гime S	pan=	0.0	0-99	.99	hrs,	dt=	0.03	hrs
A	rea (sf)	CN	Desc	ription	I												
	0 0	49 84			ass co												
	0	84 98			ass cov ting, HS			п э G	D								
	0	36	Woo	ds, Fai	ir, HSG	βA											
	0 3.147	79 98		ds, ⊦a s. HS0	ir, HSG 3 D	βD											
	0	98		,	ace, 0%	6 imp	o, HS	G D									
	3,147	98			verage												
	3,147		100.0	JU% IN	npervic	us A	rea										
Tc	Length	~			0	city	Doc		ion								
			be Ve				Des	script	.1011								
(min)	(feet)			t/sec)		cfs)		<u> </u>		linin							
<u>(min)</u> 6.0								<u> </u>	Entry, N	linin	num						
<u> </u>					. (cfs)	Dire	ect E				I					
<u> </u>					Sub	cfs) ocate	Dire	ect E ent	Entry, N			I					
<u> </u>					Sub	cfs) ocate	Dire chm	ect E ent	Entry, N			 	L	[Runoff
6.0 0.55	(feet)				Sub	cfs) ocate	Dire chm	ect E	intry, M 07S:	P07	1 1 1 1 1	·			S1 5	0-vr	Runoff
6.0 0.55- 0.5-	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	Entry, N	P07	1 1 1 1 1	Rair	F	tainfa	II=6.	70" -	Runoff
6.0 0.55- 0.5- 0.45-	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rair	noff		ll=6. :3,14	70"- 7 sf	Runoff
6.0 0.55- 0.5-	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	ill=6. :3,14 :1,69 :h=6.	70" - 7 sf 4-cf- 46"	Runoff
6.0 0.55- 0.5- 0.45-	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46"	Runoff
6.0 0.55 0.45 0.45 0.45	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff
6.0 0.55- 0.45- 0.44- 0.35-	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff
6.0 0.55 0.45 0.45 0.45	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff
6.0 0.55- 0.45- 0.45- 0.45- 0.35- (\$5) 0.3- (\$5) 0.3-(\$5) 0.3	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff
6.0 0.55 0.5 0.45 0.45 0.45 0.45 0.35 0.45 0.25 0.25 0.25 0.25	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff
6.0 0.55- 0.5- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.55- 0.45- 0.55- 0.45- 0.55- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.35- 0.55- 0.45- 0.45- 0.35- 0.55- 0.45- 0.45- 0.45- 0.45- 0.45- 0.45- 0.25- 0.5	(feet)	<u>(ft/</u>			Sub	cfs) ocate	Dire	ect E	intry, M 07S:	P07	IOAA	Rain	noff f Vol	tainfa Area= ume= Dept	11=6 3,14 1,69 h=6.	70" - 7 sf 4-cf- 46" min -	Runoff

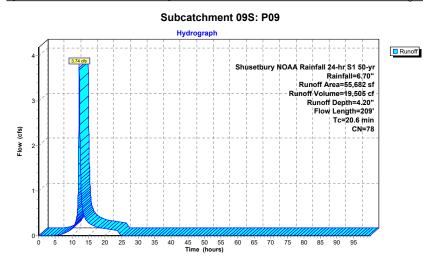
20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 87


Summary for Subcatchment 08S: P08

Runoff = 0.30 cfs @ 12.03 hrs, Volume= 1,006 cf, Depth= 6.46" Routed to Pond 11P : POND #1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	iss cover, F	Fair, HSG A
	0	84	50-75% Gra	iss cover, F	Fair, HSG D
	0	98	Paved parki	ng, HSG D	
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fail	r, HSG D	
	1,869	98	Roofs, HSG	D	
	0	98	Water Surfa	ce, 0% imp	o, HSG D
	1,869	98	Weighted A	verage	
	1,869		100.00% Im	pervious A	rea
Тс	Length	Slop	e Velocity	Capacity	Description
(min)	(feet)	(ft/fl) (ft/sec)	(cfs)	
6.0					Direct Entry, Minimum


Subcatchment 08S: P08

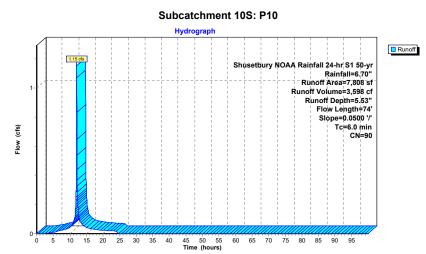
	ed by Fus			23 HydroCA	AD Software Solutions LLC Page 8			
Summary for Subcatchment 09S: P09								
Runoff = 3.74 cfs @ 12.23 hrs, Volume= 19,505 cf, Depth= 4.20" Routed to Link 8L : DP2								
					ghted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs infall=6.70"			
A	rea (sf)	CN [Description					
	3,802	49 5	50-75% Gra	ass cover, I	, Fair, HSG A			
	19,931	84 5	50-75% Gra	ass cover, I	, Fair, HSG D			
	277	98 F	Paved park	ing, HSG D	D			
	1,194	36 \	Noods, Fai	r, HSG A				
	30,478		Noods, Fai					
	0		Roofs, HSG					
	0	<u>98</u> \	Nater Surfa	ace, 0% imp	mp, HSG D			
	55,682		Neighted A					
	55,405	-		rvious Area				
	277	().50% Impe	ervious Are	rea			
Tc	Length	Slope	Velocity	Capacity	y Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs))			
18.8	100	0.0300	0.09		Sheet Flow,			
					Woods: Light underbrush n= 0.400 P2= 3.03"			
1.8	109	0.0430	1.04		Shallow Concentrated Flow,			
1.0					Woodland Kv= 5.0 fps			
1.0								

Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70" Printed 12/13/2023 CAD Software Solutions LLC Page 89

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 50-yr	Rainfall=6.70"
Prepared by Fuss & O'Neill	Printe	ed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2	2023 HydroCAD Software Solutions LLC	Page 90

Summary for Subcatchment 10S: P10

Runoff	=	1.15 cfs @	12.04 hrs,	Volume=	3,598 cf,	Depth= 5.53"
Routed	d to Por	nd 10P : PONE) #2			

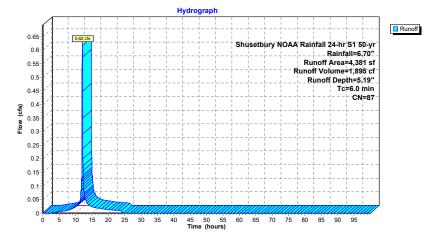

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

	A	rea (sf)	CN	Description				
		0	49	50-75% Grass cover, Fair, HSG A				
		3,994	84	50-75% Gra	ass cover, I	Fair, HSG D		
		912	98	Paved park	ing, HSG D)		
		0	36	Woods, Fai	r, HSG A			
		210	79	Woods, Fai	r, HSG D			
		0	98	Roofs, HSC	6 D			
_		2,692	98	Water Surfa	ace, 0% im	p, HSG D		
		7,808	90	Weighted A	verage			
		6,896		88.32% Pe	rvious Area	l l		
		912		11.68% Imp	pervious Ar	ea		
	Тс	Length	Slope	e Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	4.7	23	0.0500	0.08		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.03"		
	0.5	51	0.0500) 1.57		Shallow Concentrated Flow,		
_						Short Grass Pasture Kv= 7.0 fps		
	52	74	Total	Increased t	o minimum	$T_{\rm C} = 6.0 {\rm min}$		

5.2 74 Total, Increased to minimum Tc = 6.0 min

Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70" Printed 12/13/2023 CAD Software Solutions LLC Page 91

20221110A10_PROP01	Shusetbury NOAA Rainfall 2	4-hr S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 H	lydroCAD Software Solutions LLC	Page 92


Summary for Subcatchment 11S: P11

Runoff	=	0.62 cfs @	12.04 hrs,	Volume=	1,895 cf,	Depth= 5.19"
Routed	to Pond	d 12P : PONE) #3			

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

A	rea (sf)	CN	Description				
	0	49	50-75% Gra	ss cover, F	Fair, HSG A		
	3,414	84	50-75% Gra	ss cover, F	Fair, HSG D		
	0	98	Paved parki	ng, HSG D			
	0	36	Woods, Fair	, HSG A			
	0	79	Woods, Fair	, HSG D			
	0	98	Roofs, HSG D				
	967	98	Water Surfa	ce, 0% imp	p, HSG D		
	4,381	87	Weighted Av	verage			
	4,381		100.00% Pervious Area				
Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description		
6.0					Direct Entry, Minimum		

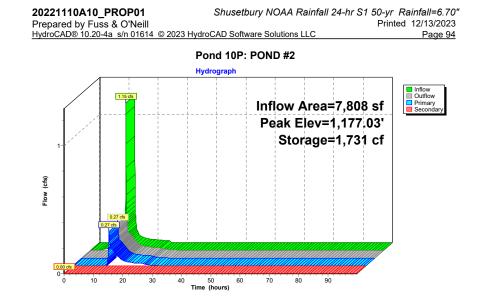
Subcatchment 11S: P11

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10 20-4a s/n 01614 © 2023	B HydroCAD Software Solutions LLC	Page 93

Summary for Pond 10P: POND #2

Inflow Area =	7,808 sf	11.68% Impervious	, Inflow Depth = 5.53" for 50-yr event
Inflow =	1.15 cfs @	12.04 hrs, Volume=	3,598 cf
Outflow =	0.27 cfs @	12.29 hrs, Volume=	2,831 cf, Atten= 77%, Lag= 15.4 min
Primary =	0.27 cfs @	12.29 hrs, Volume=	2,831 cf
Routed to Link	8L : DP2		
Secondary =	0.00 cfs @	0.00 hrs, Volume=	0 cf
Routed to Link	8L : DP2		

Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,177.03' @ 12.29 hrs Surf.Area= 1,999 sf Storage= 1,731 cf


Plug-Flow detention time= 282.4 min calculated for 2,831 cf (79% of inflow) Center-of-Mass det. time= 184.6 min (976.0 - 791.3)

Volume	Invert	Avail.Sto	rage Storage	Description			
#1	1,176.00'	4,01	12 cf Custom	n Stage Data (P	rismatic)Listed below (Recalc)		
Elevatio (fee		ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
1,176.0		1,373	0	0			
1,177.0		1,979	1,676	1,676			
1,178.0	00	2,692	2,336	4,012			
Device	Routing	Invert	Outlet Device	S			
#1	Primary	1,175.23'	Inlet / Outlet I	P, square edge nvert= 1,175.23			
#2	Device 1	1,177.00'					
#3 #4	Device 1 Secondary	1,176.50' 1,177.50'	3.0" Vert. Orifice C= 0.600 Limited to weir flow at low heads				

Primary OutFlow Max=0.27 cfs @ 12.29 hrs HW=1,177.03' TW=0.00' (Dynamic Tailwater) _____1=Culvert (Passes 0.27 cfs of 3.76 cfs potential flow)

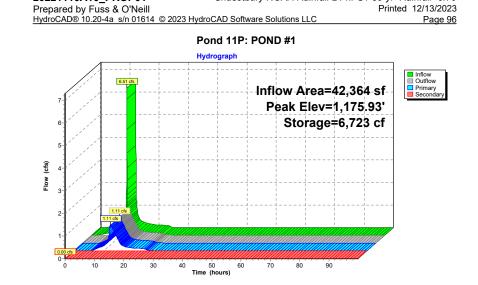
2=Grate (Weir Controls 0.12 cfs @ 0.54 fps) **3=Orifice** (Orifice Controls 0.15 cfs @ 3.05 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,176.00' TW=0.00' (Dynamic Tailwater)

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10 20-4a s/n 01614 @ 2023	HydroCAD Software Solutions LLC	Page 95

Summary for Pond 11P: POND #1

Inflow Area =	42,364 sf, 53.81% Impervious,	Inflow Depth = 5.94" for 50-yr event
Inflow =	6.51 cfs @ 12.03 hrs, Volume=	20,984 cf
Outflow =	1.11 cfs @ 12.43 hrs, Volume=	20,133 cf, Atten= 83%, Lag= 23.5 min
Primary =	1.11 cfs @ 12.43 hrs, Volume=	20,133 cf
Routed to Por	nd 12P : POND #3	
Secondary =	0.00 cfs @ 0.00 hrs, Volume=	0 cf
Routed to Link	k 8L : DP2	

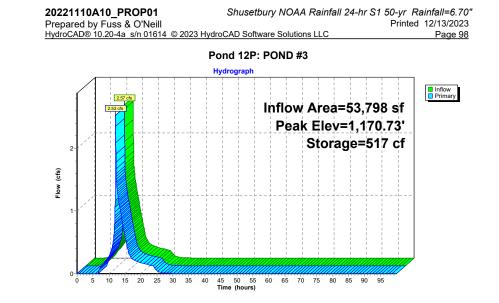

Routing by Dyn-Stor-Ind method, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs / 2 Peak Elev= 1,175.93' @ 12.43 hrs Surf.Area= 4,287 sf Storage= 6,723 cf

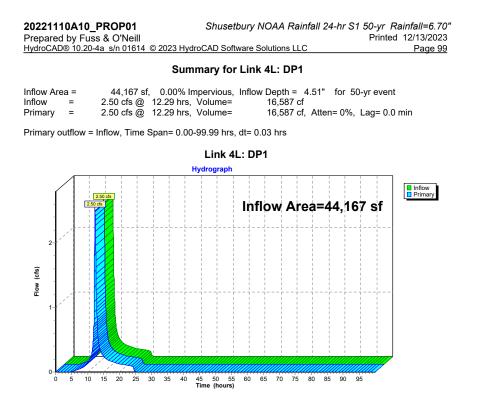
Plug-Flow detention time= 126.0 min calculated for 20,133 cf (96% of inflow) Center-of-Mass det. time= 100.5 min (873.0 - 772.5)

Volume	Invert	Avail.Sto	rage Storage	e Description	
#1	1,174.00'	11,90	04 cf Custon	n Stage Data (Pı	rismatic)Listed below (Recalc)
Elevatio (fee		rf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
1,174.0	0	2,675	0	0	
1,175.0		3,524	3,100	3,100	
1,176.0		4,347	3,936	7,035	
1,177.0	0	5,391	4,869	11,904	
Device	Routing	Invert	Outlet Device	es	
#1	Primary	1,173.50'	12.0" Round	d Culvert	
					neadwall, Ke= 0.500
					/ 1,170.00' S= 0.0422 '/' Cc= 0.900
					poth interior, Flow Area= 0.79 sf
#2	Device 1	1,176.00'		"Horiz. Grate	
	Davida et 4	4 474 001		eir flow at low hea	
#3	Device 1				Limited to weir flow at low heads
#4	Secondary	1,176.25	Head (feet)	0.20 0.40 0.60	road-Crested Rectangular Weir 0.80 1.00 1.20 1.40 1.60 70 2.69 2.68 2.69 2.67 2.64

Primary OutFlow Max=1.11 cfs @ 12.43 hrs HW=1,175.93' TW=1,170.65' (Dynamic Tailwater) 1=Culvert (Passes 1.11 cfs of 5.25 cfs potential flow) 2=Grate (Controls 0.00 cfs) 3=Orifice (Orifice Controls 1.11 cfs @ 5.65 fps)

Secondary OutFlow Max=0.00 cfs @ 0.00 hrs HW=1,174.00' TW=0.00' (Dynamic Tailwater)

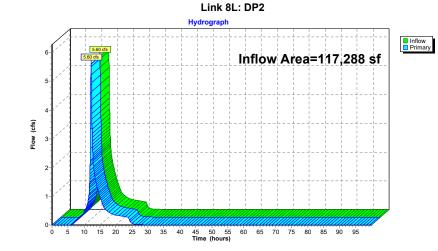


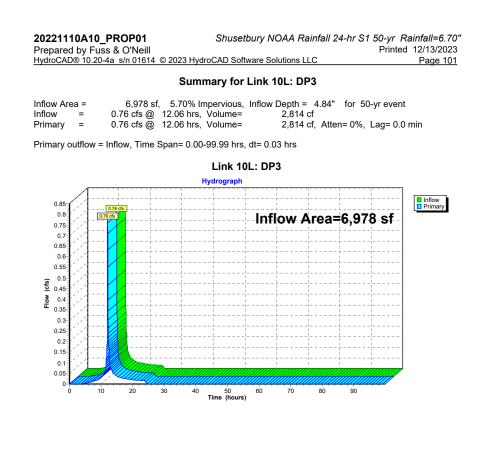

Shusetbury NOAA Rainfall 24-hr S1 50-yr Rainfall=6.70"

20221110A10 PROP01

Prepared by Fu		2023 HydroCAD S	oftware Solutions LLC	Page 97
<u></u>			Pond 12P: POND #3	<u> </u>
Inflow Area = Inflow = Outflow = Primary = Routed to Lir	53,798 sf, 4 2.57 cfs @ 1 2.53 cfs @ 1 2.53 cfs @ 1	-	us, Inflow Depth = 5.67" fo = 25,413 cf = 25,079 cf, Atten=2	
Peak Ĕlev= 1,17 Plug-Flow deten	'0.73' @ 12.06 hrs tion time= 21.4 m	s Surf.Area= 857	9-99.99 hrs, dt= 0.03 hrs / 2 7 sf Storage= 517 cf 25,071 cf (99% of inflow)	
Center-of-Mass	det. time= 9.0 mir	1 (004.7 - 000.0)		
		rage Storage D		
	vert Avail.Sto	rage Storage De		below (Recalc)
Volume In	vert Avail.Sto	rage Storage De	escription	below (Recalc)
#1 1,170 Elevation (feet) 1,170.00	vert Avail.Sto 1.00' 7 Surf.Area (sq-ft) 568 967	rage <u>Storage D</u> 58 cf Custom S Inc.Store (cubic-feet) 0	escription tage Data (Prismatic)Listed Cum.Store (cubic-feet) 0	below (Recalc)

Primary OutFlow Max=2.52 cfs @ 12.06 hrs HW=1,170.72' TW=0.00' (Dynamic Tailwater) 1=Broad-Crested Rectangular Weir (Weir Controls 2.52 cfs @ 1.12 fps)




20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	S1 50-yr Rainfall=6.70"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 Hyd	roCAD Software Solutions LLC	Page 100

Summary for Link 8L: DP2

Inflow Are	a =	117,288 sf, 23.93% Impervious	s, Inflow Depth = 4.85 "	for 50-yr event
Inflow	=	5.60 cfs @ 12.22 hrs, Volume:	= 47,415 cf	
Primary	=	5.60 cfs @ 12.22 hrs, Volume:	 47,415 cf, Atter 	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs

20221110A10_PROP0 Prepared by Fuss & O'Ne HydroCAD® 10.20-4a s/n 01		00-yr Rainfall=7.60" Printed 12/13/2023 Page 102
- Tiı R	ne span=0.00-100.00 hrs, dt=0.03 hrs, 3334 points x 2 unoff by SCS TR-20 method, UH=SCS, Weighted-CN by Dyn-Stor-Ind method - Pond routing by Dyn-Stor-Ind	
Subcatchment01S: P01	Runoff Area=32,249 sf 0.00% Impervious Flow Length=222' Tc=31.2 min CN=80 Run	
Subcatchment02S: P02	Runoff Area=11,918 sf 0.00% Impervious Flow Length=85' Slope=0.0130 '/' Tc=17.6 min CN=83 Run	
Subcatchment03S: P03	Runoff Area=37,348 sf 47.60% Impervious Tc=6.0 min CN=93 Run	
Subcatchment04S: P04 F	Runoff Area=3,986 sf 5.27% Impervious ow Length=137' Slope=0.0200 '/' Tc=10.7 min CN=83 Run	s Runoff Depth=5.60" noff=0.48 cfs 1,859 cf
Subcatchment05S: P05	Runoff Area=2,992 sf 6.28% Impervious Tc=6.0 min CN=85 Ru	
Subcatchment06S: P06	Runoff Area=7,053 sf 57.88% Impervious Tc=6.0 min CN=92 Ru	
Subcatchment07S: P07	Runoff Area=3,147 sf 100.00% Impervious Tc=6.0 min CN=98 Ru	
Subcatchment08S: P08	Runoff Area=1,869 sf 100.00% Impervious Tc=6.0 min CN=98 Ru	
Subcatchment09S: P09	Runoff Area=55,682 sf 0.50% Impervious Flow Length=209' Tc=20.6 min CN=78 Run	
Subcatchment10S: P10	Runoff Area=7,808 sf 11.68% Impervious Flow Length=74' Slope=0.0500 '/' Tc=6.0 min CN=90 Run	
Subcatchment11S: P11	Runoff Area=4,381 sf 0.00% Impervious Tc=6.0 min CN=87 Ru	
Pond 10P: POND #2	Peak Elev=1,177.06' Storage=1,800 cf In Primary=0.56 cfs 3,405 cf Secondary=0.00 cfs 0 cf Outf	
Pond 11P: POND #1	Peak Elev=1,176.07' Storage=7,330 cf Infle Primary=1.62 cfs 23,284 cf Secondary=0.00 cfs 0 cf Outflo	
Pond 12P: POND #3	Peak Elev=1,170.74' Storage=530 cf Infle Outfl	ow=2.85 cfs 29,404 cf ow=2.80 cfs 29,070 cf
Link 4L: DP1		ow=2.90 cfs 19,670 cf ary=2.90 cfs 19,670 cf
Link 8L: DP2		ow=6.83 cfs 55,780 cf ary=6.83 cfs 55,780 cf

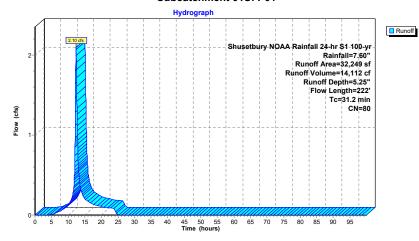
20221110A10_PROP01Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"Prepared by Fuss & O'NeillPrinted 12/13/2023HydroCAD® 10.20-4a s/n 01614 © 2023 HydroCAD Software Solutions LLCPage 103

Link 10L: DP3

Inflow=0.87 cfs 3,312 cf Primary=0.87 cfs 3,312 cf

Total Runoff Area = 168,433 sf Runoff Volume = 80,713 cf Average Runoff Depth = 5.75" 83.10% Pervious = 139,970 sf 16.90% Impervious = 28,463 sf

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S	1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 20	23 HydroCAD Software Solutions LLC	Page 104


Summary for Subcatchment 01S: P01

Runoff = 2.10 cfs @ 12.37 hrs, Volume= 14,112 cf, Depth= 5.25" Routed to Link 4L : DP1

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

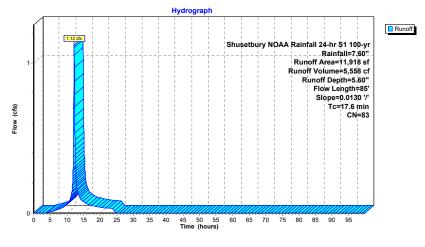
_	A	rea (sf)	CN	Description		
		0	49	50-75% Gra	ass cover, l	Fair, HSG A
		3,462	84	50-75% Gra	ass cover, I	Fair, HSG D
		0	98	Paved park	ing, HSG D)
		0	36	Woods, Fai	r, HSG A	
		28,787	79	Woods, Fai	r, HSG D	
		0	98	Roofs, HSC	5 D	
		0	98	Water Surfa	ace, 0% im	p, HSG D
		32,249	80	Weighted A	verage	
		32,249		100.00% P	ervious Are	a
	Tc	Length	Slop	e Velocity	Capacity	Description
	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
	29.1	100	0.010	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.03"
	2.1	122	0.020	0.99		Shallow Concentrated Flow,
						Short Grass Pasture Kv= 7.0 fps
	31.2	222	Total			

31.2 222 Total

Subcatchment 01S: P01

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hi	r S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10 20-4a s/n 01614 © 2023	HydroCAD Software Solutions LLC	Page 105

Summary for Subcatchment 02S: P02


5,558 cf, Depth= 5.60"

Runoff = 1.12 cfs @ 12.19 hrs, Volume= Routed to Link 4L : DP1

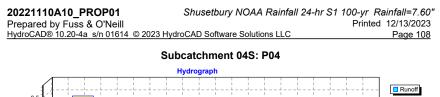
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

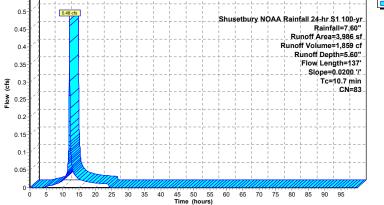
_	A	rea (sf)	CN I	Description				
		0	49	50-75% Gra	ass cover, F	air, HSG A		
		9,878	84 9	50-75% Gra	ass cover, F	air, HSG D		
		0	98 I	Paved park	ing, HSG D)		
		0	36	Noods, Fai	ir, HSG A			
		2,040	79	Noods, Fai	ir, HSG D			
		0	98 I	Roofs, HSC	<u> D</u>			
		0	98	Nater Surfa	ace, 0% imp	o, HSG D		
-		11,918	83	Neighted A	verage			
		11,918		100.00% P	ervious Are	а		
	Tc	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
-	7.3	54	0.0130	0.12		Sheet Flow,		
							n= 0.150 P2= 3.03"	
	10.3	31	0.0130	0.05		Sheet Flow,		
							underbrush n= 0.400	P2= 3.03"
-	17.6	85	Total					
	17.0	00	iotai					

Subcatchment 02S: P02

			S	umm	ary	for	Sub	catc	hme	nt 0	3S:	P03	3				
nof Ro	ff = outed to Por		cfs @ : POND		hrs,	Volu	me=	:	21	,058	cf,	Dept	th=	6.77			
	ff by SCS T etbury NOA									pan=	= 0.0	0-99	9.99	hrs,	dt=	0.03	hrs
	Area (sf)	CN	Descri	ption													
	0	49	50-75%														
	14,179 17,778	84 98	50-75% Paved					HSG	D								
	0	36	Woods	, Fair,	HSG	βA											
	0	79 98	Woods Roofs,			βD											
	5,391	98 98	Water			6 imr	5. HS	SGD									
	37,348	93	Weight	ted Av	erage	9											
	19,570		52.40%														
	17,778		47.60%	o impe	rviou	IS Are	ea										
٦	Fc Length		be Velo				De	scripti	on								
(mii		(ft/	ft) (ft/s	sec)	(cfs)											
6	.0						Dir	ect E	ntry, I	Minii	mun	ı					
					Sub	cate	chm	nent	03S:	P03	3						
						ocato			03S:	P03	3						
	-	+							03S:	P03	}			1 T	1		
	7-6							h			- 	 	 	 	 		Runoff
	6.	41 cfs						h	03S:		- 	Rain					Runoff
								h			QAA	Run	l Noff A	Rainf rea=	all=7. 37,34	60" 8 sf	Runoff
	6	41 cfs						h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime=:	all=7. 37,34 21,05	60" 8 sf 8 cf	Runoff
	6.							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
(9	6-							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77"	Runoff
v (cfs)	6							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6	41 ds						h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6-							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6- 5- 4- 3-							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6 =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6- 5- 4- 3-							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6 =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6							h			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)						Hydro	grap)	ss	hušetb		DAA	Run	I Volu unof	Rainf irrea= f Dep T C	all=7. 37,34 21,05 th=6. =6.0 _ CN	.60" 8 sf 8 cf .77" min	Runoff
Flow (cfs)	6		20 25			45		h S			QAA	Run unoff	l Ioff A Volu	Rainf rea= ime= f Dep	all=7 37,34 21,05 th=6. =6.0	.60" 8 sf 8 cf .77" min	Runoff

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 107


Summary for Subcatchment 04S: P04

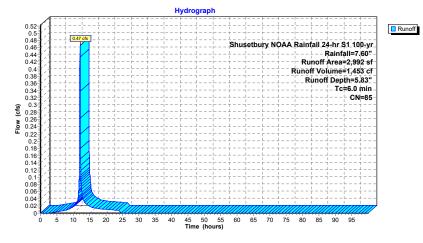

Runoff = 0.48 cfs @ 12.10 hrs, Volume= 1,859 cf, Depth= 5.60" Routed to Link 10L : DP3

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

	Area (sf)	CN I	Description		
	0	-			Fair. HSG A
	2.774			,	Fair, HSG D
	210		Paved park		
	0	36	Woods, Fai	r, HSG A	
	1,002	79	Woods, Fai	r, HSG D	
	0	98 I	Roofs, HSG	6 D	
	0	98	Water Surfa	ace, 0% im	p, HSG D
	3,986	83	Weighted A	verage	
	3,776	9	94.73% Pei	vious Area	
	210	:	5.27% Impe	ervious Are	a
To	5	Slope		Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.1	100	0.0200	0.17		Sheet Flow,
					Grass: Short n= 0.150 P2= 3.03"
0.6	37	0.0200	0.99		Shallow Concentrated Flow,
					Short Grass Pasture Kv= 7.0 fps

10.7 137 Total

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfal	=7.60"
Prepared by Fuss & O'Neill	Printed 12/13	3/2023
HydroCAD® 10.20-4a s/n 01614 ©	2023 HydroCAD Software Solutions LLC Page	ge 109


Summary for Subcatchment 05S: P05

Runoff = 0.47 cfs @ 12.04 hrs, Volume= 1,453 cf, Depth= 5.83" Routed to Link 10L : DP3

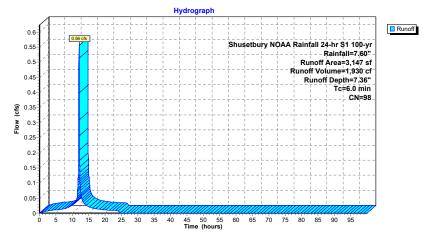
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, F	Fair, HSG A
	2,804	84	50-75% Gra	ass cover, F	Fair, HSG D
	188	98	Paved park	ing, HSG D)
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fai	r, HSG D	
	0	98	Roofs, HSC	6 D	
	0	98	Water Surfa	ace, 0% imp	p, HSG D
	2,992	85	Weighted A	verage	
	2,804		93.72% Per	vious Area	3
	188		6.28% Impe	ervious Area	a
Tc	Length	Slop		Capacity	Description
<u>(min)</u>	(feet)	(ft/f	t) (ft/sec)	(cfs)	
6.0					Direct Entry, Minimum

Subcatchment 05S: P05

20221110A10 Prepared by Fu HydroCAD® 10.20	ss & O'Neill	Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60" Printed 12/13/2023 oCAD Software Solutions LLC Page 110
	Summary f	for Subcatchment 06S: P06
Runoff = Routed to Po	1.20 cfs @ 12.03 hrs, \ nd 12P : POND #3	Volume= 3,907 cf, Depth= 6.65"
	R-20 method, UH=SCS, Wo A Rainfall 24-hr S1 100-yr	/eighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Rainfall=7.60"
Area (sf)	CN Description	
0 2,971 4,082 0 0 0 0 	 49 50-75% Grass cow 84 50-75% Grass cow 98 Paved parking, HS 36 Woods, Fair, HSG 79 Woods, Fair, HSG 98 Roofs, HSG D 98 Water Surface, 0% 92 Weighted Average 	rer, Fair, HSG D GG D A D 6 imp, HSG D
2,971 4,082	42.12% Pervious A 57.88% Impervious	
Tc Length (min) (feet)		city Description cfs)
<u>(min) (feet)</u> 6.0		Direct Entry, Minimum
		catchment 06S: P06 Iydrograph
Flow (cfs)		Shusetbury NOAA Rainfall 24-hr \$1 100-yr Rainfall=7.60" Runoff Area=7.053 sf Runoff Depth=6.65" Tc=6.0 min CN=92
0 5 1	0 15 20 25 30 35 40	45 50 55 60 65 70 75 80 85 90 95 Time (hours)

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 202	3 HvdroCAD Software Solutions LLC	Page 111


Summary for Subcatchment 07S: P07

Runoff = 0.56 cfs @ 12.03 hrs, Volume= 1,930 cf, Depth= 7.36" Routed to Pond 11P : POND #1

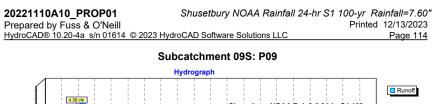
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

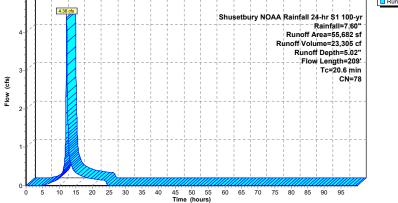
 A	rea (sf)	CN	Description		
	0	49	50-75% Gra	ass cover, F	Fair, HSG A
	0	84	50-75% Gra	ass cover, F	Fair, HSG D
	0	98	Paved park	ing, HSG D	D
	0	36	Woods, Fai	r, HSG A	
	0	79	Woods, Fai	r, HSG D	
	3,147	98	Roofs, HSG	6 D	
	0	98	Water Surfa	ace, 0% imp	p, HSG D
	3,147	98	Weighted A	verage	
	3,147		100.00% In	npervious A	Area
				-	
Тс	Length	Slope	e Velocity	Capacity	Description
 (min)	(feet)	(ft/ft	(ft/sec)	(cfs)	
 6.0					Direct Entry, Minimum
					• *

Subcatchment 07S: P07

	10.20-4	la s/n	01614	© 20)23 H	ydro(CAD S	oftwa	ire So	olutio	ns L	LC						Page 112
				Sum	mai	y fo	or Su	bca	tchr	nen	t 08	BS:	P08	3				
	=		cfs @		03 hr	s, Vo	olume)=		1,	146	cf, I	Dept	h=	7.36			
Routed t	o Pona	TTP	: PON	D #1														
noff by S usetbury										e Sp	oan=	0.0	0-99	.99	hrs,	dt=	0.03	hrs
,						y	Canno											
Area	(ST) 0	CN 49	Desc 50-75			cove	r Fai	r HS	GA									
	Õ	84	50-75	5% G	rass	cove	r, Fai											
	0 0	98 36	Pave Wood															
	0	30 79	Wood															
1,	869	98	Roofs															
	0	98	Wate				mp, I	ISG	D									
	869 869	98	Weig 100.0				Area	a										
,																		
	ngth feet)	Slop (ft/f	be Ve	locity t/sec)		ipaci cfs(escri	ption									
6.0	ieet)	(17)	<u>t) (</u>	/sec)		(018	/	irect	Ent	w M	linin	num						
0.0							5			y, 1		num						
					S	ubc	atch	men	t 08	S: I	P08							
1						Hy	drogra	ph	,	1								
0.36		-i + -i +			+ -	+			+	1	 +	,			1 		 +	Runoff
0.34	0.3	3 cfs	·		+	+-			Shu	sētbu	ry NO	DAA	Rainf	all 2	l-hr S	51 10	0-yr	
0.32									÷						Rainfa Area=			
0.28						L .			1		L	F	lunof					
0.26			·			 -			÷				R	unof	Dep	th=7. =6.0		
0.24		r	·			 -			+			¦					=98	
6 0.2									İ	1		!					T	
0.18		K	·						÷									
0.16		/ -+	·		+ - 	+		-	+		 				 		+ 1	
0.14	+			- -	+ - +!-	+ · + ·		- -	+		+ 	+ +	 	+ 	 	·	+ +	
0.1		-									 			 			L	
			·			[<u>_</u>	<u> </u>							1	
0.08					÷				$\frac{1}{1} =$	1		1			()			
0.08 0.06 0.04									1		L	1					1	

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 113


Summary for Subcatchment 09S: P09


Runoff = 4.38 cfs @ 12.23 hrs, Volume= 23,305 cf, Depth= 5.02" Routed to Link 8L : DP2

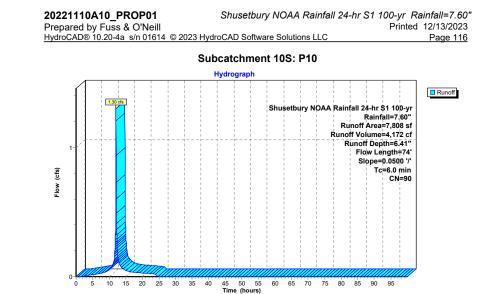
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

^	rea (sf)	CN I	Description			
A		-				
	3,802		50-75% Grass cover, Fair, HSG A			
	19,931		0-75% Grass cover, Fair, HSG D			
	277	98 F	aved parking, HSG D			
	1,194	36 \	Voods, Fair, HSG A			
	30,478	79 N	Woods, Fair, HSG D			
	0	98 F	Roofs, HSC	D		
	0	98 \	Nater Surfa	ace, 0% imp	o, HSG D	
	55,682	78 \	Neighted A	verage		
	55,405	ę	99.50% Pei	vious Area		
	277	().50% Impe	ervious Area	a	
Tc	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•	
18.8	100	0.0300	0.09		Sheet Flow,	
					Woods: Light underbrush n= 0.400 P2= 3.03"	
1.8	109	0.0430	1.04		Shallow Concentrated Flow,	
					Woodland Kv= 5.0 fps	

20.6 209 Total

20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	3 HvdroCAD Software Solutions LLC	Page 115

Summary for Subcatchment 10S: P10


Runoff = 1.30 cfs @ 12.04 hrs, Volume= Routed to Pond 10P : POND #2

e= 4,172 cf, Depth= 6.41"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"

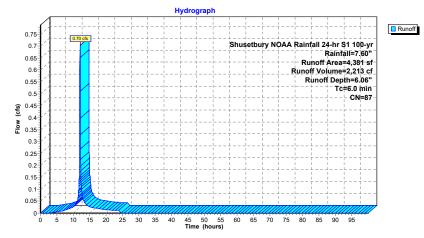
	roo (of)	CN I	Description				
A	rea (sf)	-	Description				
	0		50-75% Grass cover, Fair, HSG A				
	3,994		0-75% Grass cover, Fair, HSG D				
	912	98 I	aved parking, HSG D				
	0	36	Noods, Fai	Voods, Fair, HSG A			
	210	79	Noods, Fai	r, HSG D			
	0	98 I	Roofs, HSG	6 D			
	2,692	98	Nater Surfa	ace, 0% im	p, HSG D		
	7,808	90	Neighted A	verage			
	6,896	8	38.32% Pei	vious Area			
	912		11.68% Imp	pervious Ar	ea		
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	•		
4.7	23	0.0500	0.08		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.03"		
0.5	51	0.0500	1.57		Shallow Concentrated Flow,		
0.0	01	0.0000	1.07		Short Grass Pasture Kv= 7.0 fps		

5.2 74 Total, Increased to minimum Tc = 6.0 min

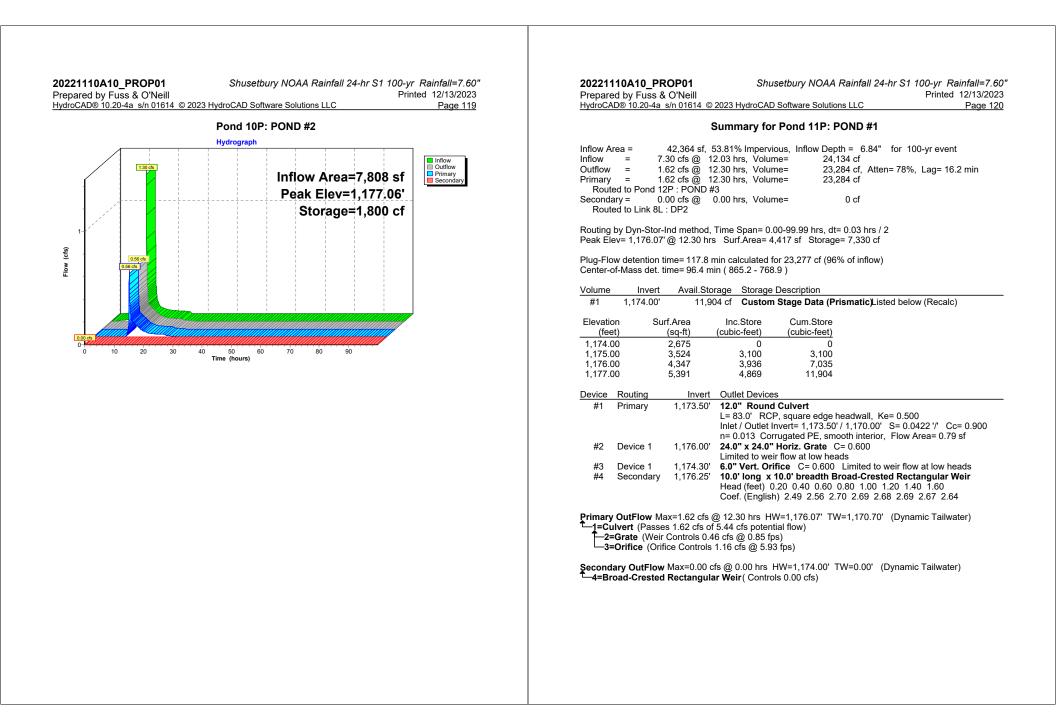
20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr	S1 100-yr Rainfall=7.60"
Prepared by Fuss & O'Neill		Printed 12/13/2023
HvdroCAD® 10.20-4a s/n 01614 © 2023	HvdroCAD Software Solutions LLC	Page 117

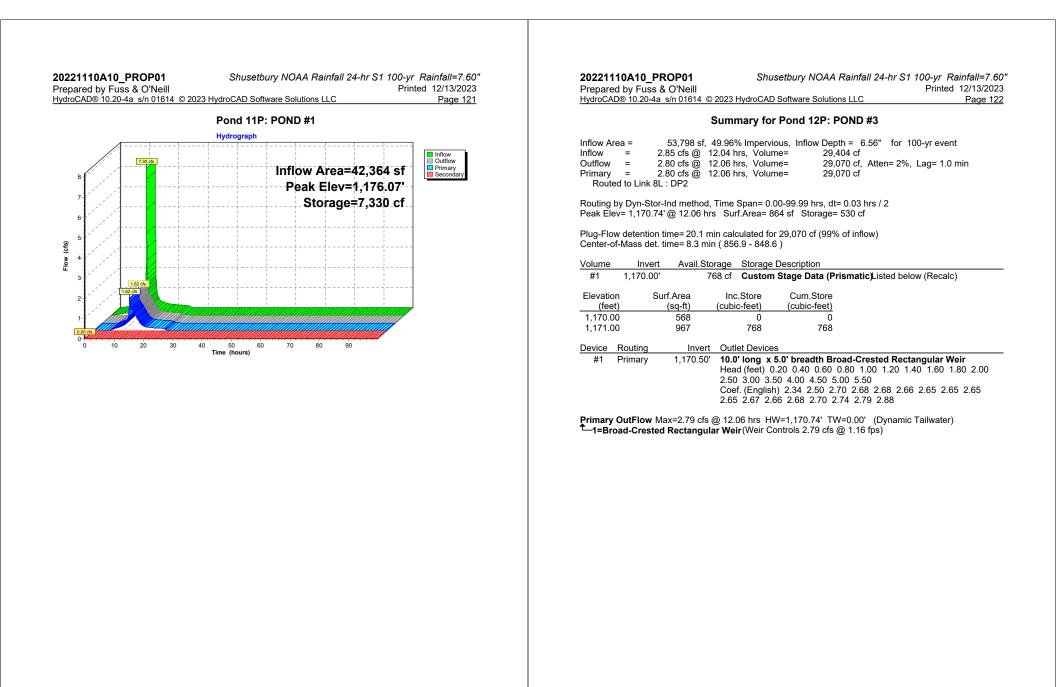
Summary for Subcatchment 11S: P11

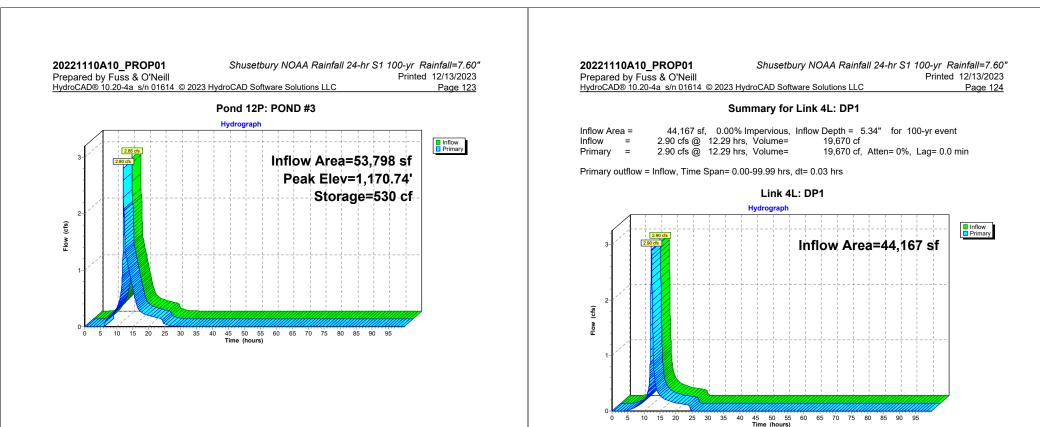
2,213 cf, Depth= 6.06"

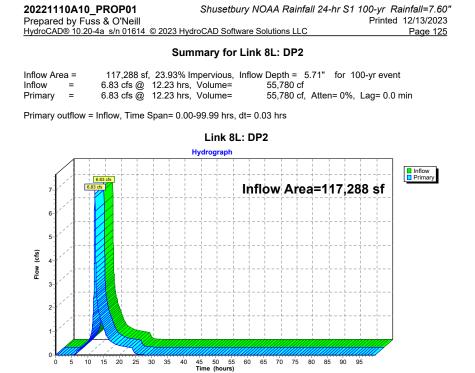

Runoff = 0.70 cfs @ 12.04 hrs, Volume= Routed to Pond 12P : POND #3

P : POND #3

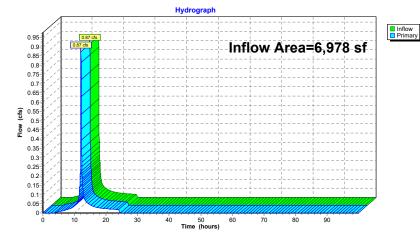

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs Shusetbury NOAA Rainfall 24-hr S1 100-yr Rainfall=7.60"


	A	rea (sf)	CN	Description				
		0	49	50-75% Gra	ass cover, F	Fair, HSG A		
		3,414	84	50-75% Gra	50-75% Grass cover, Fair, HSG D			
		0	98	Paved parking, HSG D				
		0	36	Woods, Fai	r, HSG A			
		0	79	Woods, Fai	r, HSG D			
		0	98	Roofs, HSG	D			
_		967	98	Water Surfa	ice, 0% imp	o, HSG D		
		4,381	87	Weighted A	verage			
		4,381		100.00% Pe	ervious Are	а		
	Tc	Length	Slop	e Velocity	Capacity	Description		
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)			
	6.0					Direct Entry, Minimum		
						-		
					• • •			


Subcatchment 11S: P11



.,	AD® 10.20-4a	0,							
			Summa	ry for F	Pond 10	P: POND	#2		
nflow A						Depth = 6	6.41" foi	100-yr e	event
nflow		.30 cfs @				4,172 cf		70/	7 0 ·
Outflow Primary	0	.56 cfs @ ' .56 cfs @ '	12.16 hrs, 12.16 hrs,	Volume)=)=	3,405 cf, 3,405 cf	Atten= 5	57%, Lag⊧	= 7.8 min
Second	ted to Link 8L ary = 0 ted to Link 8L	.00 cfs @	0.00 hrs,	Volume	=	0 cf			
Routina	by Dyn-Stor-	Ind method	. Time Sp	an= 0.00	-99.99 hrs	s. dt= 0.03	hrs / 2		
	ev= 1,177.06								
		•							
	ow detention					82% of inf	ow)		
Center-	of-Mass det.	time= 170.0	min (956	.7 - 786.	7)				
/olume	lusiont								
Joiumo			orage St	orage D	escription				
#1					escription		ic) istad k	oelow (Re	calc)
#1	1,176.00'					a (Prismat	ic)Listed I	pelow (Re	calc)
#1 Elevati	1,176.00'			ustom S		a (Prismat	ic)Listed I	oelow (Re	calc)
	1,176.00' on Su	4,0)12 cf C	ustom S	tage Data	a (Prismat ore	ic)Listed I	pelow (Re	calc)
Elevati	1,176.00' on Su et)	4,0 Irf.Area)12 cf C	ustom S	tage Data	a (Prismat ore	ic)Listed I	oelow (Re	calc)
Elevati (fee 1,176. 1,177.	1,176.00' on Su et) 00 00	4,0 Irf.Area (sq-ft) 1,373 1,979	012 cf C Inc.St (cubic-fe	ore eet) 0 576	tage Data Cum.Sto (cubic-fe	a (Prismat ore <u>eet)</u> 0 576	ic)Listed I	below (Re	calc)
Elevati (fee	1,176.00' on Su et) 00 00	4,0 Irf.Area (sq-ft) 1,373	012 cf C Inc.St (cubic-fe	ore eet) 0	Cum.Sto Cubic-fe	a (Prismat ore <u>eet)</u> 0 576	ic)Listed I	below (Re	calc)
Elevati (fee 1,176. 1,177. 1,178.	1,176.00' on Su et) 00 00	4,0 (sq-ft) 1,373 1,979 2,692	012 cf C Inc.St (cubic-fe	ore eet) 0 576 336	tage Data Cum.Sto (cubic-fe	a (Prismat ore <u>eet)</u> 0 576	ic)Listed I	oelow (Re	calc)
Elevati (fee 1,176. 1,177. 1,178.	1,176.00' on Su et) 00 00 00	4,0 (sq-ft) 1,373 1,979 2,692)12 cf C Inc.St (cubic-fe 1,f 2,3	ore eet) 0 576 336	Cum.Sto Cum.Sto (cubic-fe 1,6 4,0	a (Prismat ore <u>eet)</u> 0 576	ic)Listed I	oelow (Re	calc)
Elevati (fec 1,176. 1,177. 1,178. Device	1,176.00' on Su et) 00 00 00 Routing	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert)12 cf C Inc.St (cubic-fe 1,(2,3 : Outlet I 12.0" I L= 44.0	ustom S ore eet) 0 576 336 Devices Round C ' RCP,	Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec	a (Prismat ore et) 0 376 012 dge headwa	all, Ke= (0.500	
Elevati (fec 1,176. 1,177. 1,178. Device	1,176.00' on Su et) 00 00 00 Routing	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert	012 cf C Inc.St (cubic-fe 1,(2,3 Outlet I 12.0" I L= 44.C Inlet / C	ustom S ore eet) 0 376 336 Devices Round C ' RCP, Dutlet Inv	Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec vert= 1,175	a (Prismat ore et) 0 376 112 dge headw. 5.23' / 1,17	all, Ke= 0 5.00' S=).500 0.0052 '/'	Cc= 0.900
Elevati (fec 1,176. 1,177. 1,178. <u>Device</u> #1	1,176.00' on Su et) 00 00 00 Routing Primary	4,0 (sq-ft) 1,373 1,979 2,692 Invert 1,175.23	012 cf C Inc.St (cubic-fe 1,(2,3 Outlet I 12.0" I L= 44.0 Inlet / C n= 0.01	ustom S ore eet) 0 376 336 Devices Round C ' RCP, Dutlet Inv 3 Corru	Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec rert= 1,175 igated PE,	a (Prismat ore et) 0 776 112 dge headwr 5.23' / 1,17 smooth in	all, Ke= 0 5.00' S= terior, Flo).500 0.0052 '/'	Cc= 0.900
Elevati (fec 1,176. 1,177. 1,178. Device	1,176.00' on Su et) 00 00 00 Routing	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert	12 cf C Inc.St (cubic-fe 2,: Outlet I 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x	ustom S ore eet) 0 576 336 Devices Round C ' RCP, Jutlet Inv 3 Corru 24.0" H	Cum.Stage Data Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec rert= 1,175 gated PE, oriz. Grat	a (Prismat ore et) 076 112 dge headwa 5.23' / 1,17 smooth in e C= 0.60	all, Ke= 0 5.00' S= terior, Flo).500 0.0052 '/'	Cc= 0.900
Elevati (fer 1,176. 1,177. 1,178. Device #1 #2	1,176.00' on Su et) 00 00 00 <u>Routing</u> Primary Device 1	4,0 Inf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00'	D12 cf C Inc.St (cubic-fe 1,(2,3) Dutlet I 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x Limited	ustom S ore (et) 0 576 336 Devices Round C ' RCP, Dutlet Inv 3 Corru 24.0" H to weir f	Culvert square ec ert= 1,175 gated PE, foriz. Grat	a (Prismat pre (et) 0 0 0 0 0 0 0 0	all, Ke= 0 5.00' S= terior, Flo 00).500 0.0052 '/' ow Area=	Cc= 0.900 0.79 sf
Elevatii (fer 1,176. 1,177. 1,178. Device #1 #2 #3	1,176.00' on Su et) 00 00 00 <u>Routing</u> Primary Device 1 Device 1	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50'	Dit2 of C Inc.St (oubic-fe 1, (2, ' 2, ' Outlet If 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x Limited 3.0" Vet	ustom S ore bet) 0 576 336 Devices Round C ' RCP, Jutlet Inv 3 Corru 24.0" H to weir f ort. Orific	tage Data Cum.Str (cubic-fe 1,6 4,0 Culvert square ec rert= 1,175 gated PE, joriz. Grat flow at low ce C = 0.0	a (Prismat pre et) 0 576 112 dge headw. 5.23' / 1,17 smooth in e C = 0.60 heads 500 Limit	all, Ke= 0 5.00' S= terior, Flo 00 ed to weir	0.500 0.0052 '/' ow Area= flow at lo	Cc= 0.900 0.79 sf w heads
Elevati (fer 1,176. 1,177. 1,178. Device #1 #2	1,176.00' on Su et) 00 00 00 <u>Routing</u> Primary Device 1	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50'	D12 cf C Inc.St (cubic-fe 1,6 2,5 Outlet I 12.0" I L= 44.C Inlet / C n= 0.01 24.0" Ve 3.0" Ve 10.0" Ve	ustom S ore eet) 0 376 336 Devices Round C 7 RCP, 0utlet Inv 3 Corru 24.0" H to weir f rt. Orific ng x 10	Cum.Sta (cubic-fe (cubic-fe 4,0 Culvert square ec rert= 1,175 gated PE, oriz. Grat flow at low ce C= 0.6.	a (Prismat pre (et) 0 76 112 12 12 132 142 142 142 142 142 142 142 14	all, Ke= 0 5.00' S= terior, Flo 00 ed to weir Crested F	0.500 0.0052 '/' ow Area= flow at lo Rectangu i	Cc= 0.900 0.79 sf w heads lar Weir
Elevati (fed 1,176. 1,177. 1,178. <u>Device</u> #1 #2 #3	1,176.00' on Su et) 00 00 00 <u>Routing</u> Primary Device 1 Device 1	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50'	D12 cf C Inc.St (cubic-fe 1,(2,3 CUtlet I 12.0" I L=44.0 Inlet / C n=0.01 24.0" x Limited 3.0" Ve 10.0" I Head (1	ustom S ore eet) 0 776 336 Devices Round C ' RCP, Jutiet Inv 3 Corru 24.0" H to weir f ort. Orific ng x 10 eet) 0.2	Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec rert= 1,175 gated PE, oriz. Grat flow at low ce C = 0.0,0' bread	a (Prismat pre et) 0 576 112 dge headw 5.23' / 1,17 ser C= 0.60 heads 500 Limit th Broad-1 60 0.80 1	all, Ke= 0 5.00' S= terior, Fk 00 ced to weir Crested F .00 1.20	0.500 0.0052 '/' ow Area= flow at lo Rectangui 1.40 1.6	Cc= 0.900 0.79 sf w heads lar Weir 30
Elevati (fer 1,176.) 1,177. 1,178. Device #1 #2 #3 #4	1,176.00' on Su et) 00 00 00 Primary Device 1 Device 1 Secondary	4,0 Irf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,176.50' 1,177.50'	012 cf C Inc.St (cubic-fe 1, (2, ' 0utlet I 12.0" I 12.0" I 12.0" I 12.0" I 12.0" I 12.0" I 12.0" I 14.0" X 10.0" I 10.0"	ustom S ore set) 0 776 336 Devices Round C ' RCP, Joutet Inv 3 Corru 24.0" H to weir f rt. Orificiong x 10 eet) 0.2 English)	itage Data Cum.Str. (cubic-ference) 1,6 4,0 Culvert square eccentration retrat -1,75 gated PE, flow at low cc ce C = 0.0° 0.0° breadi 0 0.40 0. 2.49 2.56	a (Prismat pre (et) 0 76 112 dge headw. 5.23' / 1,17 smooth in the C= 0.60 heads 500 Limit th Broad-6 60 0.80 1 5 2.70 2.60	all, Ke= 0 5.00' S= terior, Fk 00 crested F .00 1.20 9 2.68 2	2.500 0.0052 '/' w Area= flow at lo Rectangui 1.40 1.6 .69 2.67	Cc= 0.900 0.79 sf w heads lar Weir 0 2.64
Elevati (fec 1,176.) 1,177. 1,178. Device #1 #2 #3 #4	1,176.00' on Su et) 00 00 Primary Device 1 Device 1 Secondary y OutFlow M	4,0 Inf.Area (sq-ft) 1,373 1,979 2,692 Invertt 1,175.23' 1,177.00' 1,176.50' 1,177.50' ax=0.55 cfs	12 cf C Inc.St (cubic-fe 1,(2,5 Outlet I 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x Limited 3.0" Ve 3.0" Ve 10.0 Coef. (I @ 12.16	ustom S ore eet) 0 576 336 Devices Round C ' RCP, Dutlet Inv 3 Corru 24.0" H to weir f ort. Orific ng x 10 eet) 0.2 English) hrs HW=	Cum.Str. (cubic-ferentiation) 1,6 4,0 Culvert square ecc ret=1,175 gated PE, oriz. Gratt Row at low ce C=0.6 .0.9 .0.9 .0.9 .0.9 .0.9 .0.9 .0.9 .0.9 .0.9 .0.9 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .0.10 .010 .010 .010 .010 .010 .010 .010 .010	a (Prismat pre (et) 0 76 112 dge headw. 5.23' / 1,17 smooth in the C= 0.60 heads 500 Limit th Broad-6 60 0.80 1 5 2.70 2.60	all, Ke= 0 5.00' S= terior, Fk 00 crested F .00 1.20 9 2.68 2	2.500 0.0052 '/' w Area= flow at lo Rectangui 1.40 1.6 .69 2.67	Cc= 0.900 0.79 sf w heads lar Weir 0 2.64
Elevati (fer 1,176. 1,177. 1,178. Device #1 #2 #3 #4	1,176.00' on Su et) 00 00 Primary Device 1 Device 1 Secondary y OutFlow M ulvert (Passe	4,0 Inf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23 1,177.00' 1,176.50' 1,177.50' ax=0.55 cfs ss 0.55 cfs cfs	D12 cf C Inc.St (cubic-fe 1,(2,3 Outlet I 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x Limited 3.0" Ve 10.0" IC Head (I Coef. (I) @ 12.16 of 3.82 cfs	ustom S ore set) 0 576 336 Devices Round C ' RCP, Jutlet Inv 3 Corru 24.0" H to weir f rt. Orific ong x 10 eet) 0.2 English) hrs HW= potentia	Cum.Stk (cubic-fe 1,6 4,0 Culvert square ec rert= 1,175 gated PE, joriz. Grad flow at low ce C= 0.0 0.0' bread 0. 2.49 2.56 =1,177.06' i flow)	a (Prismat pre (et) 0 76 112 dge headw. 5.23' / 1,17 smooth in the C= 0.60 heads 500 Limit th Broad-6 60 0.80 1 5 2.70 2.60	all, Ke= 0 5.00' S= terior, Fk 00 crested F .00 1.20 9 2.68 2	2.500 0.0052 '/' w Area= flow at lo Rectangui 1.40 1.6 .69 2.67	Cc= 0.900 0.79 sf w heads lar Weir 0 2.64
Elevati (fer 1,176. 1,177.) 1,1778. Device #1 #2 #3 #4	1,176.00' on Su et) 00 00 Primary Device 1 Device 1 Secondary y OutFlow M	4,0 Inf.Area (sq-ft) 1,373 1,979 2,692 Invert 1,175.23' 1,177.00' 1,177.00' 1,176.50' 1,177.50' ax=0.55 cfs c © 0.55 cfs c Controls 0.	D12 cf C Inc.St (cubic-fe 1, (2, ' Outlet I 12.0" I L= 44.0 Inlet / C n= 0.01 24.0" x Limited 3.0" Ve 10.0" IC Head (f Coef. (l @ 12.16 of 3.82 cfs 39 cfs @ 1	ustom S ore bet) 0 776 336 Devices Round C ' RCP, Jutlet Inv 3 Corru 24.0" H to weir f trt. Orific ong x 10 eet) 0.2 English) hrs HW= potential Devices Automatic States Devices	tage Data Cum.Sta (cubic-fe 1,6 4,0 Culvert square ec ert= 1,175 gated PE, oriz. Grat flow at low ce C= 0.0 .0° bread 0 0.40 0. 2.49 2.56 =1,177.06° I flow)	a (Prismat pre (et) 0 76 112 dge headw. 5.23' / 1,17 smooth in the C= 0.60 heads 500 Limit th Broad-6 60 0.80 1 5 2.70 2.60	all, Ke= 0 5.00' S= terior, Fk 00 crested F .00 1.20 9 2.68 2	2.500 0.0052 '/' w Area= flow at lo Rectangui 1.40 1.6 .69 2.67	Cc= 0.900 0.79 sf w heads lar Weir 0 2.64


20221110A10_PROP01	Shusetbury NOAA Rainfall 24-hr S1 100-y	
Prepared by Fuss & O'Neill	Prir	nted 12/13/2023
HydroCAD® 10.20-4a s/n 01614 © 2023 Hydr	roCAD Software Solutions LLC	Page 126

Summary for Link 10L: DP3

Inflow Are	a =	6,978 sf,	5.70% Impervious,	Inflow Depth = 5.70"	for 100-yr event
Inflow	=	0.87 cfs @ 1	12.06 hrs, Volume=	3,312 cf	-
Primary	=	0.87 cfs @ 1	12.06 hrs, Volume=	3,312 cf, Atte	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-99.99 hrs, dt= 0.03 hrs

Appendix G

Stormwater Management Checklist

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands Program Checklist for Stormwater Report

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

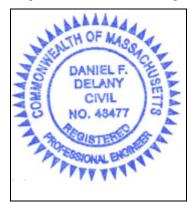
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification must be submitted with the Stormwater Report.

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

B. Stormwater Checklist and Certification

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

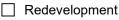
A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

140/


12/21/23

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

] Mix of New Development and Redevelopment

Checklist (continued)

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
\boxtimes	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
	Grass Channel
	Green Roof
	Other (describe):
Sta	ndard 1: No New Untreated Discharges

 \boxtimes No new untreated discharges

Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth

Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Checklist (continued)

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.

Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

Soil Analysis provided.

- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static 🗌	Simple Dynamic
----------	----------------

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.

Recharge BMPs have been sized to infiltrate the Required Recharge Volume.

- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - \boxtimes Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.

Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Checklist (continued)

Standard 3: Recharge (continued)

The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.

Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- ☐ Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:
 - is within the Zone II or Interim Wellhead Protection Area
 - is near or to other critical areas
 - is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
 - involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

Checklist ((continued)
-------------	-------------

Standard 4: Water Quality (continued)

- The BMP is sized (and calculations provided) based on:
 - The 1/2" or 1" Water Quality Volume or
 - The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
- The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
- A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.

Standard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)

- The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report.
- The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted **prior to** the discharge of stormwater to the post-construction stormwater BMPs.
- The NPDES Multi-Sector General Permit does *not* cover the land use.
- LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
- All exposure has been eliminated.
- All exposure has *not* been eliminated and all BMPs selected are on MassDEP LUHPPL list.
- The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.

Standard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Checklist (continued)

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:

Limited	Project
---------	---------

- Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
- Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
- Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
- Bike Path and/or Foot Path
- Redevelopment Project
- Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.

☐ The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

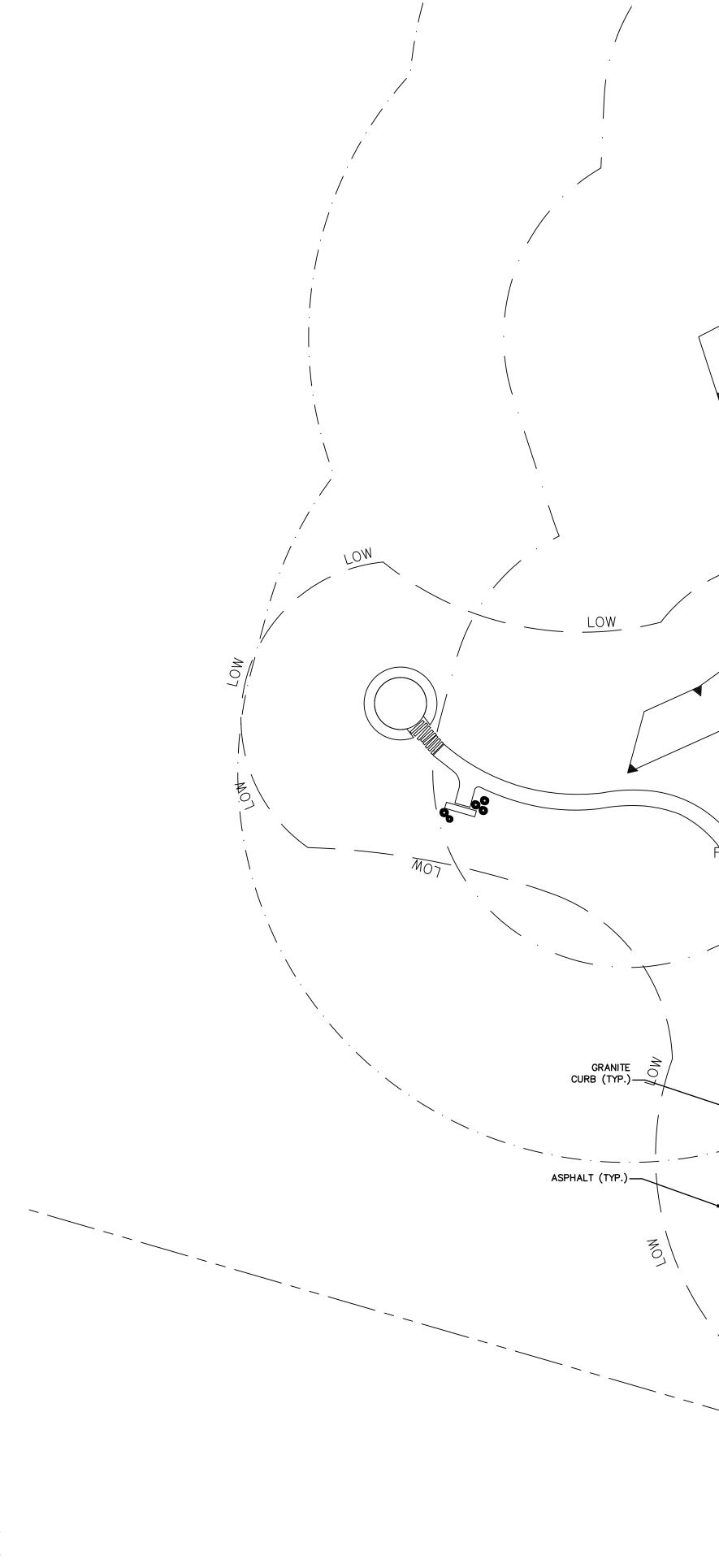
Checklist (continued)

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- ☐ The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.


Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.

Appendix H

Previous Project Design

LOW

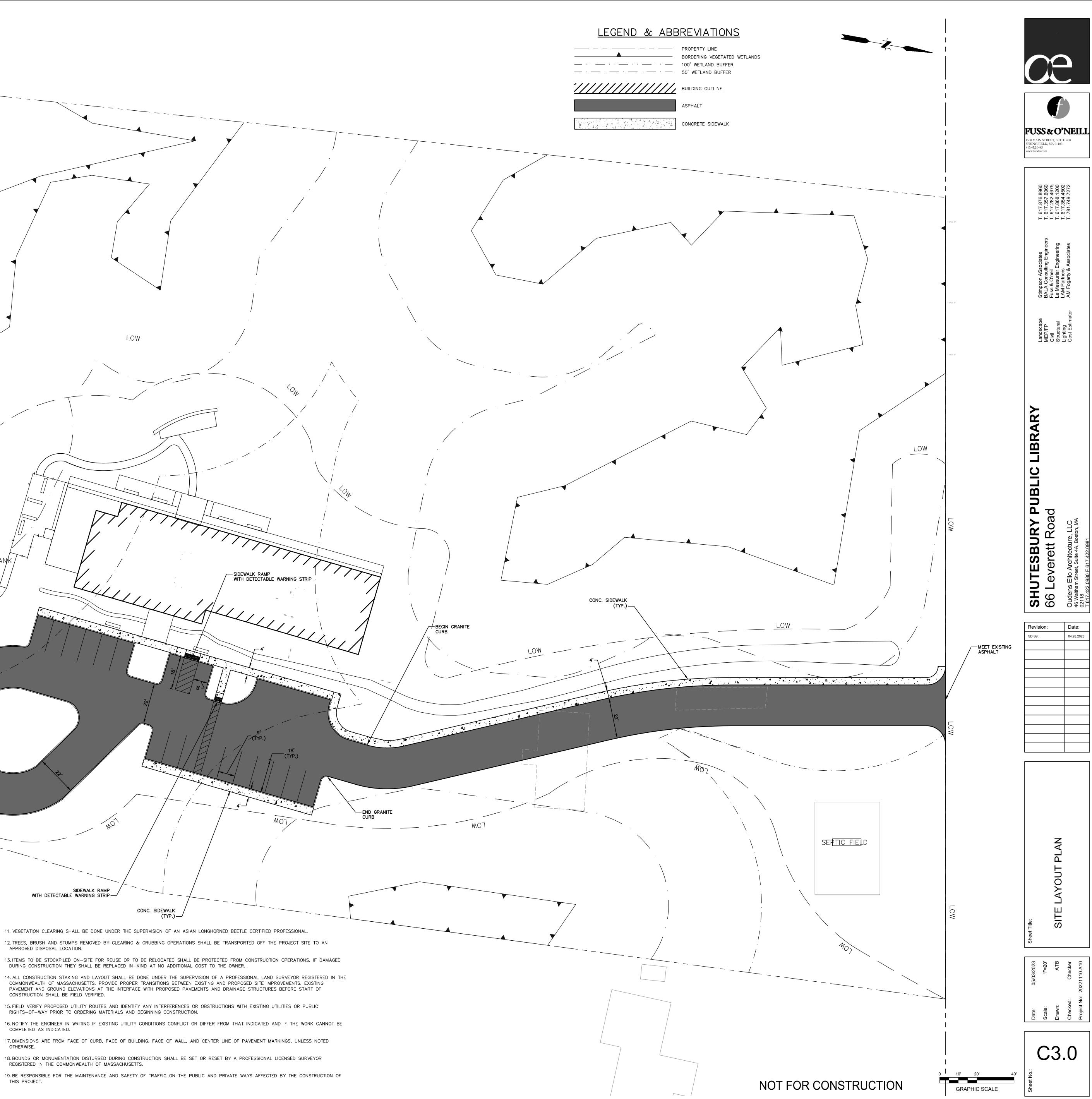
UP/PRESSION

NOTES:

1. NOTIFY DIG-SAFE 811 OR 1-888-DIG-SAFE A MINIMUM OF 72 HOURS PRIOR TO CONSTRUCTION.

2.DO NOT CLOSE OR OBSTRUCT ROADWAYS, SIDEWALKS, FIRE HYDRANTS, AND UTILITIES WITHOUT APPROPRIATE PERMITS.

3. WORK IS RESTRICTED TO THE HOURS OF 7:00 AM TO 7:00 PM, MONDAY THROUGH SATURDAY UNLESS OTHERWISE PERMITTED BY THE OWNER. THERE SHALL BE NO WORK ON SUNDAYS OR HOLIDAYS. THERE SHALL BE NO IDLING OR OPERATION OF CONSTRUCTION VEHICLES OUTSIDE OF THESE HOURS.


4. WORK WITHIN STATE RIGHTS-OF-WAY SHALL BE PERFORMED IN ACCORDANCE WITH THE MASSACHUSETTS DEPARTMENT OF TRANSPORTATION STANDARD SPECIFICATIONS.

5.BE RESPONSIBLE FOR SITE SECURITY AND JOB SAFETY. PERFORM CONSTRUCTION ACTIVITIES IN ACCORDANCE WITH OSHA STANDARDS AND LOCAL REQUIREMENTS.

6.STOP WORK IN THE VICINITY OF ANY SUSPECTED CONTAMINATED SOIL, GROUNDWATER OR OTHER MEDIA AND NOTIFY THE OWNER IMMEDIATELY SO THAT APPROPRIATE TESTING AND SUBSEQUENT ACTION CAN BE TAKEN. DO NOT RESUME WORK UNTIL DIRECTED BY THE OWNER. 7. EROSION AND SEDIMENTATION CONTROLS SHALL BE INSTALLED PRIOR TO COMMENCING ANY EARTHWORK OPERATIONS.

8. PROTECT ALL SLOPES, VEGETATION, PAVING, WALKS, AND IMPROVEMENTS OUTSIDE THE AREAS TO BE AFFECTED BY THE CONSTRUCTION OF THIS PROJECT.

9.CATCH BASINS WITHIN THE WORK AREA OR DOWN STREAM OF DRAINAGE FLOW SHALL BE PROTECTED WITH CATCH BASIN SILT SACKS. 10. WATER AND CALCIUM CHLORIDE MUST BE AVAILABLE AT ALL TIMES FOR DUST CONTROL.

OTHERWISE.

Appendix I

Water Quality Volume Stormwater Treatment Structure

date: 12/21/2023

Sizing VortSentryHS - STS #13 Water Quality Volume to Discharge Rate

$Q_1 = (qu)(A)(WQV)$

 Q_1 = flow rate associated with first 1-inch of runoff

qu = the unit peak discharge, in csm/in

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1/2 or 1 inch)

	Flow Rate]
	Equations		
CN		98	-
WQV	inch	1.0	
Area	sq ft	22,793	
	acres	0.52	
	sq miles	0.00	
Тс	min.	6	
Tc	hours	0.1	
qu	csm/in	774	from Figure 4 of the Mass DEP Q Rate - Sept. 10, 2013
Q ₁	cfs	0.63	Per Contech Specification a Cascade CS-3

date: 12/21/2023

Sizing VortSentryHS - STS #18 Water Quality Volume to Discharge Rate

$Q_1 = (qu)(A)(WQV)$

 Q_1 = flow rate associated with first 1-inch of runoff

qu = the unit peak discharge, in csm/in

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1/2 or 1 inch)

	Flow Rate]
	Equations		
CN		98	
WQV	inch	1.0	
Area	sq ft	912	
	acres	0.02	
	sq miles	0.00	
Тс	min.	6	
Тс	hours	0.1	
qu	csm/in	774	from Figure 4 of the Mass DEP Q Rate - Sept. 10, 2013
Q ₁	cfs	0.03	Per Contech Specification a Cascade CS-3

date: 12/21/2023

Sizing VortSentryHS - STS #20 Water Quality Volume to Discharge Rate

$Q_1 = (qu)(A)(WQV)$

 Q_1 = flow rate associated with first 1-inch of runoff

qu = the unit peak discharge, in csm/in

A = impervious surface drainage area (in square miles)

WQV = water quality volume in watershed inches (1/2 or 1 inch)

	Flow Rate]
	Equations		
CN		98	
WQV	inch	1.0	
		4 0 0 0	
Area	sq ft	4,082	-
	acres	0.09	
	sq miles	0.00	
Тс	min.	6	
Tc	hours	0.1	
qu	csm/in	774	from Figure 4 of the Mass DEP Q Rate - Sept. 10, 2013
]
Q ₁	cfs	0.11	Per Contech Specification a Cascade CS-3

Appendix J

TSS Treatment Worksheets

Project:	Shutesbury Public Library 66 Leverette	Prepared By:	ATB
Site Location:	Road Shutesbury, M	Date:	12/21/2023
Outfall Location:	DP1		

BMP	TSS Removal Efficiency	Starting TSS Load	TSS Removed	TSS Remaining
Stormwater Treatment				
Structures	80%	1.00	0.80	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20

Total TSS Removal	Efficiency=	80%
-------------------	-------------	-----

Project:	Shutesbury Public Library 66 Leverette	Prepared By:	ATB
Site Location: Outfall Location:	Road Shutesbury, M DP2	Date:	12/21/2023

BMP	TSS Removal Efficiency	Starting TSS Load	TSS Removed	TSS Remaining
Stormwater Treatment				
Structures	80%	1.00	0.80	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20

Total TSS Removal	Efficiency=	80%
-------------------	-------------	-----

Project:	Shutesbury Public Library 66 Leverette	Prepared By:	ATB
Site Location: Outfall Location:	Road Shutesbury, M DP3	Date:	12/21/2023

BMP	TSS Removal Efficiency	Starting TSS Load	TSS Removed	TSS Remaining
Stormwater Treatment				
Structures	80%	1.00	0.80	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20
		0.20	0.00	0.20

Total TSS Removal	Efficiency=	80%
-------------------	-------------	-----

Appendix K

Construction Operation and Maintenance Plan

MEMORANDUM

TO:	Town of Shutesbury
FROM:	Fuss & O'Neill, Inc.
DATE:	December 21, 2023
RE:	Construction Operation and Maintenance Plan Shutesbury Public Library

This suggested Construction Operation and Maintenance Plan (O&M) is for the construction of a the Shutesbury Public Library located at 66 Leverette Road in Shutesbury, Massachusetts. Construction includes an approximately XXX square foot building with associated paved parking, gravel parking, paved driveway, pedestrian sidewalks, stormwater management system, site utilities, on-site septic system, on-site well, and other site amenities. This O&M Plan has been prepared in accordance with the Massachusetts Stormwater Handbook and the Town of Shutesbury Wetland Protection Bylaw Regulations. This O&M plan will be in conjunction with the requirements of the Construction General Permit and Stormwater Pollution Prevention Plan (SWPPP). The SWPPP will provide additional details and be completed prior to the start of construction.

Property Owner:	Town of Shutesbury
	P.O. Box 276
	1 Cooleyville Road
	Shutesbury, MA 01072

Responsible Party:	Site Contractor
---------------------------	-----------------

The contractor shall be responsible for the operation and maintenance of the site during construction. A suggested operation and maintenance activities plan and proposed schedule for during construction are as follows:

- 1. No earthwork activities shall commence until silt fence has been installed. Silt fence and compost filter tubes (or straw bales) shall be installed as shown on the drawings.
- 2. No earthwork activities shall commence until catch basin inlet protection have been installed. Catch basin protection to be installed in all catch basins located on site.
- 3. Areas left exposed to erosion for more than seven days shall be rough graded and temporarily stabilized. Areas disturbed but inactive for more than thirty days shall be temporarily seeded.
- 4. Erosion and sedimentation controls shall be maintained until successful establishment of ground cover.

- 5. No staging of materials or lay down areas shall be located within the resource areas or the 25foot wetland buffer area.
- 6. Paved areas shall be kept free of sediment and shall be cleaned periodically as required by construction activities.
- 7. Catch basins shall be periodically inspected for the accumulation of sediment. Catch basins within the project shall be cleaned at the end of the project.
- 8. Temporary soil stockpiles shall be located within the project limit of work and outside of the 25-foot wetland buffer area. Stockpiles will be moved as necessary to accommodate ongoing work.
- 9. Sediment stockpiles shall have a side slope of no greater than 2:1. Stockpiles shall be rough graded or maintain a roughened surface to prevent erosion. Stockpiles that are not to be used within 7 days shall be seeded after formation of stockpile as to prevent erosion. Compost filter tube barrier and silt fence shall be installed around stockpile area approximately 10 feet from toe of slope.
- 10. The contractor is responsible for inspecting and repairing erosion and sedimentation control measures as required to prevent damage or sedimentation.
- 11. Upon completion of construction and establishment of permanent ground cover, remove and dispose of temporary erosion control measures. Clean sediment and debris from temporary measures and from permanent storm drain and sanitary sewer systems.

Inspections shall be completed a minimum of every seven (7) calendar days and within 24 hours of the end of a storm event of 0.25 inches or greater. Attached is an example Construction Inspection and Maintenance Report Form.

CONSTRUCTION INSPECTION AND MAINTENANCE REPORT FORM

Shutesbury Public Library Shutesbury, MA

To be completed every 7 calendar days and within 24 hours of the end of a storm event of 0.25 inches or greater

Inspector: _____ Date: _____

Inspector's Title and Qualifications:

Summary of Previous 7-day Rainfall:

Date	Friday Date	Saturday Date	Sunday Date	Monday Date	Tuesday Date	Wednesday Date	Thursday Date
Total Daily							
Rainfall (in.)							

Stabilization Measures:

Area	Disturbed	Stabilized	Stabilized	Condition
	(Yes/No)	(Yes/No)	With	
Paved Parking and				
Driveway				
Stormwater Detention				
Basin #1				
Stormwater Detention				
Basin #2				
Stormwater Detention				
Basin #3				

Construction Site & Adjacent Areas:

General condition:

Maintenance Required for Silt Fence:

Is sediment being tracked on to road?

Maintenance required?

\\wspz1\projectdata\P2022\1110\A10\Drainage\SW Report\Appendix\App K_Construction O&M\APP 2_Construction Inspection & Maintenance Log_Shutesbury.docx

CONSTRUCTION INSPECTION AND MAINTENANCE REPORT FORM

Shutesbury Public Library Shutesbury, MA

Changes Required to the Pollution Prevention Plan:

Reasons for Changes:

Certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gathered and evaluated the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Signature: _____ Date: _____

Appendix L

Long-Term Operation and Maintenance Plan

MEMORANDUM

TO:	Town of Shutesbury
FROM:	Fuss & O'Neill, Inc.
DATE:	December 21, 2023
RE:	Long Term Operation and Maintenance Plan Shutesbury Public Library

This Long-Term Operation and Maintenance Plan (O&M) is for the long-term operation of the Public Library located at 66 Leverette Road in Shutesbury, Massachusetts. This Long-Term O&M Plan has been prepared in accordance with the Massachusetts Stormwater Handbook and the Town of Shutesbury Wetland Protection Bylaw Regulations.

Property Owner and Responsible Party:

Town of Shutesbury P.O. Box 276 1 Cooleyville Road Shutesbury, MA 01072

It will be the responsibility of the Owner to comply with this Long-Term Operation and Maintenance Plan. The owner is responsible for all financing, maintenance and emergency repairs. Should the property or any portion of the property be transferred to another owner, that new owner must be notified of the presence of this Long-Term Operation and Maintenance Plan and be held responsible for the implementation of this plan and financing as it pertains to their property.

Operation and Maintenance Plan

The long-term construction operation and maintenance plan outlined hereafter provides recommendations for periodic inspection and maintenance activities for the stormwater management system. This Long-Term Operation and Maintenance Plan will ensure that the stormwater management system functions as designed throughout the life of the system.

- The stormwater collection systems will be inspected a minimum of four (4) times per year to maintain proper operation. Sediment and debris shall be removed from structures and pipes. Sedimentation will be removed from each deep sump catch basin a minimum of four (4) times a year or whenever the depth of deposits is greater than or equal to one half the depth from the bottom of the invert of the lowest pipe. Deep sump catch basins shall be cleaned at the end of the foliage and snow removal seasons.
- Paved surfaces will be swept twice annually, April and October, to remove sand and debris.
- Stone drip edge around building shall be inspected twice a year. This will include checking for signs of riling and gullying. Also, this will include checking for the accumulation of sediments, pollutants, and

vegetation. The stone drip edge shall be maintained in good shape, free of vegetation, and cleaned twice a year.

- At least twice per year, during the spring (April) and fall (November), outlet structures will be examined and cleaned, and all floatables and solids trapped will be removed.
- Stormwater Treatments System shall be inspected in accordance with the manufacturer's recommendations. The manufacturer recommended O&M Plan is attached.
- Stormwater detention basin shall be inspected after every major storm event for the first three months and a minimum twice a year thereafter. Basin shall be inspected for, but not limited to, evidence of differential settlement, cracking, erosion, leakage in the embankments, tree growth on the embankments, condition of riprap, and sediment accumulation and the health of the vegetation. All upper-stage, side slopes, embankments, and emergency spillways shall be mowed at least twice a year. Trash and debris shall be removed at least twice a year and accumulated sediment shall be removed at least twice a year from the basin.

Snow Removal and Storage

Snow removal and storage shall be performed when needed as follows:

- Snow shall be plowed to snow storage areas located off the perimeter of the parking areas. No snow shall be stored within wetland resource areas or within the stormwater detention basins.
- De-icing chemicals may only be used on pedestrian surfaces. All other paved surfaces may have sand applied.
- Excess snow shall be removed from site or stockpiled only within the paved areas on the site.

Location and Access of Stormwater Management System

All components of the stormwater management system are located within project site area. Access to the components will be from Leveret Road. The attached Figure A, provides the location of stormwater features and access for the stormwater management system.

Records of Maintenance and Repair Activities

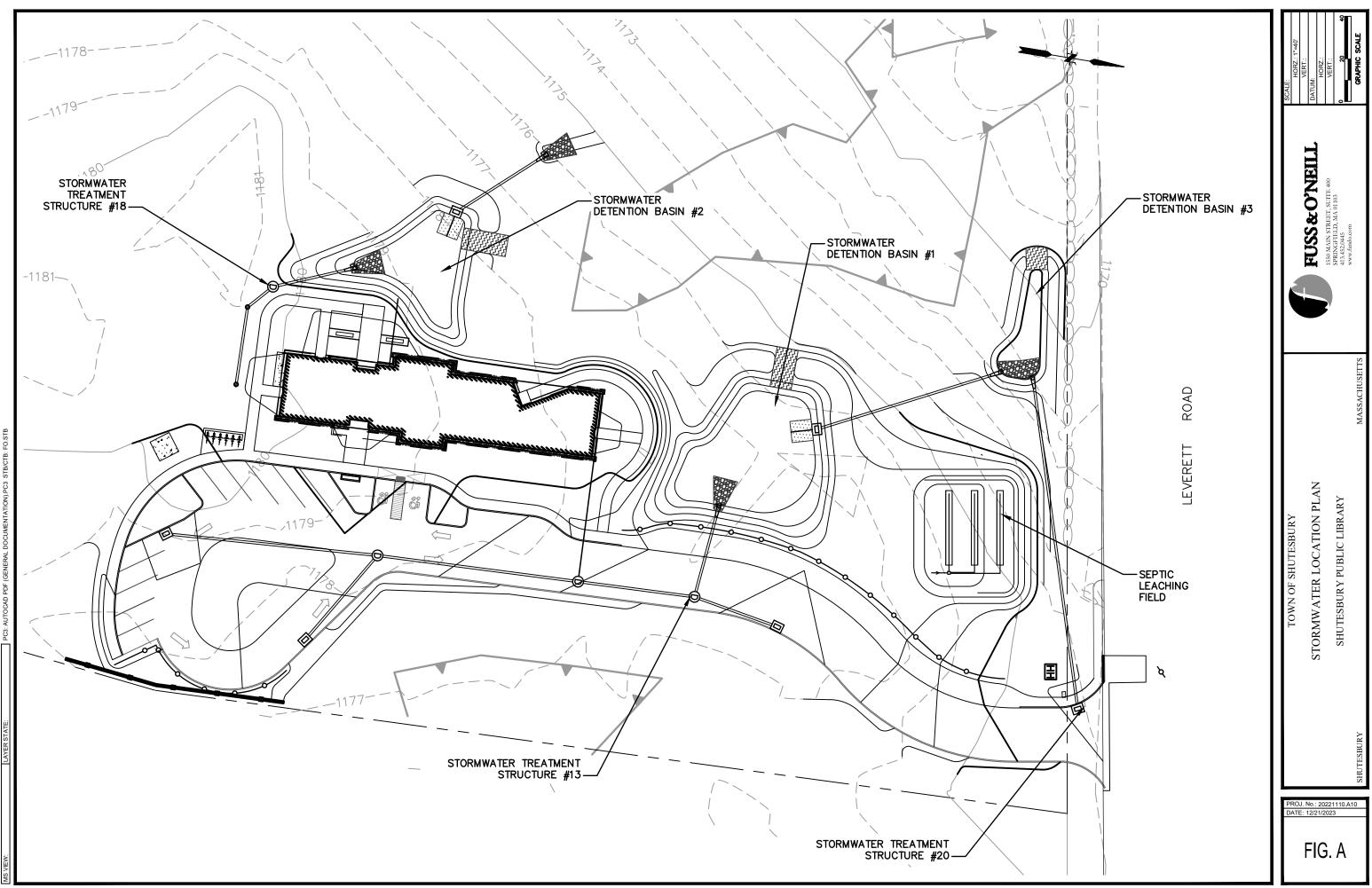
The responsible parties shall keep records of installation, maintenance and repairs of the stormwater management facilities. These records shall be retained for the most recent five years on site and be provided to the Conservation Commission annually and upon request. An example Operation and Maintenance Log Form is attached.

Attachments:

O&M Log Form Figure A – Stormwater Location Plan Stormwater Treatment System manufacturer recommended O&M Plan.

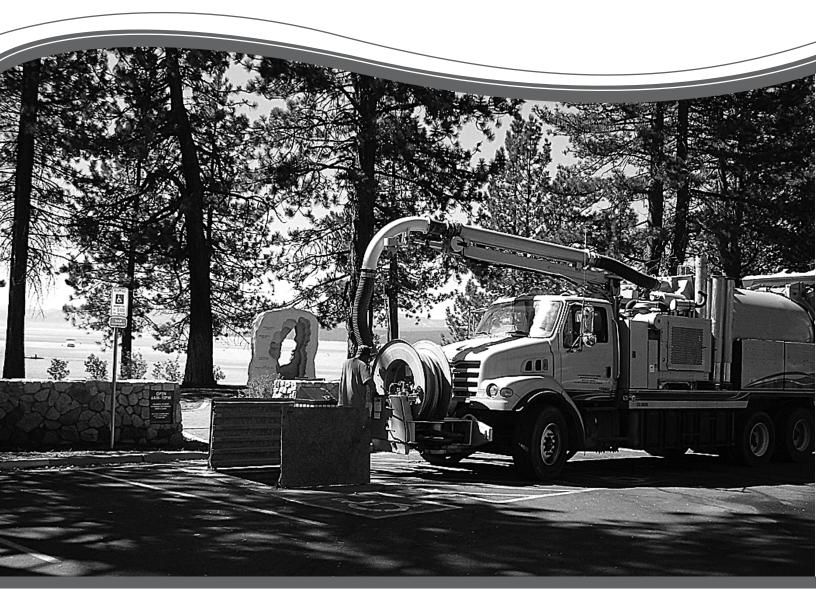
Operation and Maintenance Log Form

Project/Location: Gardner Rear Main Street Site Improvements


"As Built" Plans Available?
Date/Time:
Days since Previous Rainfall and Rainfall Amount:
Inspector:

Maintenance Item	Satisfactory	Unsatisfactory	Comments	
1. Asphalt Road & Sidewalk Sweeping				
• Evidence of erosion				
Action to be Taken:				
Date to be Completed by:				
2. Deep Sump Catch Basins				
Sump clean of sedimentation				
• Structure is free of debris, litter and waste				
• Concrete surfaces are structurally sound and have				
negligible spalling and cracking.				
Action to be Taken:				
Date to be Completed by:				
3. Stone Drip Edge				
• free of debris, litter and waste.				
• In good condition.				
• Free of vegetation				
Action to be Taken:				
Date to be Completed by:				
5. Stormwater Detention Basin				
Vegetation coverage adequate				
• Undesirable vegetative growth				
Undesirable woody vegetation				
Mowing performed as necessary				
• Embankment in good repair				
No evidence of erosion				
• Standing water or wet spots				
• Sediment and/or trash accumulation				

Maintenance Item	Satisfactory	Unsatisfactory	Comments
Outlet Control Structure Good Condition			
• Other (specify)			
Action to be Taken:			
Date to be Completed by:			
7. Stormwater Treatment Systems			
 Meet requirements of the Manufacture's O&M Guidelines 			
• Other (specify)			
Action to be Taken:			
Date to be Completed by:			


Source: Adapted from Watershed Management Institute, Inc. 1997. *Operation, Maintenance, and Management of Stormwater Management Systems.* In cooperation with U.S. Environmental Protection Agency, Office of Water. Washington, D.C.

File: \\private\DFS\CadPro\DWG\P2022(1110\A10\Civii\Plan\20221110A10_FIGA.dwg_Layout FIG A Plotted: 2023-12-18 11:51 AM User: ABell MS VIEW: |LAYER STATE: |LAYER STATE: PC3: AUTOCAD PDF (GENERAL DOCUMENTATION), PC3 STB/CTB: FO.STB

Cascade Separator[®] Inspection and Maintenance Guide

Maintenance

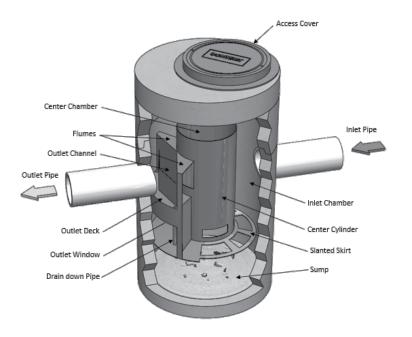
The Cascade Separator[®] system should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The rate at which the system collects sediment and debris will depend upon on-site activities and site pollutant characteristics. For example, unstable soils or heavy winter sanding will cause the sediment storage sump to fill more quickly but regular sweeping of paved surfaces will slow accumulation.

Inspection

Inspection is the key to effective maintenance and is easily performed. Pollutant transport and deposition may vary from year to year and regular inspections will help ensure that the system is cleaned out at the appropriate time. At a minimum, inspections should be performed twice per year (i.e. spring and fall). However, more frequent inspections may be necessary in climates where winter sanding operations may lead to rapid accumulations, or in equipment wash-down areas. Installations should also be inspected more frequently where excessive amounts of trash are expected.

A visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet chamber, flumes or outlet channel. The inspection should also quantify the accumulation of hydrocarbons, trash and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument. If absorbent material is used for enhanced removal of hydrocarbons, the level of discoloration of the sorbent material should also be identified during inspection. It is useful and often required as part of an operating permit to keep a record of each inspection. A simple form for doing so is provided in this Inspection and Maintenance Guide.

Access to the Cascade Separator unit is typically achieved through one manhole access cover. The opening allows for inspection and cleanout of the center chamber (cylinder) and sediment storage sump, as well as inspection of the inlet chamber and slanted skirt. For large units, multiple manhole covers allow access to the chambers and sump.


The Cascade Separator system should be cleaned before the level of sediment in the sump reaches the maximum sediment depth and/or when an appreciable level of hydrocarbons and trash has accumulated. If sorbent material is used, it must be replaced when significant discoloration has occurred. Performance may be impacted when maximum sediment storage capacity is exceeded. Contech recommends maintaining the system when sediment level reaches 50% of maximum storage volume. The level of sediment is easily determined by measuring the distance from the system outlet invert (standing water level) to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Finer, silty particles at the top of the pile typically offer less resistance to the end of the rod than larger particles toward the bottom of the pile. Once this measurement is recorded, it should be compared to the chart in this document to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage.

Cleaning

Cleaning of a Cascade Separator system should be done during dry weather conditions when no flow is entering the system. The use of a vacuum truck is generally the most effective and convenient method of removing pollutants from the system. Simply remove the manhole cover and insert the vacuum tube down through the center chamber and into the sump. The system should be completely drained down and the sump fully evacuated of sediment. The areas outside the center chamber and the slanted skirt should also be washed off if pollutant buildup exists in these areas.

In installations where the risk of petroleum spills is small, liquid contaminants may not accumulate as quickly as sediment. However, the system should be cleaned out immediately in the event of an oil or gasoline spill. Motor oil and other hydrocarbons that accumulate on a more routine basis should be removed when an appreciable layer has been captured. To remove these pollutants, it may be preferable to use absorbent pads since they are usually less expensive to dispose than the oil/water emulsion that may be created by vacuuming the oily layer. Trash and debris can be netted out to separate it from the other pollutants. Then the system should be power washed to ensure it is free of trash and debris.

Manhole covers should be securely seated following cleaning activities to prevent leakage of runoff into the system from above and to ensure proper safety precautions. Confined space entry procedures need to be followed if physical access is required. Disposal of all material removed from the Cascade Separator system must be done in accordance with local regulations. In many locations, disposal of evacuated sediments may be handled in the same manner as disposal of sediments removed from catch basins or deep sump manholes. Check your local regulations for specific requirements on disposal. If any components are damaged, replacement parts can be ordered from the manufacturer.

Cascade Separator[®] Maintenance Indicators and Sediment Storage Capacities

Model Number	Diameter			Water Surface to diment Pile	Sediment Storage Capacity	
	ft	m	ft	m	У³	m³
CS-3	3	0.9	1.5	0.5	0.4	0.3
CS-4	4	1.2	2.5	0.8	0.7	0.5
CS-5	5	1.3	3	0.9	1.1	0.8
CS-6	6	1.8	3.5	1	1.6	1.2
CS-8	8	2.4	4.8	1.4	2.8	2.1
CS-10	10	3.0	6.2	1.9	4.4	3.3
CS-12	12	3.6	7.5	2.3	6.3	4.8

Note: The information in the chart is for standard units. Units may have been designed with non-standard sediment storage depth.

A Cascade Separator unit can be easily cleaned in less than 30 minutes.

A vacuum truck excavates pollutants from the systems.

Cascade Separator [®] Inspection & Maintenance Log							
Cascade Model:			Location:				
Date	Depth Below Invert to Top of Sediment ¹	Floatable Layer Thickness ²	Describe Maintenance Performed	Maintenance Personnel	Comments		

1. The depth to sediment is determined by taking a measurement from the manhole outlet invert (standing water level) to the top of the sediment pile. Once this measurement is recorded, it should be compared to the chart in the maintenance guide to determine if the height of the sediment pile off the bottom of the sump floor exceeds 50% of the maximum sediment storage. Note: to avoid underestimating the volume of sediment in the chamber, the measuring device must be carefully lowered to the top of the sediment pile.

2. For optimum performance, the system should be cleaned out when the floating hydrocarbon layer accumulates to an appreciable thickness. In the event of an oil spill, the system should be cleaned immediately.

SUPPORT

• Drawings and specifications are available at www.ContechES.com.

• Site-specific design support is available from our engineers.

©2021 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions LLC provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater, and earth stabilization products. For information, visit www.ContechES.com or call 800.338.1122

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.